
A Proof Repository for
Formal Verification of Software

Michael Franssen

WASDeTT- 3
September 20th 2010



/ Department of Mathematics and Computer Science

Cocktail

� Derive programs from their specifications

� Create proofs interactively with an proof assistant 
based on type lambda calculus
(with a GUI providing Fitch-style notation)

� Custom built tableaux based automated theorem 
prover

Does not scale and nobody programs like this

User friendly, but much automation desired

Much too weak and an awfull lot of work



Target

�An oracle to provide proofs required for the formal 
verification of software

�We assume the following architecture:

VCG

Type Checker Parser Editor

feedback

annotated programparse tree

valid program

theorems



/ Department of Mathematics and Computer Science

Considerations

� Do not build your own prover, but use existing ones

� Instead of choosing one prover, create a generic 
interface

�Pitfall: using the greatest common divisor! 
(does not exploit specialized provers!)

� Automated provers are usually incomplete.
What if a proof fails?

� Proving a theorem may take a while. How do we 
prevent proving the same theorem several times?



Our implemented modules

Theorem Prover

Connector

Controller

Network Connector

Controller

Database

TPTP Connector

Theories

(extensions)

www.tptp.org

@

Interactive 

Proof Assistant

@

Client application

theorems

feedback



/ Department of Mathematics and Computer Science

Techniques used

� The architecture can easiliy be configured by the 
user, due to our modular approach.

� If an external prover does not support some 
extension (e.g. integers), the required definitions 
and axioms are provided by the repository.

� The database uses a computable criterion called 
"more general" that implies "stronger". This is more 
flexible than looking for exact matches.

� The interactive prover has a GUI that employs proof 
by pointing and a Fitch style notation to enable 
users to conveniently construct proofs. This is done 
by using a typed lambda-calculus as foundation.



/ Department of Mathematics and Computer Science

Questions?


