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Aims and Topics of the WASDeTT Series

The Workshop on Academic Software Development Tools and Techniques (WASDeTT) series is 
motivated by the observation that tools and tool building play an important role in applied academic 
software engineering research. The tangible results of research projects are often embodied in a 
tool. Even though tool building is a popular technique to validate research (e.g., proof-of-concept 
prototyping followed by user studies), it is neither simple nor cheap to accomplish. Furthermore, 
researchers hardly get credits for the effort invested in building these tools. Given the importance of 
tool building and the significant cost associated with it, our workshop allows interested researchers 
to share their tool building experiences and to explore how tools can be build more effectively and 
efficiently. It also allows other researchers to benefit and learn from the work of others.

The purpose of this workshop is not to focus on any specific kind of these tools (say, refactoring or 
program comprehension tools) or architecture (say, Eclipse or IMP). We want to gather researchers 
working on different tools, with the goal of providing a forum where tool builders can talk about 
common issues relevant to all tool builders, and builders of academic research prototypes in 
particular, such as

• Should tool building remain a craft?
• Should academic tools be of commercial quality?
• How to integrate and combine independently developed tools?
• What are the positive lessons learned in building tools?
• What are the pitfalls in tool building?
• What are the good practices?
• What are effective techniques to improve the quality of academic tools?
• What is needed to build an active community of developers and users?
• Are there any useful tool building patterns for software engineering tools?
• How to compare or benchmark such tools?
• What particular languages and language paradigms are suited to build software engineering 

tools?

WASDeTT-3 is associated with an Experimental Software and Toolkits (EST) special issue to be 
published in Elsevier's Science of Computer Programming (SCP). All workshop papers are potential 
candidates for the special issue. The authors of a subset of these articles will be invited to submit to 
EST based on the quality of their paper and their tool presentation during the workshop. Both the 
paper and the tool will be reviewed and if accepted for publication, SCP will publish not only the 
paper but also the tool.
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Sourcerer - An Infrastructure for Large-scale Collection and
Analysis of Open-source Code

Sushil K Bajracharya, Joel Ossher, Cristina V Lopes

University of California Irvine, USA

Abstract

A large amount of open source code is now available online, presenting a great potential re-
source for software developers. This has motivated software engineering researchers to develop
tools and techniques to allow developers to reap the benefits of these billions of lines of source
code available online. However, collecting and analyzing such a large quantity of source code
presents a number of challenges. Although the current generation of open source code search
engines provide access to the source code in an aggregated repository, they generally fail to take
advantage of the rich structural information contained in the code they index. This makes them
significantly less useful than Sourcerer for building state-of-the art software engineering tools, as
these tools often require access to both the structural and textual information available in source
code.

We have developed Sourcerer, an infrastructure for large-scale collection and analysis of open
source code. By taking full advantage of the structural information extracted from source code
in its repository, Sourcerer provides a foundation upon which state of the art search engines and
related tools can easily be built. We describe the Sourcerer infrastructure, present the applications
that we have built on top of it, and discuss how existing tools could benefit from using Sourcerer.

Keywords: Open Source, Internet-scale code retrieval, Data Mining, Sourcerer, Static Analysis,
Software Information Retrieval

1. Introduction

The popularity of the Open Source Software movement has dramatically increased the gen-
eral availability of free, high quality source code. The repositories that host open source software
are growing at an exponential rate [30], and the software itself is seeing increasing usage, from
both developers and the general public. With respect to developers, open source software is often
used as part of the development infrastructure, as well as in the code itself, in the form of reusable
libraries and frameworks [35, 5]. This growth in the usage and availability of open source
software provides a rich opportunity for the creation of novel software engineering solutions.
However, collecting, analyzing, and actually using such large quantities of source code is quite
challenging, which makes building and evaluating any new techniques significantly difficult. In

Email addresses: sbajrach@ics.uci.edu (Sushil K Bajracharya), jossher@ics.uci.edu (Joel
Ossher), lopes@ics.uci.edu (Cristina V Lopes)
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this paper we present Sourcerer, an infrastructure developed to tackle these key challenges. The
paper provides details on the models Sourcerer uses to represent open source code, the content
Sourcerer stores, the tools that comprise Sourcerer, and the services that Sourcerer provides. The
current version of Sourcerer is designed to work with open source projects developed using Java.

The proliferation of open source software has given rise to two recent trends in the software
industry and the academic software engineering research community.

1. Commercial code search engines. The growth in the amount of open-source software
in public repositories is reflected in the emergence of several commercial code search
engines, such as Koders, Krugle and Google Code Search [67, 68, 11]. These code search
engines allow developers to use a single site to search billions of lines of source code
collected from various repositories on the Web.

2. Research trends in leveraging large software repositories. There has been consider-
able research effort in building specialized search tools for software developers. Studies
of developers’ activities reveal a routine use of web resources during development, in par-
ticular code examples and snippets [24, 36]. Supporting these observations several tools
have been proposed that utilize code retrieved from repositories. Examples include recom-
mending APIs [37], code-completion [25], finding reusable code fragments [41], finding
and synthesizing API examples [36, 26], and finding application for prototyping [34].

The commercial code search engines go a fair way towards fulfilling software developers’
needs for finding relevant open source code. However, their performance is often lacking, as any
user can attest. As a result, the software engineering research community has created a number of
novel approaches for large-scale code retrieval. A common theme among these approaches is the
use of structural information along with the more traditional textual information extracted from
the code. However, conducting research that requires this rich structural information presents
three major challenges:

1. Collection: The primary challenge in collecting source code off the Internet is that there is
no standard method of distribution. Open source projects are generally hosted by large
open source repositories, such as Sourceforge [69], Google Code Hosting [66], and
Apache [2], which rarely provide hooks for performing this type of collection. Ulti-
mately, the best way to obtain the source code is to scrape the download links and version
control systems from the project web pages. However, the use of different version control
systems, download protocols, and constantly changing format/content of the web pages
makes automating this collection process rather tedious.

2. Analysis: In order to leverage the structural information available in source code, one has
to be able to first extract the information itself. In order to fully extract structural informa-
tion from source code, the code must be declaratively complete; i.e. all the dependencies
must be resolved. Unfortunately, when it comes to source code from the internet, there is
no guarantee that the code is declaratively complete; missing dependencies and incomplete
files are quite common. Scaling the analysis to thousands of projects further complicates
matters, as it eliminates the feasibility of performing any type of manual processing.

3. Application: Due to the challenges posed by collection and analysis, it is often impossi-
ble to rapidly design and evaluate applications that make use of both textual and structural
information extracted from large quantities of source code. The upfront cost of construct-
ing a repository and implementing sound analysis tools makes research in large scale code
retrieval non-trivial.
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The Sourcerer project explores various applications of the large-scale collection and analysis
of open source code. We have developed a research infrastructure that is principally driven
by the need to tackle the three major challenges mentioned above. In summary, the Sourcerer
infrastructure enables the following:

1. Collection of large amount of source code from open source repositories to build a refer-
ence repository for research in large scale source code analysis.

2. Automated analysis of arbitrary Java source code that exists out in the wild (on the inter-
net).

3. Rapid development and evaluation of applications that leverage large amount of prepro-
cessed, cross-linked and aggregated repository of source code.

This paper provides details on important aspects of Sourcerer that enable the above features.
The paper is an extension of our earlier publications on Sourcerer [20, 61]. It includes more
detailed description on the latest version of the Sourcerer infrastructure and makes the following
contributions:

• Provides key details on the design and implementation of the Sourcerer infrastructure that
enables collection and analysis of large amount of open source code.

• A summary of applications enabled by Sourcerer’s infrastructure and a list of its major
contributions in the area of large-scale code retrieval and source code data mining.

• Key details on implementation, configuration, and availability of Sourcerer to motivate its
adoption by external researchers.

The Sourcerer Infrastructure primarily consists of five different components:

1. Models: A set of abstractions that capture the elements of textual and structural informa-
tion in Sourcerer’s source code collection.

2. Tools: A collection of loosely coupled tools responsible for the collection and analysis of
source code.

3. Stored Content: Artifacts that are produced using various tools and stored locally in
Sourcerer’s repository.

4. Services: A layer of abstraction that enables access to the Stored Content.
5. Applications: that leverage the Stored Content accessed via various Services.

Paper Organization: The paper begins by covering the five components that constitute the
Sourcerer infrastructure. Sections 2 through 5 capture how we built the infrastructure by de-
scribing the models, tools, and services. In Section 6, we discuss the applications built using
Sourcerer, which validates the applicability and impact of the Sourcerer infrastructure. Section 7
provides information on availability of the Sourcerer infrastructure for use by other researchers.
In Sections 8 and 9 we discuss related and future work, and cover how Sourcerer relates to ex-
isting similar tools and platforms. We conclude in Section 10. The Appendix contains details on
implementation to motivate external users to obtain, use, and extend the Sourcerer’s open source
infrastructure.

2. Models

Three models define the basic mechanisms for storing and retrieving information from the
source code available in Sourerer’s repository.

3
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Figure 1: Sourcerer’s Relational Model

2.1. Storage Model

The Storage Model captures the layout and structure of the physical files in Sourcerer’s local
repository. A layered directory structure was chosen for two main reasons. First, it allows
projects from the same source to be grouped together, which makes adding or removing content
more straightforward. Second, after initially implementing a flat version, we discovered that
the file system did not adequately handle having tens of thousands of subdirectories in a single
directory. The files collected from open source projects are stored in a folder according to the
following template:

<repo_root>/<batch>/<id>

Above, <repo root> is a folder assigned as the root of Sourcerer’s file repository. Given
the root folder, the individual project files are stored in a two-level directory structure defined by
the path fragment <batch>/<id>. Each <batch> folder contains a semi-arbitrary collection of
projects. For example, a batch could be a crawl from a specific online repository or a collection
of fixed number of projects. Inside <batch>, another set of folders exist. Each second-level
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folder in the local repository, indicated by <id> in the above template, contains the contents of
a specific project. Each <id> directory contains a single file and two sub-directories, as shown
below:

<repo_root>/<batch>/<id>/project.properties
<repo_root>/<batch>/<id>/download/
<repo_root>/<batch>/<id>/content/

Above, project.properties is a text file that stores the project metadata as a list of name
value pairs. The download folder contains the compressed file packages that were fetched from
the originating repository (e.g. a project’s distribution in Sourceforge). The content directory
contains the expanded contents of the downloads directory. Once the contents of the download
directory have been expanded, the directory itself is usually emptied in order to free up space.

