
Paul Klint Building Academic Software Tools 1

Building Academic Software Tools
Do's and Don'ts

Paul Klint

Paul Klint Building Academic Software Tools 2

The Scientific Method
Identify problemIdentify problem

Form hypothesisForm hypothesis

Make observationsMake observations Test hypothesis/
Perform experiments

Test hypothesis/
Perform experiments

Organize and Analyze dataOrganize and Analyze data

Hypothesis confirmedHypothesis confirmed

Faulty experiments?Faulty experiments?

New experimentsNew experiments

Paul Klint Building Academic Software Tools 3

Subjects of Study in
Software Engineering Research

Paul Klint Building Academic Software Tools 4

Paul Klint Building Academic Software Tools 5

Source code

● Goal: determine properties of existing source
code or create techniques for building better
source code

● Examples:
● Source code properties (metrics, clones, use of

APIs, ...)
● New programming language or DSL

● Tools: parsing, compiling, source code
analysis, metrics, statistical analysis, ...

Paul Klint Building Academic Software Tools 6

Software Development Process

Paul Klint Building Academic Software Tools 7

Software
Development Process

● Goal: study effects of (steps in) the software
development process

● Use: version histories, management data, bug
trackers, test logs, ...

● Examples:
● Compare different processes, e.g. XP vs DSDM
● Quality of specific step, e.g., test process

● Tools: analyzing version histories, bug trackers,
productivity data, etc.

Paul Klint Building Academic Software Tools 8

People

Paul Klint Building Academic Software Tools 9

People

● Goal: study how usable, understandable,
effective a technology is

● Use: interviews, user observation, controlled
experiments, ...

● Examples:
● Are OO/imperative programs more understandable?
● Is bug finding easier in language X or Y?

● Tools: (online) interviews, user monitoring,
statistical analysis, ...

Paul Klint Building Academic Software Tools 10

P
I
t
f
a
l
l
s

i
n

S
o
f
t
w
a
r
e

E
n
g
i
n
e
e
r
i
n
g

R
e
s
e
a
r
s
c
h

Paul Klint Building Academic Software Tools 11

Pitfalls in
Software Engineering Research

● Source code:
● Size matters: small examples do not scale

● Software development process:
● Size matters: impossible to redo a multi-million

project with a new software process

● People:
● Hard to get number of subjects that gives

statistically relevant experiments
● Unaware of existing methodologies in sociology and

psychology

Paul Klint Building Academic Software Tools 12

Pitfalls in
Software Engineering Research

● Validation
● Validation
● Validation
● Validation
● Validation
● Validation
● Validation
● Validation

Paul Klint Building Academic Software Tools 13

Suppose You have Determined ...

● Subject of study
● Hypothesis
● Research method
● Experimental setup
● Validation method
● Needed tools

Paul Klint Building Academic Software Tools 14

Where do these

Where do these

tools come from?

tools come from?

N
e
e
d
e
d

T
o
o
l
s

Paul Klint Building Academic Software Tools 15

Three Strategies

Write a throw-away tool

Write reusable
tool

Reuse existing tool

Paul Klint Building Academic Software Tools 16

Reuse Existing Tool

Low investment, but ...

Documentation and usability of many (research)
tools is poor

Many existing tools are broken and you end up
fixing them

Combining different tools can be a challenge

Limited to what is available

Your results are reproducible

Easy transfer of results

Paul Klint Building Academic Software Tools 17

Write a
Throw-Away Tool

Low investment

But may be larger than anticipated

Quick method to get results

Results not reproducible

Limited to the examples in your paper

Hard for others to build on your work

Paul Klint Building Academic Software Tools 18

Write a Re-Usable Tool

High investment

Amortize investment over more research projects

Explore new technical approaches

Management in a research setting

Maintenance

Get real software engineering experience!

Results are reproducible

When successful: more visible impact on
research community and industry

Paul Klint Building Academic Software Tools 19

Three Cases of Tool Development

● ASF+SDF Meta-Environment, see
www.meta-environment.org

● ToolBus, see www.meta-environment.org
● Rascal, see www.rascalmpl.org

http://www.meta-environment.org/
http://www.meta-environment.org/
http://www.rascalmpl.org/

Paul Klint Building Academic Software Tools 20

ASF+SDF
Meta-Environment

● System for interactive development of algebraic
specifications
● software analysis and transformation
● DSL implementation

● Size ~250 Kloc, developed over more than 15
years by many different people

● Many shifting technologies:
● Lisp -> C -> Java
● User-interface toolkits

Paul Klint Building Academic Software Tools 21

ASF+SDF
Meta-Environment

Paul Klint Building Academic Software Tools 22

Paul Klint Building Academic Software Tools 23

Paul Klint Building Academic Software Tools 24

Paul Klint Building Academic Software Tools 25

ASF+SDF
Meta-Environment

● Used in many research projects word-wide for
● Compilation, language translation, refactoring
● DSL implementation
● Studies in programming language semantics
● Term rewriting

● Used in industry for
● COBOL migration, source code analysis, ...
● DSL for financial products
● DSL for business modelling

Paul Klint Building Academic Software Tools 26

ASF+SDF
Meta-Environment

● Researchers are interested in problems and
general solutions, but not in completing a
specific software project

● Writing papers conflicts with writing software
● PhD students want to write a thesis, not

maintainable software
● Choice of programming language is crucial

(LeLisp)
● Before common IDEs => program for obsolence

Paul Klint Building Academic Software Tools 27

ASF+SDF
Meta-Environment

● Software engineering ≠ programming
● Overreaction to problems encountered:

● Lack of modularity/reusability => refactor into too
many small units

● Configuration management is very hard to get
right
● Autoconf, automake, ...

