
© RuG 2010

A Visual Analytics Toolset for
Program Structure, Metrics, and Evolution

Comprehension

Dennie Reniers, Lucian Voinea

SolidSource BV, Eindhoven
the Netherlands

Ozan Ersoy, Alexandru Telea

University of Groningen
the Netherlands

http://www.rug.nl/corporate

© RuG 2010

Software Visual Analytics

• integrates data mining, analysis, and interactive visualization for sense-making from
large software systems

• data: structure, dependencies, metric, behavior, evolution
• tools: static analysis, fact extraction, repository mining

graph, table, matrix, timeline visualizations
• tasks: sensemaking by iterative hypothesis creation, refinement, (in)validation

proven added value in many contexts (including software)

hard to develop efficient and effective tools

Visual analytics

• wide range of technologies
• scalability, usability, robustness, integration issues
• visualization is still not widely accepted in software engineering

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

SoftVision
• software architectures
• node-link 2D/3D layouts

2002 SoftVision

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

VCN (Visual Code Navigator)
• code syntax structure
• dense pixel layouts
• gcc-based static analysis

2004 VCN

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

CVSscan
• line-level code evolution
• dense pixel layouts
• CVS repositories

2005 CVSscan

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

CVSgrab
• file-level code evolution
• dense pixel layouts
• CVS, SVN repositories

2006 CVSgrab

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

MetricView
• architectures and metrics
• UML layouts and glyphs
• XMI diagrams

2006 MetricView

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

MemoView
• dynamic memory allocations
• dense pixel layouts
• third-party traces/logs

2007 MemoView

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

SolidBA
• build dependencies
• table lenses, graphs
• C/C++ lightweight static analysis

2007 SolidBA

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

SolidFX
• code structure, metrics, dependencies
• dense pixel layouts, table lenses, UML diagrams
• C/C++ heavyweight static analysis

2008 SolidFX

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

SolidSTA (Software Trend Analyzer)
• code evolution (line, file, project level)
• dense pixel layouts, table lenses, timelines
• CVS, SVN, Git, CM/Synergy repositories
• metric plug-ins

2008 SolidSTA

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

SolidSX (Software Explorer)
• code structure, dependencies, metrics
• bundled layouts, treemaps, table lenses
• C/C++, Java, .NET built-in analyzers
• Visual Studio integration

2009 SolidSX

http://www.rug.nl/corporate

© RuG 2010

Visual Analytics Tooling

SolidSDD (Software Duplication Detector)
• code clones
• C/C++, Java, C#
• integrated visualization

2010 SolidDD

http://www.rug.nl/corporate

© RuG 2010

Common Design
• multiple ‘fact databases‘

• custom format: ASTs
• SQLite: anything else (metrics, call graphs, evolution data, ...)

• selections:
• sets of ID‘s in the fact databases
• inputs and outputs for all operations

• operations:
• connected in a dataflow model via selections

http://www.rug.nl/corporate

© RuG 2010

Common Visualizations
• small set of choice

annotated text table lens treemaps

timelines UML diagrams bundled layouts

http://www.rug.nl/corporate

© RuG 2010

Demonstration
SolidSX

• visual exploration of software structure, dependencies, metrics
• integrated static analyzers for C/C++, .NET/C#, Java
• open SQL/XML data formats
• pluggable metric engines
• Visual Studio integration

SolidSDD
• visual exploration of code duplication (clones)
• integrated clone detector for C/C++, C#, Java
• open SQL data formats
• integrated with SolidSX

Demo
• VTK code base (3500 C/C++ files, 2.5 MLOC)
• clone detection: 5 minutes

http://www.rug.nl/corporate

© RuG 2010

Demonstration

selected
code

clone
database

SolidSX visualization tool SolidSDD clone extractor

data: SQLite
events: sockets

http://www.rug.nl/corporate

© RuG 2010

Implementation
Efficiency

• required to handle code bases of MLOC-size
• all core visualization/analyses implemented in C/C++ with OpenGL 1.1

Uniformity
• single GUI toolkit / look-and-feel: wxWidgets (Qt: equally good alternative)

Flexibility
• scripting layer: Python (smooth integration with C/C++)

Genericity
• use simple attribute-entity-relationship (AER) data model – wherever possible
• persistent storage and queries: SQLite – wherever possible
• XML: thanks but no thanks (does not scale for MLOC-size AER graphs!)

Toolchain integration
• data: shared on-disk SQLite databases
• events: socket-based communication
• very flexible: integrate with no programming (!)

http://www.rug.nl/corporate

© RuG 2010

Discussion
1. Should academic tools be of commercial quality?

• tool = carrier for testing new method? Polished implementation = waste
• tool = proof-point for a method‘s effectiveness? Good implementation = vital!

2. How to integrate and combine independently developed tools?
• several levels

• dataflow: read/write databases in common formats (SQL, XMI, FAMIX, ...)
• shared database: single format (Eclipse CDT, Intellisense)
• common APIs: best but hardest (Mondrian, CodeCrawler, SolidSX)

3. What are lessons learned and pitfalls building tools?
• 2D vs 3D: software engineers do not (yet) accept 3D visualizations!
• interaction: minimalist design = best (hide rest under advanced options)
• scalability: vital for acceptance; dense pixel visualizations are best
• integration: most crucial acceptance factor

4. Are there any useful tool building patterns for tools?
• architecture: dataflow + shared database = most useful composition pattern
• visualizations: dense-pixel layouts are best since scalable
• heavyweight-vs-lightweight analysis:

• both are useful and arguably required
• simple database model favors their integration

http://www.rug.nl/corporate

© RuG 2010

5. What are effective techniques to improve the quality of academic tools?
• usability is the single most important factor to optimize
• problem: ‘value model‘ for academic work does not match the one of end-users!

6. How to compare/benchmark tools?
• lab studies: good for technically testing a new visualization/interaction method

• class studies: biased, as indicated by literature (see paper references)
• field studies: best, but hardest; extra effort often not compensated in academic model!
• ‘insight‘ is hard to quantify – the value is in the eyes of the beholder
• side-by-side tool comparisons: good compromise

7. What languages are best suited for building tools?
• core: C/C++ for absolute performance
• database: SQLite (fast, small, simple, portable)
• graphics: OpenGL 1.1 only
• scripting: Python (Tcl/Tk or Smalltalk possible, but harder)

http://www.rug.nl/corporate

© RuG 2010

Conclusions

Visual software analytics
• effective: added-value in solving real problems
• hard: lots of implementation/optimization effort
• challenging: the only way forward for software visualization (we believe)

See it yourself

www.cs.rug.nl/SoftVis: Free academic software visual analytics tools!
www.solidsourceit.com: Free-trial commercial-grade visual analytics tools!

Thank you!

http://www.rug.nl/corporate
http://www.cs.rug.nl/SoftVis
http://www.solidsourceit.com/