The project contents in the content directory can take two different forms, depending on its
format in the initial repository. If the project contents are checked out from a remote software
configuration management systems (such as svn and cvs), the file located at a relative path path

in the originating repository (e.g Sourceforge) exists in Sourcerer’s file repository at the following
absolute path:

<repo_root>/<batch>/<id>/contents/<path>

If, instead, the project is fetched from a package distribution, a source file can be found in
Sourcerer’s file repository at the following absolute path:

<repo_root>/<batch>/<id>/contents
/package.<i>/<path>

Above, package.<i> indicates a unique folder for each ith package that is found in a remote
repository. path indicates a relative path of a source code file that is found inside the ith archived
package, which is unarchived inside the package.<i> folder.

Project metadata: The project.properties file is a generic project description format
that generalizes the project metadata from the online repositories. Many of the attributes in
project.properties are optional, except for the following:

• crawledDate: indicates when the crawler picked up the project information

• originRepositoryUrl: URL of the originating repository; e.g. http://sourceforge.net

• name: project’s name as given in the originating repository

• containerUrl : project’s unique URL in the originating repository

And, one or both of the following: (i) Information on project’s software configuration man-
agement (SCM) system indicated by scmUrl (ii) Information on project’s source package dis-
tributed on the originating repository:

• package.size indicating total number of packages distributed

• package.name.i indicating name of the ith package, where 1 <= i <= size, and i indi-
cates a unique integer denoting a package number.

5
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• package.sourceUrl.i indicating the URL to get the ith package from the originating
repository.

Two sample project.properties files showing metadata for two projects is given in Ap-
pendix A.

Jar Storage: In addition to the top-level batch directories described above, the local repos-
itory also contains a single jars directory. The jars directory is structured as follows:

<repo_root>/jars/project/<jar_path>
<repo_root>/jars/maven/<jar_path>
<repo_root>/jars/index.txt

The project subdirectory contains all of the jar files that come packaged with the projects
in the main repository. This directory is populated by crawling through the repository itself, and
copying every jar found. The copying is done so that these jar files can be modified, if necessary,
without altering the original projects. The maven subdirectory contains a mirror of the Maven2
Central Repository. Lastly, index.txt contains an index that maps from the MD5 hash of a
jar file to its location in the directory structure. This index is used to link the jar files from the
projects to the files contained in the jars directory.

The Storage Model provides a standard for storing project files in Sourcerer and is not directly
used by applications. The description above will be useful for those interesting in downloading
and using the Sourcerer’s reference file repository from [54]. Applications rely on other higher-
level abstractions to access the contents stored in Sourcerer.

2.2. Relational Model

Sourcerer’s Relational Model defines the basic source code elements and the relations be-
tween those elements. The metamodel is specific to Java, and is designed to capture its latest
version. We decided to go with a language-specific metamodel, rather than a more generic meta-
model such as FAMIX [29], as it allows us to more concisely represent Java-specific features.
Our model supports a fine-grained representation of the structural information extracted from
source code. It also links the code elements/relations with their locations in physical artifacts.

Two major goals guided the design of Sourcerer’s relational model. First, it had to be suf-
ficiently expressive as to allow fine-grained search and structure-based analyses. Second, it had
to be efficient and scalable enough to include the large amount of code from thousands of open
source projects. To meet these two goals we decided to use an adapted version of Chen et al.’s
[27] C++ entity-relationship-based metamodel as Sourcerer’s relational model for source code.
In particular, their decision to focus on what they termed a top-level declaration granularity
provides a good compromise between the excessive size of finer granularities and the analysis
limitations of coarser ones.

Our metamodel has evolved two primary ways from its original version. First, it was adapted
to include the features introduced by Java 1.5. While adding these features contributed a fair
amount of complexity to the metamodel, we felt that it was necessary given the increasing preva-
lence of open source code using the features. Second, after receiving some feedback from users,
we decided to add local variables to our metamodel, allowing for a slightly finer granularity in
our analysis.

The relational model consists of the following five elements: Project, File, Entity, Comment,
and Relation.

6
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PACKAGE
CLASS
INTERFACE
ENUM
ANNOTATION
INITIALIZER
FIELD
ENUM CONSTANT
CONSTRUCTOR
METHOD
ANNOTATION ELEMENT
PARAMETER
LOCAL VARIABLE
PRIMITIVE
ARRAY
TYPE VARIABLE
WILDCARD
PARAMETRIZED TYPE
UNKNOWN

Table 1: Entity Types

A project model element exists for every project contained in Sourcerer’s repository, as well
as every unique Jar file. A project therefore contains either a collection of Java source files and
jar files, or a collection of class files. A file model element represents these three types of files:
source (.java), jar (.jar) or class (.class). Both source and class files are linked to sets of
Entities contained within them, and to the Relations that have these entities as their source and
target. Jar files, on the other hand, are linked to their corresponding jar projects, which in turn
contains all of the entities and relations.

An entity model element either corresponds to an explicit declaration in the source code (e.g.
Class, Interface, Method etc), a Java package1, or Java types that are used but do not correspond
to a known explicitly declared type (e.g. Array, Type Variable). An entity type is UNKNOWN when
the type cannot be determined due to uncertainty in the analysis. Table 1 lists all entity model
element types defined in Sourcerer. These types all adhere their standard meaning in Java, as
defined in the Java Language Specification (JLS) [32].

A relation model element represents a dependency between two Entities. A dependency d
originating from a source entity s to a target entity t is stored as a Relation r from s to t. Table 2
contains a complete list of the relation types with a brief description and example for each. All
of the relations are binary, linking a source entity to a target. The source entity for a relation
is smallest entity that contains the code that triggers that relation. While containment is clear
for most of the entities, it should be noted that FIELDs are considered to contain their initializer
code and ENUM CONSTANTs are considered to call their constructors. The source entity is always
found within the project being examined. This is not necessarily true of the target entity. It can
be a reference to the Java Standard Library or any other external jar. In fact, sometimes it is
impossible to resolve the type of the target entity, due to missing dependencies.

A comment model element represents the comments defined in the Java source code.

1Packages are not considered to be standard declared entities as they do not have a single declaration
7
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Figure 2 shows Sourcerer’s relational model using an ER-diagram. It shows the five elements
of Sourcerer’s relational model and a set of attribute for each of them. Table 3 provides the details
on all the attributes of the model elements. Figure 2 and Table 3 provide information on how
the model elements are linked with each other, and how the attributes in the relational model
link the relational model elements with the storage model. For example, Project element’s ‘path’
attribute links it to the physical location defined by the storage model.

Various tools in Sourcerer make use of this information to connect the relational information
with the textual content stored in the physical files.

2.3. Index Model
The Index Model complements Sourcerer’s relational model by facilitating the application

of information retrieval techniques to code entities. Sourcerer’s information retrieval component
is based on the popular Lucene [6] information retrieval engine, and therefore our index model
follows Lucene’s general approach. More details on Lucene’s content model is available in [59].

Our index model matches a Lucene document to each entity in the relational model. A doc-
ument is made up of a collection of fields, each field being a name/value pair. The simplest form
of value is a collection of terms, where a term is the basic unit for search/retrieval. Terms are
extracted from various parts of an entity, and stored in the fields of the document corresponding
to that entity.

Fields in Sourcerer’s index models can be categorized into five types:

1. Fields for basic retrieval that store terms coming from various parts of a code Entity
2. Fields for retrieval with signatures that store terms coming from method signatures and

also terms that indicate number of arguments a method has
3. Fields storing metadata, for example the type of the Entity, so that a search could be limited

to one or more types of entities
4. Fields that store information to facilitate retrieval based on structural similarity (e.g. fields

storing fully qualified names (FQNs) of used entities and terms extracted from similar
entities

5. Fields that pertain to some metric computed on an entity
6. Fields that store ids of entities for navigational/browsing queries

Being based on Lucene, Sourcerer’s index model is quite flexible. Depending on a specific
search application, an instance of a Sourcerer’s index schema can have a subset of various field
types listed above. Appendix B shows an example code index schema used in two of Sourcerer’s
search applications: Sourcerer Code Search engine [18] and CodeGenie [46, 44, 45, 47].