● Continuous evolution of the software landscape
creates lot of overhead

Paul Klint Building Academic Software Tools 28

ToolBus

● A system for the coordination of heterogeneous,
distributed, components

● A coordination script (based on process
algebra) controls the execution of programs
written in different languages runnng on
different machines

● Size: ~15 Kloc
● Developed/improved in ~ 2 years
● Used in several projects over many years

Paul Klint Building Academic Software Tools 29

ToolBus in Action

Paul Klint Building Academic Software Tools 30

ToolBus
Lessons Learned

● Elegant system that has resulted in several
well-cited publications

● Example of turning a problem during software
development into a research problem

● The solution is probably more general than
what we needed at the time

● The maintenance of ToolBus scripts became a
problem on its own

Paul Klint Building Academic Software Tools 31

Rascal

● A meta-programming language for
● Meta-programming (yes, what else :-)
● Software analysis and transformation
● Design and implementation of domain-specific

languages

● Design 2007, implementation started end 2008
● Size: ~60-70 Kloc
● Mostly Java, integrated in Eclipse

Paul Klint Building Academic Software Tools 32

Paul Klint Building Academic Software Tools 33

Paul Klint Building Academic Software Tools 34

Applications So Far

● Java analysis, verification and refactoring
● Rascal type checking
● Parser generation
● Mining of version repositories
● DSL for forensics
● DSL for computer aided instruction:

RascalTutor
● DSL for computational auditing (just started)

Paul Klint Building Academic Software Tools 35

Rascal
Lesson Learned, so far

● Over-reliance on certain design patterns:
● Visitor pattern gives problems with understandability

and performance

● Underestimation of effort
● Excellent test suite
● Modular concepts and design
● Performance, performance, performance

Paul Klint Building Academic Software Tools 36

Some More Lessons

● Use version management (of course)

● Use refactoring to continuously improve
your code (of course)

● Use test-driven design (of course)

●Manage your
software project!

Paul Klint Building Academic Software Tools 37

Tool Development
 in Academia

Paul Klint Building Academic Software Tools 38

Tool Development in Academia
Conflicts of Interest

How to keep everybody happy?

Paul Klint Building Academic Software Tools 39

Tool Development in Academia
Conflicts of Interest

● Time: tools versus papers
● Long term continuity versus short term results
● Usability versus new functionality

● Brownie points:
● Individual versus group
● Short term versus long term
● Internal versus external

● Conflict resolution
● Joint software development ► joint papers

Paul Klint Building Academic Software Tools 40

Tool Development in Academia
Programming versus Management

Paul Klint Building Academic Software Tools 41

Tool Development in Academia
Programming versus Management

● Researchers hate management
● Research ≠ Software Engineering Project
● Software Engineering ≠ Programming
● There are many roles: manager, sales,

architect, programmers, testers, documentation
writers, ...

● In a research team few people have to play all
these roles.

● A small team with large obligations ...

Paul Klint Building Academic Software Tools 42

Tool Development in Academia
Programming versus Management

● Be aware of your own roles and of the roles of
others

● Rethink your coding efficiency:
● Use code generators where possible

● Re-use tools, libraries, algorithms whenever
you can (instead of reinventing them)

Paul Klint Building Academic Software Tools 43

Tool Development in Academia
Requirements Engineering and Design
● Usually overlooked
● Requirements engineering/design is also a role
● No real stakeholders (yet).
● Requirements can dramatically change during

the project.
● Feature creep due to desire to invent and

publish

Paul Klint Building Academic Software Tools 44

Tool Development in Academia
Who does the Programming?

● PhD students

Distracts from writing research papers

Lack of continuity

Increases value on the job market

● Senior staff

Distracts from writing research papers

Good continuity

Increases awareness of real problems

● Scientific programmers

Paul Klint Building Academic Software Tools 45

The Career Perspective of a
Scientific Programmer

Paul Klint Building Academic Software Tools 46

The Career Perspective of a
Scientific Programmer

● Just out of college:
● The coolest job: programming without the hassles

of writing papers

● After 10 years:
● Younger programmers start to appear with

knowledge that you miss; time for re-education

● After 20 years:
● Either you are at the same experience level as

researchers and are co-author of papers, or
● You ended up in a dead alley

Paul Klint Building Academic Software Tools 47

Tool Development in Academia
Using Standards

Paul Klint Building Academic Software Tools 48

Tool Development in Academia
Using Standards

● A good idea, but depends on your objectives
● Which standard?
● Standards are bulky and may lead to a lot of

extra implementation effort
● No standards for many topics in our domain:

● Meta-data about programs
– Structure (packages, module, classes, methods, ...)
– Versioning, bug reports

● Metrics

Paul Klint Building Academic Software Tools 49

Tool Development in Academia
Writing Documentation

● A tool is useless without documentation
● Scientific paper ≠ documentation
● Writing for paper documentation versus writing

for online documentation:
● No sequential story to tell
● Independent knowledge units that can be read in

arbitrary order
● Judging the maturity of your audience

Paul Klint Building Academic Software Tools 50

Experiment: RascalTutor

● A concept is a learning unit with a fixed number
of sections

● Concepts are organized in a hierarchy:
● Rascal/Expressions/Values/Set/Union

● Browsing/searching/linking
● Wiki style editing
● Written in Rascal

Paul Klint Building Academic Software Tools 51

Tool Development in Academia
Tools and Education

● Academic tools can be used in academic
courses as case study for
● Architecture documentation
● Code quality
● Test quality
● Usability experiments

● This helps to improve tool quality

Paul Klint Building Academic Software Tools 52

Do's and Don'ts?

Don'ts have already been

suggested in the presentation

Paul Klint Building Academic Software Tools 53

Do

Carefully reflect on
your tool strategy

before embarking on
any

software engineering research
project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