Table 4 presents a subset of the fields available in the Sourcerer index. Sourcerer’s search
index can be searched using Lucene’s query language. The following Lucene query demonstrates
how different fields are utilized to express a query that incorporates textual as well as structural
information:

short_name: (week date)
AND entity_type: METHOD
AND m_ret_type_sname_contents: String
AND m_args_fqn_contents: Date

The above query has the following meaning: find a method with the terms week and date

in its short name (or simple name in JLS [32]), that returns a type with short name String and
takes in an argument type with the term Date in its name.
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Description
Project
project id unique identifier for a project
project type denotes whether this project represents a crawled project, or a Jar file
name name of the project as it appears in the originating Internet repository
description description of the project from the originating Internet repository
version version of this project as extracted from originating Internet repository
groop specific field applicable to Maven Jars
path corresponds to the <batch>/<id> path fragment as defined by the storage model
has source denotes whether the project contains source files
File
file id unique identifier for a file
file type denotes the file’s type - source, Jar, class
name name of the file in the file system
path corresponds to either <batch>/<id>/contents/<path>, or jars/<jar path>

as defined by the storage model
hash unique MD5 hash, applicable for Jars only
project id project id that this file belongs to
Entity
entity id unique identifier for an Entity
entity type one of the several code entity types. E.g. CLASS, METHOD etc
fqn Fully qualified name (FQN) of the entity
modifiers modifiers defined for the code entity
multi denotes array dimension, applicable for ARRAY types only
file id file id that this entity is extracted from
offset start position of this entity in the source file
length length of this entity in the text (source file)
Relation
relation id unique identifier for a relation
relation type one of the several code relation types. E.g. CALLS, EXTENDS etc
relation class denotes whether the relation terminates to a library or a local entity
lhs eid the source entity that the relation originates from
rhs eid the target entity that the relation terminates into
offset start position in the source entity’s corresponding file where this relation exists
length length of the text in source code where this relation spans
Comment
comment id unique identifier for a comment
comment type denotes the comment’s type - Javadoc, Block, Line
containing eid the immediate code entity that contains this comment
following eid the immediate code entity that follows this comment
file id file where this comment is found
offset start position of comment in the source file
length length of this comment in text (source file)

Table 3: Sourcerer’s Relational Model Elements Details
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Index Field Description
Fields for basic retrieval
fqn contents Tokenized terms from the FQN of an

entity
short name right most fragment of the FQN

(w/o method arguments for meth-
ods)

Fields for retrieval with signatures
m args fqn contents method’s formal arguments tok-

enized into terms after passing each
of them through keyword extractor

m ret type sname contents short name of the method’s return
type tokenized

Fields Storing metadata
entity type String representation of entity type.

Eg; ”CLASS”
Fields for navigation
fan in mcall local entity ids of all local callers for a

method from the same project

Table 4: Sample search index fields

Our recent publication [21] provides a more elaborate discussion on how Sourcerer’s index
model is used in a code-retrieval application.

3. Stored Content

The Sourcerer infrastructure maintains a collection of stored content corresponding to each
of the three models.

A File Repository keeps a collection of files downloaded and fetched from open source
repositories in the Internet. The structure of the code repository follows the storage model.

Two different databases store the relational information about the contents in the file repos-
itory. First, ArtifactDB stores limited information about the jar files found in the repository in
order to enable the automated resolution of missing dependencies [62]. Second, SourcererDB
stores the relational information on all projects, files and code entities that exist in the code repos-
itory. Both of the code databases exist as MySql databases whose schemas confirm to Sourcerer’s
relational model.

A Lucene based Search Index is available that stores information about terms extracted from
each code entity in the corresponding documents and fields. The search index uses a code index
schema following the index model.

4. Services

All the artifacts managed and stored in Sourcerer are accessible through a set of web ser-
vices. These services provide a layer of abstraction and programmatic access to rapidly build
applications that can leverage the underlying content stored in Sourcerer.
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Relational Query: Both ArtifactDB and SourcererDB are implemented as MySql databases.
They provide direct access to query the underlying structural/relational information in Sourcerer
using standard SQL.

Repository Access: This service provides access to the textual content of four of Sourcerer’s
model elements: files, entities, relations and comments. Repository access is a simple HTTP-
based web service that returns the full text when given a unique id.

Dependency Slicing: This service provides dependency slices of the code entities in Sourcer-
erDB. A dependency slice of an entity is a program (collection of Java source files) which in-
cludes that entity as well as all the entities upon which it depends. Requested slices are packaged
into zip files, and should immediately be compilable. The dependency slicing service can take
in one or more entity ids and return a zip file containing the collection of sliced/synthesized Java
files that the given set of entities depend on.

Code Search: This service implements a query processing and retrieval facility. Client
applications (such as CodeGenie [46, 44, 45, 47]) can send queries as a combination of terms
and fields and the service returns a result set with detailed information on the entities that matched
the queries. The query language is based on Lucene’s implementation using which clients can
express structural information in the queries. The current code search service is implemented
as a customization of the Solr search engine [15]. Solr is a front end for Lucene, and supports
a wide range of retrieval functions such as: basic retrieval of code entities based on the vector
space model, faceting based on fields defined in the code index schema, similarity searches etc.
All these features are available over Sourcerer’s code search index. The matching and scoring
(ranking) of entities follow Lucene’s implementation. Further details on how Lucene/Solr match
the query terms in index fields and scores the matched entities is available from our previous
publication [21]; a more definitive source is [10]. In summary, a boolean retrieval is performed
based on a Lucene query as shown in Section 2.3, then all matched entities (documents) are
ranked using the TF-IDF measure [58].

Similarity Calculation: The Similarity Calculation service takes in an entity id of an entity
‘e’ and returns a list of other entities that are similar to ‘e’. Currently, the similarity calculator
can suggest similar entities based on three different measures of usage similarity. For this pur-
pose, the similarity calculator uses the usage information stored in SourcererDB. The Structural
Semantic Indexing technique that we presented in [21] makes use of the similarity calculation
service. Further details on similarity calculation is available in [21].

Except the Relational Query service, all other services are simple HTTP based services.
Currently three services are open to the public. A detailed description of how to use these services
is available online [40].

5. Tools

A number of loosely coupled tools are available in the Sourcerer infrastructure. These tools
are primarily responsible for collecting and analyzing source code and producing Sourcerer’s
stored contents.

Code Crawler: Sourcerer consists of a multithreaded plugin-based code crawler that can
crawl the web pages in online source code repositories. To adapt with the changes and differ-
ences with web pages in different Internet repositories, the crawler follows a plugin based design.
A separate plugin can be written targeting the crawl of a repository. This makes it possible to just
update the plugin or add new plugins when a different or new web site has to be crawled. Cur-
rently the crawler consists of plugins for Sourceforge [69], Java.net [3], Tigris [4], Google Code
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Hosting [66], and Apache [2]. The crawler takes a set of root URLs as an input and produces a
list of download URLs and version control links along with other project specific metadata. This
project specific metadata is in the form as specified by (the project.properties file in) the
storage model.

Repository Creator: The Repository Creator tool is responsible for parsing the output list
from the Code Crawler, filtering noise from the list (e.g. removing duplicate links), and down-
loading the contents from the online repositories to Sourcerer’s local file repository. Given a
local file repository’s root folder, the repository creator creates the required folder structure and
places the contents as specified by Sourcerer’s storage model. The repository creator first creates
the two level folder structure based on the number of projects it needs to add to the repository.
Second, it creates the project.properties file describing each project. Third, it fetches the
files from remote/original repositories. project.properties has metadata about two content
sources in remote repositories: (i) Source Configuration Management systems such as svn and
cvs, and (ii) downloadable packages such as compressed distributions (zips, tars etc). When an
information on a SCM repository is available, the repository creator first tries to check out con-
tents from the respective SCM system. If errors are encountered or if the SCM check out brings
no contents, then the repository creator downloads all the packages, given that the information
on links to the packages exist in project.properties. After the download, the repository
creator explodes the archives inside the content folder corresponding to the project. The end
result of this process is a local Sourcerer repository based on the storage model and that contains
contents fetched from remote open source repositories.

Repository Manager: The repository manager tool is responsible for two tasks: (i) library
management, and (ii) optimizing the local repository for feature extraction. Under library man-
agement, the repository manager creates and maintains a local mirror of all jar files from the
Maven2 central repository 2 [13]. It also aggregates all of the jar files from the individual
projects into the jars directory, as described above. It then creates an index of all the unique jar
files in the repository. These jars can be used to provide missing types to projects in Sourcerer’s
file repository during feature extraction if needed. Under optimizing the local repository, the
repository manager performs tasks such as compressing the contents inside a project’s folder,
and cleaning the jars’ manifest files to avoid problems due to unexpected classpath additions.

Feature Extractor: The Feature Extractor in Sourcerer is responsible for extracting the de-
tailed structural information from the source code files stored in Sourcerer’s file repository. The
feature extractor is built as a headless Eclipse plug-in, to make use of Eclipse’s AST Parser.
Before running the feature extractor, the source code is preprocessed to detect missing libraries
using import statements. Some additional heuristics are used to be able to fully resolve the bind-
ings in the source code types and links to the libraries. These heuristics are fully explained in
our earlier publication [62]. The Repository Manager and the Feature Extractor together im-
plement the required techniques for Automated Dependency Resolution, a key feature available
in the Sourcerer infrastructure, that enables feature extraction from large number of open source
projects despite missing dependencies and errors. In summary automated dependency resolu-
tion works as follows. First, the feature extraction runs through the available projects to detect
missing types. It creates the AST representation of code available in the projects and generates
a list of missing types reported by the underlying Eclipse parser. From the list of missing types,
the feature extractor generates a list of possible FQNs for those types to be found. It then looks

2Maven is a build system for Java that provides the facility to fetch required libraries from a central repository [12].
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up the ArtifactDB for possible Jar files where the missing FQNs could be found. While doing
so it selects the jar files that can provide the maximum number of missing FQNs. Once the jars
are selected, they are included in the classpath of the project with missing types and then the
feature extractor runs again. This process is repeated until all missing types are found or if no
jars could be located for remaining missing types. After this step, the feature extraction does a
full extraction of entities and relations from the projects. Our evaluation of automated depen-
dency resolution has shown that it can increase the percentage of declaratively complete projects
in Sourcerer from 39% to 69%. Full details of automated dependency resolution is available in
our previous publication [62].

Database Importer: This tool allows importing the Feature Extractor’s output into the code
databases: ArtifactDB and SourcererDB.

Code Indexer: The code indexer tool is responsible to index all code entities in Sourcerer’s
repository using the textual and structural information available for the entities. The code indexer
obtains this information using three services, the File Access Service - to obtain the full text
corresponding to a code entity, SourcererDB to retrieve entities and comments related to a code
entity being indexed, and Similarity Calculation service to retrieve similar entities. As a result of
the indexing process, the code indexer produces a semi-structured full text index based on Lucene
[6]. Currently the code indexer is implemented as a customization of the Solr [15] indexing and
search system. The code index schema varies based on a particular code search application. To
index a code entity, the code indexer can retrieve all or some the following data: the full-text for
the corresponding entity, the fully qualified names (FQNs) of related entities, comments of the
used libraries, and FQNs of used entities. The search index schema will consist of fields to store
the terms corresponding to these data types. The terms are extracted from the FQNs and full-text
using code-specific analysis techniques (e.g. camel case splitting, removing language keywords
as stop words etc). The code indexer tools consists of several of these code-specific analyzers.
Appendix B provide further details on configuring the code indexer.

6. Applications

The services and stored contents in Sourcerer have been used to develop several code re-
trieval systems and data mining techniques on source code. The data collected in Sourcerer’s file
repository have enabled large-scale inter-project analysis techniques that have helped strengthen
the capability of the infrastructure itself. This section reviews Sourcerer’s key features that facil-
itated its application in the area of large scale code search, analysis and data mining on source
code.

Table 5 lists 6 applications of Sourcerer that have produced major research contributions.
The applications are listed in a chronological order. Major publications corresponding to each
application is listed in the fourth column. These references provide full details on the specific
contributions these applications of Sourcerer has made in the area of Internet-scale code retrieval
and source code data mining.

The first column in Table 5 denotes the Sourcerer milestone, indicating the version of the
Sourcerer’s infrastructure used in these applications. The difference in Sourcerer’s infrastructure
between milestones M1 and M2 is explained at the end of this section.

The last column in Table 5 indicates whether the corresponding Sourcerer application is
available online, and provides the reference to the URL for those that are available online.
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6.1. Impact

Among the 6 applications in Table 5 Sourcerer Code Search (SCS) Engine, CodeGenie,
Structural Semantic Indexing (SSI), and Sourcerer API Search (SAS) fall under the application
category of Internet-scale code retrieval. The work done in Topic Modeling Source Code is an
example of source code data mining applications that Sourcerer enables. Finally, Sourcerer Ref-
erence Collection (SRC) is an effort towards building reference collection for replicable research
in large scale code analysis. Together, these applications demonstrate Sourcerer’s impact and
contribution since its inception.

6.2. Applications Enabled by Infrastructure Features

Reference Collection: Sourcerer’s file repository, storage model, and a simple attribute
based project metadata format (see Appendix A) provides a basis for creating a large code
repository that can store and describe contents fetched from thousands of open source projects.
This enabled us to create and release a recent Sourcerer file repository as a reference collection
of source code for research in large-scale analysis of source code. The reference repository is
available at [54].

Data Mining: The storage model, file repository, relational model, and relational access to
SourcererDB allows creating a text-based corpus of source code documents. Each document
can have terms extracted from code entities, along with terms extracted from entities that they
depend on. This allows rapid construction of a corpus with the bag-of-words representation of
documents. The topic modeling work was enabled by the capability of Sourcerer to create many
variations of such corpora with little effort.

Code Indexing: The index model, repository access, and the relational query service facili-
tate rapid construction of a search index. The code indexer, being based on Solr, allows building
the search index in a declarative way. Two XML files are needed that specify the exact search
index (index schema) fields, and data sources to be used to produce a search index (data sources).
A wide range of code-specific text analyzers, implemented as part of the Sourcerer infrastructure,
can be specified in the index schema to generate terms required for the index fields. Appendix
C provides an example of Sourcerer’s declarative code indexing.

Code Retrieval/Search: All of the five Sourcerer’s services enable many required features
for building code search applications. First, the code search service can process any standard
Lucene query to retrieve a set of code entities from the search index. Again, using Solr as
the search server facilitates many advanced search techniques. The format of the search result
can be customized as per application’s need. Usually the search result contains a subset of
matched entities called ‘hits’, each representing a code entity. Each hit is associated an entity
id, which can be used to look up information with the other services. This service-based design
facilitates building code search tools that are (i) deeply integrated with developers’ working
environment, and (ii) leverage textual/structural information extracted from a large amount of
source code. Codegenie is an excellent example. Codegenie uses the code search service to first
search the entities. It then, using the repository access service, fetches the desired code for each
entity returned as a search result. Finally, it gets compilable slices of code using the dependency
slicing service that can be merged back into a developer’s project workspace. Full details on how
Codegenie is built on top of Sourcerer’s services is given in [46].

Inter-project Structural Analysis: The collection of large number of source code for projects,
libraries and automated dependency resolution technique have enabled large scale structural/de-
pendency analysis across projects. The first example of this application is the computation of
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global Coderank [19, 18, 48], a measure of popularity for a code entity based on adaptation of
Google’s Pagerank [43] algorithm on the code-graph created using SourcererDB. In this code-
graph, entities represent nodes and relations represent edges. Cross-project links are made by
finding the source code implementation for libraries that projects refer to. For example, when
a code entity has a relation terminating to a binary (library) entity l, the corresponding source
entity ls can be found in the SourcererDB. This allows us to create a global graph of program
dependencies that span projects. The details on creating such cross-project links are available in
our previous publication [61].

6.3. Sourcerer Milestones

Both the design and implementation of Sourcerer has been constantly evolving. Because
of this, earlier applications of Sourcerer use slightly different versions of the models and the
repository. At large, the changes in Sourcerer can be divided into two milestones M1 and M2,
based on five key features. Table 6 shows these features. Sourcerer M1 existed from 2006 -
2009, and the relational model only captured the entities and relations in Java as defined in Java
Language Specification 1.3. These entities and relations were extracted using a custom Java
parser built using the JFlex/CUP software packages. Search applications built with Sourcerer
M1 used the schema shown in Appendix B, Table C.7. The repository used with Sourcerer M1
had 4632 projects.

Sourcerer M2 is a major rewrite of the entire Sourcerer infrastructure. The original design
was kept intact, but the implementation was different, producing a set of loosely coupled tools
(described earlier Section 5) unlike a monolithic tool that implemented the functionalities of all
current tools in Sourcerer M1. Sourcerer M2’s relational model captures the entities and relations
as defined Java 1.5. Sourcerer M2 also contains a new and bigger source repository with around
18,000 projects. Sourcerer M2, has been open sourced since 2009. The work on code retrieval
done with Sourcerer M2 uses a different code index schema that is described in [21].

7. Availability and Access

The implementation of the Sourcerer infrastructure is available online as an open source
project [9]. Some of the services are available online as listed in Table 5. As mentioned earlier,
we have recently released Sourcerer M2’s file repository as a reference collection to be used for
research in large scale analysis of source code [54]. Currently, researchers from four different
universities have downloaded and are using the repository. Appendix D describes a workflow
of using Sourcerer; starting from crawling code to running evaluations using tools available in
its implementation. We believe this will motivate other researchers to use and extend Sourcerer
in their research.

8. Related Work

The work done in code analysis and relational model for source code in Sourcerer is quite
similar to the approach taken by many reverse engineering tools and models. For example,
FAMIX is a language independent model for describing the static structure of object-oriented
software systems [29], and is conceptually compatible with the relational model we use. FAMIXs
primary purpose is to support the exchange of information between multiple tools. Where as
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Milestone Period JLS Index Model Repo. Size Feature Extractor Open
Sourced

M1 2006 - 2009 1.3 SCS 4K Homegrown No
M2 2009 - 2010 1.5 SSI 18K, ∼350 Eclipse-based Yes

Table 6: Sourcerer Milestones

Sourcerer’s relational model’s purpose is to represent the structural information in code at the
right level of granularity and scale.

Linton’s OMEGA system was one of the first to model source code in a relational manner,
when back in 1984 he used a relational schema to describe a Pascal-like language [53, 52]. As
discussed earlier, Sourcerer’s relational model is most closely related to that of Chen et al. [27].
It is also nearly identical to the one used by the back-end repository for [37].

Sourcerer’s approach to large scale collection of open source code is, in many ways, similar to
Spars-J, a software component repository created by Inoue et al. [42]. Spars-J contains structure
and reference information similar to SourcererDB, with the addition of various software metrics.
Spars-J also merges similar components, except at the entity, rather than project, level. However
the Spars-J public demo appears to be limited to pre-Java 1.5. Although their web-interface al-
lows for searching and browsing of individual files and packages, as well as for references to be
followed, it provides no support for direct database or web-service access, making it unsuitable
as a foundation to build applications. In addition to Spars-J, there are many other component
repositories and code search engines. Merobase, for example, is a commercial component repos-
itory that provides a developer API to access its structure-based search [14]. Though it lacks
any reference-based information, this still puts it ahead of many other code search engines, such
as Google Code Search [11] and Koders [67].

9. Future Work

This section presents existing software engineering tools from a few different areas, and
describes how they could have benefited from the Sourcerer infrastructure. We also discuss
important areas of improvement that could be made to the Sourcerer infrastructure itself.

9.1. Possible Benefits to Existing Tools

A natural extension to Sourcerer’s applications would be to reimplement or interface existing
software engineering tools with Sourcerer’s repository and services. This can not only ease and
improve the development of these tools (or future tools like these) but also provide opportunities
for fair and more scientific evaluation/comparison of these tools with a common underlying
repository.

Example Recommendation: Holmes et al.’s Strathcona [37] is a tool for using a developer’s
current structural context to recommend source code examples. Strathcona attempts to match the
structural information in the current context against examples from its repository. The informa-
tion stored in Strathcona’s repository is sufficiently similar to that in Sourcerer’s that Strathcona
could be implemented on top of the Sourcerer infrastructure. This would focus Strathcona’s de-
velopment on the matching heuristics and client integration, while immediately providing access
to a very large repository.
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Figure 2: Sourcerer’s Overall Architecture

XSnippet [63], Prospector [57] and PARSEWeb [64] are all systems designed to provide
examples of object instantiation. Although implementation on top of Sourcerer would provide
some benefit to all of them, PARSEWeb would be dramatically improved. Currently PARSEWeb
uses Google Code Search to find and download likely examples of object instantiation. These
snippets are then analyzed to determine if they contain appropriate invocation sequences. This
analysis is complicated by the fact the code snippets are missing most of their external refer-
ences. PARSEWeb is forced to utilize a variety of heuristic techniques to guess the missing
types. Sourcerer is ideally suited for this sort of use, as it can provide snippets where the external
references are present, eliminating the errors introduced by the fuzzy analysis.

Information Mining: Both SpotWeb [65] and CodeWeb [60] are tools for detecting API
hotspots. If they were to use Sourcerer, hotspots could be detected directly simply by ordering
the entities in a jar by the number of incoming relations.

Pragmatic Reuse: Holmes and Walker’s approach to reuse [38] shares many similarities
with our dependency slicing. While our approach is fully automated, drawing in all necessary
dependencies, theirs permits a greater level of customization, allowing developers to exclude
dependencies they do not want. In order to achieve this customization, however, a developer
must download and import the full project into his workspace. This creates a fair amount of
manual overhead, for if there are multiple candidate projects for reuse, the process must be
repeated for each one. Furthermore, any unresolved dependencies in the initial project download
will remain unresolved in the final result. The combination of their approach with the Sourcerer
infrastructure has the potential to eliminate many of these problems. One could construct a reuse
plan on a slice returned by our system, further reducing its size, without having to worry about
downloading the full project or unrelated or unresolved dependencies.
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9.2. Extending Sourcerer

Another area of future work in Sourcerer is to address some of its current limitations, and
find opportunities to integrate it with complementary platforms/infrastructure.

Multiple Languages: Currently Sourcerer is designed explicitly to work with the Java pro-
gramming language. Although Java is quite popular as a language of choice to develop software
applications today, there are other languages that are equally popular. Even in a single project,
it is common to use multiple languages today. For example, a Java project itself might include
scripts written in dynamic languages such as Ptyhon and Groovy. Projects also include other
declarative mechanisms to generate and build code that make extensive use of languages such
as XML. Therefore, models and tools to analyze and store multiple languages, and more impor-
tantly, dependencies between them seem to be an important area that an infrastructure such as
Sourcerer needs to improve on. In this regard, existing approaches such as XIRC [31] that allows
some form of cross artifact analysis in development environments seem relevant. One strategy
could be to apply techniques used in XIRC and scale it up to make it work with Sourcerer.

Addressing Evolution: The current design of the Sourcerer infrastructure does not have a
strong support to address the evolution of the source code. Source code in open source reposi-
tories are constantly modified and updated, at least in active projects. Sourcerer’s current design
requires it to create a separate project for each unique version of project it needs to store. In
terms of storage and analysis this is not the most efficient approach to deal with evolving soft-
ware. A careful survey of the requirements and application of evolutionary data on source code
can guide Sourcerer’s future approach in dealing with evolution. One possibility would be to ex-
tend Sourcerer’s current models with elements that describe evolution, as seen in the meta-model
used by the Small Project Observatory project [56].

Considering non-code artifacts: Source code is not the only artifact that is available in
open source repositories. It is well known that during a software development lifecycle vari-
ous kinds of non-source artifacts are produced and used. For example, data on issues, bugs,
documentation, authorship, developer’s activities/ history etc. While Sourcerer is not primarily
designed to address these kinds of non-source artifacts, it is important to find an approach to
connect Sourcerer’s models and services with repositories (for example Hipikat [28] that store
these non-code artifacts.

Integrating with other open source analysis platforms: Another avenue of extension
would be to integrate Sourcerer with open-source quality monitoring platforms, such as Alitheia
Core [33], that aim to collect source code metrics from open source projects on the Internet. Such
integration could enable yet new applications, that would leverage open-source quality metrics
with information available in Sourcerer’s stored contents.

The FLOSSmole project is a collaborative effort to collect and analyze large amount of open
source project data [39]. Sourcerer is more comprehensive in terms of tools, services and depth
of information it covers for analyzing the source code available in open source project. FLOSS-
mole’s database include more project specific metadata, and had information on larger number
of open source projects. On one hand, the data from FLOSSmole project could be used, instead
of the data produced by Sourcerer’s code crawler, to construct a Sourcerer file repository. On
other hand, the depth of information that can be produced using Sourcerer can further enhance
the kinds of analyses that FLOSSmole currently supports. Therefore, integrating Sourcerer with
FLOSSmole could widen the scope and impact of both projects.
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10. Conclusion

This paper presented the design and implementation of the Sourcerer infrastructure. The
primary components and the basic working principle of Sourcerer can be summarized in the ar-
chitecture diagram presented in Figure 2. Sourcerer’s architecture consists of a set of loosely
coupled tools that produce various stored contents. These stored contents confirm to the de-
sign specified by three models: Storage, Relational and Index. Five different services provide a
layer of abstraction for programmatic access to the underlying stored content. These services en-
able the development of applications that require access to preprocessed information from large
amount of source code (in both textual and structural form).

The Sourcerer infrastructure makes three primary contributions in the area of large-scale
collection, analysis and application of open source code:

1. Collection: The storage model, a common metadata format for describing open source
projects across various online repositories, and the plugin-based design of the code crawler
enable collection of large-amount of code from the Internet.

2. Analysis: A large collection of libraries in Sourcerer’s file repository, and the automated
dependency resolution implemented in the feature extractor increases the number of declar-
atively complete projects to 69% from 39% [62]. This makes it possible to extract fine-
grained structural information from a large number of projects even in the presence of
missing dependencies.

3. Applications: Sourcerer consists of several services that provide a layer of abstraction
and programmatic access to textual, structural, and information retrieval models of source
code. This enables rapid development and evaluation of novel techniques for source code
retrieval and data mining. By providing the required models, tools, and services - it serves
as a testbed for rapid implementation and evaluation of large scale code analysis tools such
as Internet-scale code search tools. The successful application of Sourcerer in applications
such as Sourcerer Code Search engine [19, 18, 48] , Codegenie [46, 44, 45, 47], and
Structural Semantic Indexing validates [21] Sourcerer’s impact in this area.

Besides above three contributions, Sourcerer provides key resources to conduct replicable
research in large scale code analysis by (i) making available a large collection of source code
in a standard format [54], and (ii) by making the infrastructure’s implementation available as
an open source project [9]. Finally, we hope that the details on the Sourcerer’s implementation
available in the Appendix will motivate external usage and contribution to the Sourcerer project.
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4 at a given time). The first two authors are responsible for all work done in Sourcerer since
milestone M2. We acknowledge contributions made by other in the earlier versions of Sourcerer
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Appendix A. Sample project.properties files

The example below shows metadata description for a project crawled from Google code
hosting.

00 #Thu Sep 24 16:15:01 PDT 2009
01 releaseDate=null
02 name=dlctarea1
03 category=DLC, Java, Netbeans, FileChooser
04 languageGuessed=Java
05 versionGuessed=$SCM
06 scmUrl=svn checkout

http\://dlctarea1.googlecode.com/svn/trunk/
dlctarea1-read-only

07 license=GNU General Public License v2
08 keywords=null
09 sourceUrl=null
10 exractedVersion=$SCM
11 projectDescription=Tarea n\uFFFD 1
12 fileExtensions=null
13 originRepositoryUrl=http\://code.google.com
14 containerUrl=http\://code.google.com/p/dlctarea1/
15 contentDescription=null
16 crawledDate=2009-Sep-23

The example below shows metadata description for a project crawled from Sourceforge. This
description includes list of downloadable packages along with the SCM URL, unlike above that
only has the SCM URL.
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00 #Tue Sep 22 23:53:26 PDT 2009
01 versionGuessed=$SCM
02 containerUrl=http\://sourceforge.net/cvs/?group_id\=25954
03 projectDescription=\ The Virtual Data Center project is

building an operational, open-source, digital library to
enable the sharing of quantitative research data, and the
development of distributed virtual collections of data
and documentation.

04 contentDescription=cvs
05 package.releaseDate.2=2006-04-17 20\:23
06 package.releaseDate.1=2006-04-17 20\:23
07 license=GNU General Public License GPL
08 languageGuessed=Java , Perl
09 keywords=null
10 exractedVersion=$SCM
11 package.sourceUrl.2=

http\://downloads.sourceforge.net/thedata/
VDC-1.0.4-11.Fedora.4.tar

12 crawledDate=2009-Feb-28
13 package.sourceUrl.1=

http\://downloads.sourceforge.net/thedata/
VDC-1.0.4-11.RedHat.4AS.tar

14 package.versionGuessed.2=VDC 1.0.4 Final
15 package.versionGuessed.1=VDC 1.0.4 Final
16 fileExtensions=null
17 category=Education , Dynamic Content , Indexing/Search ,

Other/Nonlisted Topic , Scientific/Engineering , Archiving
18 package.name.2=thedata-vdcfedora
19 package.extractedVersion.2=VDC 1.0.4 Final
20 package.name.1=thedata-vdcredhatas
21 package.extractedVersion.1=VDC 1.0.4 Final
22 sourceUrl=null
23 releaseDate=null
24 originRepositoryUrl=http\://sourceforge.net
25 scmUrl=

cvs -d\:pserver\:anonymous@thedata.cvs.sourceforge.net\
:/cvsroot/thedata login;

cvs -z3 -d\:pserver\:anonymous@thedata.cvs.sourceforge.net\
:/cvsroot/thedata co -P modulename

26 package.size=2
27 name=thedata

These two examples show that Sourcerer’s project metadata format enables description of
projects and contents across various online repositories.

Appendix B. Sourcerer Code Index Schemas

Table C.7 shows Sourcerer’s code index model used in Sourcerer Code Search and CodeGe-
nie.

Appendix C. Declarative Code Indexing with Solr

This section shows how Sourcerer provides a declarative way of defining and creating a code
index using Solr. The syntax, specification and declarative approach is due to the use of Solr.

Three kinds of specifications are required for creating a search index in Sourcerer. First,
every index field needs to define a field type.

Field Declaration: The XML fragment below shows a field declaration named sname contents

that has a field type of FT sname contents. The field stores the terms extracted from a simple
name of code entity, the text source from which the field is populated is a FQN of a code entity.
This is retrieved from SourcererDB, details are shown later in this section.
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<field name="sname_contents" type="FT_sname_contents"/>

Field Types: A number of fields can be declared once a field type is defined. A field type
specifies the analysis done on the textual content that will be stored in the corresponding field.
For example, the field type FT sname contents defined below denote the field type to store
the terms extracted from the simple name of Java code entities. These terms are extracted from
the FQNs of entities that are retrieved from SourcererDB.

01 <fieldType name="FT_sname_contents"
02 class="solr.TextField">
03 <analyzer type="index">
04 <tokenizer
05 class="solr.KeywordTokenizerFactory" />
06 <filter class="sourcerer.FqnFilterFactory"
07 extractSig="0" shortNamesOnly="1" />
08 <filter class=
09 "sourcerer.NonAlphaNumTokenizerFilterFactory"/>
10 <filter class=
11 "sourcerer.CamelCaseSplitFilterFactory"/>
12 <filter class=
13 "sourcerer.LetterDigitSplitFilterFactory"
14 preserveOriginal="1" />
15 <filter class="solr.LowerCaseFilterFactory"/>
16 </analyzer>
17 <analyzer type="query">

The field type definition shown above indicates that a FQN (an input text to the field) is treated
as a Keyword token (due to the use of the class shown in Line 05). Therefore, the analysis starts
with the full FQN in its original form. The FQN is then piped through five filters. Each filter
takes a token stream (a stream of terms), processes it and produces a new token stream. The
terms produced at the end is what gets stored in a field. The values of the attribute ‘class’ in
the XML fragment above (Lines 06 - 15) denote a Java implementation of a token filter to use.
Classes with the prefix ‘sourcerer’ are code specific token filters available as part of Sourcerer’s
implementation. In the above example, the first filter (lines 06 and 07) extracts the simple name
from the FQN, a second filter (Line 08) splits the simple name using non-alphanumeric characters
as delimiters, the third filter does a camel case split on the new token stream, the fourth filter
split the term further based on letter-digit transition while keeping the terms already present in
the token stream, and the last filter converts every term to a lowercase version. The output from
this last filter gets stored as terms corresponding to a simple name of a Java entity.

Data Source Configuration: Another step in declarative specification for indexing is the
configuration of data sources that provide the content from which terms will be extracted and
stored in the index fields. The XML snippet below shows how SourcererDB and the repository
access service is used to feed data into some index fields.

01 <document name="entity">
02 <entity name="code_entity" pk="entity_id"
03 query="SELECT entity_id, fqn FROM entities
04 WHERE entity_type in
05 (’CLASS’,’METHOD’,’CONSTRUCTOR’)’’
06 transformer="sourcerer.Transformer"
07 code-server-url=
08 "http://sourcerer-url/file-server">
09 <field column="fqn" name="sname_contents" />
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10 <field column="fqn" name="fqn"/>
11 <field column="entity_id" name="entity_id" />
12 <field column="code_text" name="full_text"/>

Above, Line 02 indicates that a document in the index represents a code entity. Line 03
specifies a SQL query that will fetch a set of columns from SourcererDB. Lines 09 - 12 indicate
the number of fields that will be stored for the corresponding document. The values for the
attribute ‘column’ specifies the column name corresponding to the SQL query that start in Line
03. The values for the attribute ‘name’ indicates the index field the contents from the column
will be stored into. Line 12 indicates that the column to be used to get the content for the index
field full text is named ‘code text’ that does not exist in the SQL query starting at Line 03.
This column is added by the class named sourcerer.Transformer, which acts as a data
transformer. The class is responsible to fetch the source code corresponding to an entity. It uses
the value from the column entity id, sends an HTTP request to the repository access service
available at the URL specified in Line 07, and provides the text as an input to be stored for index
field full text.

This demonstrates how easily a searchable index can be created once the services are ac-
cessible in Sourcerer. The XML snippets shown above are simplified versions of what exists in
Sourcerer’s indexing tool implementation. The first two snippets come from the schema defini-
tion file (named schema.xml in a Solr installation), the third snippet comes from the data import
file (named db-data-config.xml in a Solr installation). More details on configuring these files are
available from standard references on Solr [55, 15].

Appendix D. Example Sourcerer Workflow

This section presents how various parts of Sourcerer’s implementation (available in Github
at http://github.com/sourcerer/Sourcerer) can be used in evaluation of a code retrieval scheme.
It starts from running the code crawler to build a file repository to running a client application.
The workflow resembles the setup/scenario of evaluation done for Structural Semantic Indexing
as described in [21].3

Creating a Sourcerer File Repository: The two projects found under infrastructure/tool-
s/core are needed to create the Sourcerer file repository. The projects codecrawler and core-
repository-manager are used to crawl and build the file repository. codecrawler implements the
code crawler tool, and core-repository-manager implements the Repository Creator tool. Bina-
ries to run these tools are found in the Github repository folder bin.

Once a file repository is in place, the following projects are needed to perform automated
dependency resolution: repository-manager - that implements the Repository Manager tool, ex-
tractor - that implements the Feature Extractor, model - that implements the Relational Model,
database - that implements the Database Importer tool, and utilities. These projects can all be
found under infrastructure/tools/java, except for utilities, which is found under infrastructure. In
order to use a Sourcerer file repository created using the Repository Creator Tool, some prepro-
cessing of the repository is necessary. The jar files from the projects must be aggregated and then
indexed for quick access. This is done by running edu.uci.ics.sourcerer.repo.Main twice,

3The repository used in [21] was partly created manually. The files were added to a folder structure confirming
Sourcerer’s storage model.
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Index Field Description
Fields for basic retrieval
contents Default field to be searched. combination of fqn contents, fqn fragments and fqn
fqn Fully qualified name of an entity, untokenized
fqn contents Tokenized terms from the FQN of an entity.
fqn fragments untokenized form of FQN fragments. Eg: for a FQN;

foo.bar.SomeOne.method(int) - the fragments are; foo bar SomeOne method
short name right most fragment of the FQN (w/o method arguments for methods)
short name contents tokenized form of short name
comments The collected text (untokenized) from an entity’s comments
Fields for retrieval with signatures
m sig args fqn method’s formal arguments FQN in format

org.foo.Arg1,x.y.arg2,z.arg3,...,Y.argn
m sig args sname method’s formal arguments short name in format arg1,arg2,arg3,...,argn
m sig ret type sname short name of the method’s return type, rightmost of FQN
m sig ret type fqn FQN of the method’s return type
m args arity Number of arguments a method has
m args fqn fragments method’s arguments’ FQN fragments (not ordering info)
m args fqn contents method’s formal arguments tokenized into terms after passing each of them

through keyword extractor
m args sname contents Terms extracted from the short names of each method argument
m ret type fqn fragments FQN fragments of return type
m ret type contents method’s return type FQN tokenized into terms after passing it through keyword

extractor
m ret type sname contents short name of the method’s return type tokenized
Fields Storing metadata
modifiers modifiers applied on this entity
is binary true for entities coming from jars/classes and those that are missing, false for

entities coming from source code
entity type String representation of entity type. Eg; ”CLASS”
Fields storing metrics
complexity currently mapped to lines of code
coderank local local coderank
Fields for navigation
entity id the entity id of this entity in the code database
parent id the parent entity that contains this entity (via the inside relation)
fan in all local all incoming entity ids
fan out all local all outgoing entity ids
fan in mcall local entity ids of all local callers for a method from the same project
fan out mcall local entity ids of all local callees for a method from the same project

Table C.7: Fields in Sourcerer’s code index schema used in Sourcerer Code Search and Codegenie
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with the aggregate-jar-files and create-jar-index flags respectively. In each case, the input
repository (input-repo) must be specified.

Building ArtifactDB: As specified by the storage model, the jars folder in the file repos-
itory contains the jar files used to resolve the missing dependencies. The contents of this folder
and the corresponding Jar-index can be constructed from any managed repository, which can con-
tain whatever artifacts the user wants, such as a mirror of the Maven Central Repository. We rec-
ommend contacting the people at Apache in order to obtain such a mirror, though a crawler and
downloader for it can be found in the repository-manager project in the edu.uci.ics.sourcerer.
repo.maven package. Once the file repository is ready with the Jar-index, the Feature Extractor tool is used to ex-
tract the types provided by these artifacts. The Feature Extractor is run as an Eclipse application, class Extractor
inside package edu.uci.ics.sourcerer.extractor , which is found in the extractor project. It can either
be used directly in Eclipse, or as a headless plugin. The following must be specified in command-line arguments:
the type of extraction (extract-jars to limit to jar files and extract-binary to ignore jar file source), the in-
put file repository (input-repo), and the output repository (output-repo). After the extraction is complete, an
instance of ArtifactDB can be populated with the type information. This is done using class Main, inside package
edu.uci.ics.sourcerer.db.tools, in the database project.

Automated Dependency Resolution: Once ArtifactDB is ready, the Feature Extractor tool can perform automated
dependency resolution. Dependency resolution is available for both jar and project extraction, simply by adding the
resolve-missing-types flag to the Extractor. If dependency resolution is used, the database containing
the ArtifactDB must also be specified as an argument to Extractor.

Building SourcererDB: Populating SourcererDB is done in exactly the same way as ArtifactDB.
Running Services: The File Repository and SourererDB make up two content sources needed for indexing. To

proceed with indexing, first the file repository needs to be served using the Repository Access service. An implementation
of this service is available in the Github repository under infrastructure/ services/ file-server.

To create the search index required for retrieval evaluation described in [21], two different similarity calculation
services are needed. First, that computes the Tanimoto Coefficient/Hamming Distance based similarity. This part is
implemented in infrastructure /services /similarity-server. The similarity-server requires a data source with information
on API usage. This can be provided as a plain text file. A tool to generate this usage information is available inside
project infrastructure /tools /core /machine-learning. Two classes produce the required usage statistics. First, class
UsagePreCalculatorRunner inside package edu.uci.ics.sourcerer.ml.db.tools calculates the us-
age details on all entities and APIs. Second, class FilteredUsageCalculator found in the same package finally
prepares the required usage statistics by filtering outliers (e.g.; APIs that are used by only one entity).

The second similarity calculation service that computes the TF-IDF based similarity requires a running instance of
a minimal code search service that is available under infrastructure /services /solr-config. The procedure required to run
the indexing tool and the code search service is same as for running these tools to do the final retrieval evaluation. The
only difference lies in writing the schemas and data configuration specification.

Indexing: The implementation of the code indexer and code search tools is available under infrastructure /services
/solr-config. To run the code index tool, first a Solr installation needs to be configured by writing schemas as described
Appendix B. The script that runs the search tool is available in the Github project solr-config, and is named runindex.sh.
This script runs the indexing in a cluster of machines running the Sun Grid Engine distributed computing platform [16].
The script can easily be modified to run the indexing in a single machine.

Retrieval and Evaluation: The retrieval step requires four different services to be running: Repository Access (file-
server in Github), Relational Query (an instance of SourcererDB), similarity server for HD/TC similarity (similarity-
server) in Github, and similarity server for TF-IDF similarity (a configured instance of solr-config). Once these services
are up and running, an instance of the retrieval evaluation tool can be run to execute different queries and collect the re-
quired statistics that get generated. The retrieval tool is available in Github under project infrastructure /apps /codesearch.
The implementation of the retrieval tool used in [21] is available as a GWT (Google Web Toolkit) based web application
starting at class EvalSnippetsEntryPoint in package edu.uci.ics.sourcerer.evalsnippets.client.

The output of running the retrieval evaluation tool can be processed using a tool available in Galago Search project
[7]. Finally, the output from Galago Search project provides the necessary data that can be analyzed to measure the
retrieval performance. To ease this analysis, handy scripts to be used with the R statistical programming environment are
available in Sourcerer’s Github location research /api-location /evaluation.

Summary: The workflow described above demonstrates that Sourcerer provides an end-to-end solution for large
scale collection, analysis and retrieval of code. A collection of tools and services are required for that purpose. The
implementation of these tools and services are found in Sourcerer’s github repository but can be difficult to trace through
in the order they need to be used. Therefore, in Table C.8, we present a summary of the workflow described above in
19 steps that need to be performed in the given order. The table shows the name and location of the implementation for
scripts, tools and services corresponding to each step. It also shows the part of the Sourcerer’s architecture that each
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implementation belongs to.
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�����������������������������������$���� GHGH\KSN]Q̂P_̀KPKQRaRNTQTURbK̂QNRNàcKOSNTQ����������������������'����������������������������������������������������"���������������������#��������������	������d���e������
������������ ������#������������'����W�
���$���������'�
��Bf�g h���������������#�������
�������������"�������
����������$����d���iij(k����������������������� l�������������������������#�����
����������E�����
���������E����#�������������������"������ZY���[ A���Y�����	�
��������������������������������������������������������������������"�
����������$����
�������� ����������������	���������������E��������������	�	����������������
��������������� ������������������
����Y�W�	����$���������W����������������������������������
������������������ �
- 33 -



����������	
���
�

������
���������������
�
��������� ���������������������
�������������������
�
��������� �!���"#��������������$�
��������������������
����������
���������������%
����!��������������
�����	�����

�����&�
����
!���
�����$��������
	����!���"��������������
����$
�����������������	�����
��
������������������$��
������$���
���
����!	��
����
�����$
��
������'�������������$�����$
��
�����	���	��������(�
���
	�
��)$�������$���
�����
�������

���$����
	���$
���$��
�
���������	�����������
$���*����
���	
����
�
$
��+�
�
���
�$��������
�����
,��������&�
���
�
$
�����
����'������
�&�������
������%�
*$����
-�
������.	������
�/�$��
�����	������������
������!��0��������&��
��
��
�
����
�����

��
�$$����$������$
�����$���
��������$�
���
�
$
�
�����&������
����������$�������
������	���	��������(�������$������%���&$
��
����������
�*���������!
��������
�����
�/�$�	
���
�

������
��������$�
�����$�����&�
�������
�������&	���
���������
�
���$�������&������������
���������!���������������1���������������!��$����$����	������$
����������&������%
������
���������$���
�	��!�������$���$���#��������������������!��������$
��
�����������������
$���	���
���!��
���������$������2
����������������$������
��
�

������
�
��$����
��
�����
�
��$�������$����$�����
���3�$��
��$�����
��
$���!�
�&�������&*
�&�����
��������%	��������������$������
�������!���	�����
	������!��
����������
�
�
���

����
����������������
���
����$�����
��
�
���
�&���
����
�����4
	����%�
�

����!�

��	������
�

��������������������
���
��

����&�������$���&5���������
�����������
����
�����%���������
��$��
�
!���	�����������
���$�
�����

�&�4
	����%��	���
�
���������
�������������������������
$��������!������
���'���������
!���$

���
�

������������$���
�����
��&���������� 
���������
�%�
���!���������
��������$�����	������
&�
������
��
�������$���
�����
���
����������
��������
������
������
!���$

��+��
��
	�
�
�������������#67$����89:;<=>=?	�������������
�
������������!���������/�$������������$�	��!����������
�����
!!��!�����!��$
�����������������
��@
- 34 -



�������������	
���
���������������	
������������������	����������������	
���
�����������������������������	
������	
��������� !� �"������������������!�#����$�������%�&!'�(������������)���������������*������+ �������,!���������	
���!�#����$����-����������!�#����$�� ������������.��/,���������!�#����$������������**�01231456789:14;<=>?@A=<5=?>B<C:A?33:=4D2:C1439:E=23F:=21<4<;GH0IJKLM139?23?3:?4C?3=?42131<4NOP4143:=;?B:M139QRS>:39<C2A=<F1C:C?BB:223<39:TD214:22@<51B<;GH0IJKL?4C?@@<M:C3<:U3=?B3F?=1?T@:2=:@?3:C3<39:>:?2D=:>:43V;<=:U?>A@:39:4D>T:=<;=:23?=32?;3:=:==<=2NOPB@?22WXYZ[\S\]ZM?21423?431?3:C;<=:?B93=?42131<4?4CB<44:B3:C3<23?3:1423?4B:2N?̂B91423?4B:1>A@:>:43:C3M<>:39<C27_̀R_ab]Zc\S\]Z:F?@D?3:C:UA=:221<42=:@?3:C3<>:39<CB?@@2<439:F?=1?T@:2143:=;?B:dc]e_S\]Z:U:BD3:CTD214:22@<51BTf?BB:22145<39:=A?=32<;39:A=<5=?>B<C:NP4:U:>A@?=fA?=3<;39:A=<5=?>B<C:A?33:=4B?4T:2::414@1231456Ng439:DAA:=A?=3V?23?3:1423?4B:12B=:?3:CNg439:@<M:=A?=3V?3=?42131<41423?4B:12B=:?3:CNg4<=C:=3<2DAA@f13M1395D?=C?4C?B31<4A=<5=?>B<C:V1312B=:?3:C?2?4?4<4f><D2B@?221>A@:>:43145T<39=:hD1=:C>:39<C2N89:23?3:>?B914:M?2E=23A<AD@?3:CTfB=:?31451423?4B:2;<=23?3:2?4C3=?42131<42NP;3:=iM?=C2?4:U:BD31<4>:39<CM?2B?@@:C39?3=:A:?3:C39:;<@@<M14523:A2T:5144145M13939:23?=323?3:7j6kg4F<l145?4C:F?@D?3145?@@_̀R_ab]Zc\S\]Z>:39<C2<;39:3=?42131<42:>?4?3145;=<>39:BD==:4323?3:NjmkG:@:B3145?3=?42131<4M9<2:5D?=C=:3D=4:CSXnR?4C14F<l145132c]e_S\]Z>:39<CNjokG:3314539:3?=5:323?3:<;39:B9<2:43=?42131<4?239:4:MBD==:4323?3:Npf3912>:?4239:23?3:>?B914:;D4B31<4?@13fM?2>?C::UA@1B13@f?4CB<>A=:9:421T@:;<=C:F:@<A:=21439:A=<5=?>B<C:Nq<M:F:=V4<B<44:B31<43<?4f;<=>?@><C:@M?2>?143?14:CV4:139:=1>A@1B13@f4<=:UA@1B13@fNrstuvwuxyz{|}~uz�w�z�P;3:=39:14131?@C:F:@<A>:43VGH0IJKL9?CT::414D2:;<=2:F:=?@f:?=2T<39;<=14CD23=1?@AD=A<2:2?4C14?B?C:>1BB<D=2:2Np:21C:2>14<=>?143:4?4B:B9?45:2V39:=:M?24<B=131B?@=:F1:M<;39:2<D=B:B<C:?4C4<A@?42;<=;D=39:=>?�<=C:F:@<A>:4323:A2Nq<M:F:=V:F:4>?143:4?4B:<;39:B@1:432T:B?>:C1�BD@3214B:39:�i=:@?3:C3<<@B9?14M?2<D3C?3:C?4C4<:UA:=1:4B:C�C:F:@<A:=2M:=:?F?1@?T@:3<B=:?3:?4:M<4:N8<B<A:M1393912A=<T@:>V39:B@1:43M?2=:i1>A@:>:43:C14�?F?14m���NP3391231>:V39:?D39<=2C12B<F:=:C39?3C<BD>:4i3?31<4;<=39:14131?@C:F:@<A>:43M?2A?=3@f14B<>A@:3:<=<D3i<;i2f4BM13939:?B3D?@A=<5=?>B<C:VM91B9B?4T:B<421C:=:C?hD13:B<>><4A=<T@:>;<=@<45=D44145A=<�:B32Ng4?CC131<4V�
- 35 -



����������	����	���
�����
����������	��������������
���������������	��������������������������	��

�������������������������������
�������������������
��������������	��������
���������
�����������������������������������
��������������������������������������������
���������������������������������������������������������������
������������������
������
������������������������������������
���������������������������
��������������������������	����� !"#��$%%&�'�����������������������������
���������������	������������������� !"#�������������
��������������������������������������(�������������������������������
������
�	��
��������������������������)������������������������	��
���	�����
���������
�����������������
�����������������������������������������������������������������������������������������	������������
����������������������������������	�������*�������+���������,��������������������������	��� !"#�����������������������������������������������������������������	���������������������	��� !"#��������������������������������������������	����-.�����
������
������������������
���
��������������������
��������������������������������������������������������������������	��
��������
������������������+�����	�������������/������������������������������	������������������	��������
���������������������������������
��������������������������	��
���
������������������������������������
���
������012134564789:4;4<=>?<@64A4<B9<44:9<BCD?E>F����������������������������������������������������������������	��
������	�������� !"#�������������	�����������������	��� !"#-.���������������������	���
�������������
�������G����
���
�����������������
������
�����������
���������������

���������������������	������������������	�������
��������H���������	������������������������������
������������������	��
������
�������������	��
���������������������G�������
������
������������
�������������+����
�����������������������������
�������	�	����
�������G�������������������������������	���
���
���������
������
��������������*
���
���������������������������+�����������������������������������������������������������������������������������������������������������������	��������

���������������������������������������������������������������	���������������������I���J�����H���	��
�	���K�������������
����������
���LMNO���������������
���	�������	�����������������������������
���
�������������������
�����������
�����������������	��������	����������������

�����������������������
�������	P(���������
����������������������������������������������������������������������	��������������������������������/������	�����������������	������I��������������������������������������������������������������

��������������	����	�����������������������������������������������	��
�����K������IJH������������	�����������������	��	��
�������������������
�������������	��
���Q�����������������������
�������������R�������������������
�����	������	����������
����01S1T;UE4;4<=?=9D<DV=W4345X4:>9D<�����������������	������������������
���������������������������,����$-����������
������
���������������������������	���
���������������������,�����������������
��������	������������	�����������������	������������	��������	��
�������������������������������������
������Y������
������
��������������������������	���
������������������
������
���
������'��������������
�����������������������Z
- 36 -



������� ����������� 	�
����
���������� ��������������������
��������
�����������������������
�����
���
����������
�� �������� ���
����������� ����
��� ���������� !"#$%&"'() *"+,! -, !"�./0123456�,&,&"78+�-9�.)+(:!"*8,�(.+7",6"".'() *"+) !�.�,&"'"8+ !"'".,;!(-"++<%&"*(8)�"."!8,�(.+,!8,"��"+�.,&"='"8+ !"'".,>'() *"8!""'7"))")�.8.),��&,*?-(.."-,"),(,&")�@"!".,'() *"+<8-, 8*-*�".,+7?'"8.+(:8-(.."-,�(.'() *",&8,+"!A"!+8+8.87+,!8-,�(.*8?"!(A"!)�@"!".,;(++�7*"-('' .�-8,�(.;!(,(-(*+<B.,&"'"8+ !"'".,'() *"C,&")�@"!".,*(8)�"."!8,�(.+,!8,"��"+8!"!"8*�D")8+;* �E�.+<%&"?+&8!",&"7 +�."++*(��-;!(A�)")7?/012345C7 ,)�:E:"!6�,&!"+;"-,,(,&". '7"!(:'"8+ !"'".,+8.),&". '7"!(:-*�".,+,(7" +")<F&".8'"8+ !"'".,�+G.�+&")C,&")8,8-(**"-,")7?,&"-*�".,+�++ 7'�,,"),(,&"!"+ *,'() *"<B,�+;8++")(A"!,(8!";(!,�.�'() *",&8,-8."';*(?)�@"!".,!";(!,�.�,"-&.(*(��"+C"<�<6!�,�.�,&"!86. '7"!+,(8G*"(!8*,"!.8,�A"*?;8++�.�,&"',(8+(;&�+,�-8,")!";(!,�.�+?+,"'<%&";!";8!")!"+ *,+8!",&".;!(A�)"),(,&" +"!7?,&" +"!�.,"!:8-"8�8�.<B.(!)"!,(:8-�*�,8,"8-*"8.8.):(!'8*8;;!(8-&,()"G.�,�(.8.)�';*"'".,8,�(.(:,&"'"8+ !"'".,+,!8,"��"+C8+?+,"'8,�-!"E".��.""!�.�68+8;;*�"),(,&""H�+,�.�+( !-"-()"<%&�+!"E".��.""!�.�68++ ;;(!,")7?,&":8-,,&8,,&"+,8,"'8-&�."+-(.,8�.")�.:(!'8,�(.87( ,+,8,"+C,!8.+�,�(.+C� 8!)+C8.)A8!�87*"+<%&"!"+ *,(:,&�+68+8+",(:+,8,"'8-&�."+'()"*+)"G.")�.,&",�'")8 ,('8,8'()"*-&"-9"!IJJKK1LMNC6&�-&68+-&(+".:(!�,+�(()A�+ 8*�D8,�(.C+�' *8,�(.C8.)A"!�G-8,�(.-8;87�*�,�"+<%&"(,&"!;8!,+(:,&"8;;*�-8,�(.6"!".(,)"A"*(;")78+")(.'()"*+<%&"!"8+(.:(!,&�+�+,&"&��&. '7"!8.),��&,-(.."-,�(.(:)";".)".-�"+!"�8!)�.�;*8,:(!'+8.):!8'"6(!9+$O%&" +"!�.,"!:8-"'() *"-(';*","*?)";".)+(.,&"+,! -, !"+)","!'�.")7?,&"P-*�;+"QRJ;*8,:(!'<%&"!"+ *,�.� +"!�.,"!:8-"-8.7"+"".�.G� !"S<O%&"6(!9*(8)'() *")";".)+(.,&"TU1+-&"'8(:,&")"+�!")6(!9*(8):(!'8,8.):!8'"6(!9+,('8;,&"',(�.E'"'(!?(7V"-,+,! -, !"+<O%&"A8*�)8,�(.'() *")";".)+(.:!8'"6(!9+,&8,-8.�.+;"-,-(';�*")W8A8*�7!8!�"+�.(!)"!,(A8*�)8,"8)8;,"!+< X
- 37 -



���������	��
�������
����
�	�
��������
����
���������
���������
����	������ ���
��!"#����
���	����$����%���������	���
�	���&�'��(������������������	�!�����&����	�
����
��
���)�
������
�����������!��
���!������	������!"*�	�����������!�������������)�
�
�����
��(��+��
����������������'
��������������������
�����������,���������
��!
"����	�
�����
�&��������
��$�
�������%������!���
��!��
��-���
���	�
��������"*�	�!��
���!���!������������
�����������
����������	������
��������!��
���+!���&
���%�!���!����	����	��������.��
���!�
"*�	���
���!������!�����

����
����������������
��!������
���
���������
��!
�����������
��������
�
�������������
���"*�	����������!�������������
'��	�%�
������������

����������
�!���-��
&
�����
	���-��
&�������
�����������
)
��!
"#	���
��
�!��
�	�
���
(
��������)!����+�������������	�
/01������������&�	���!+������������)�
��.����!���
��������
����
�
����!����+�������������	"2�����������
�	��!���!��������
��!!����
'�������	��	���������!������
�'����
�
�	��������������'����	����������������������,���
����
��!�3������
�%�
����!����+�������������!�������
"2�����������
������!����
���	�
��������
'����	���������

����&���'�
�����
������
������'����	����������
������
�������/4&561"7�'����&����+	���!���!��������'�
��
����
��
����"�������������
�������!�������
������,��������$���
�����
����	�����%�
&��.����!���
�	�����
������.���(�)"�	�
��'�

���������	����'�
�����
��������!������)�������	��!���!��������
��!�	�
�!����
�����&
�����	�
'�����������	�
���
�	���	�!����
859'����$�
��������!�����������8:9'����
����������
�
�����
������������
�����,���'�������������
)��	����3���4
- 38 -



�����������	�����
�
�����

��
��������
��
	��������		�������������
����������������
������
�������
����
�������	
�����

������������
��
������
�����

������
�����
���
���
�������������
���
�
�
��������������
���
���������������������
�����
��	�

�������������
�������
�����
������������
�������	�����
�		����������	�����
�������
������
��������������
��
�������
����
��
�
�����
����	�������������
�
�����	������������
��������
����� 

���
�����
��������	���
�

�������
���������������
����
�����������	�����

�
���
�����
��	��
�������
���

�����������������
�����
��
�������
����
��������
���������	���
��!"#$%&'�����	������
���
���		������ �������
��
������	������
��
�����������������!"#$%&'�������������������������������������
��(����	��
�����������������������
��������������
�
��
�����
��
���������������������������
��
��������������)*+,-./012345361789/::3-86;���������������������������	���

���������
��
��
����
�������
�����������	�	����
�����(�!"#$%&'����
�
��������	���
����
����
������
����(���
��
�������������
�������
����������������<����
������
�����

����
��
���
����
������
��������	���
!"#$%&'
�
��
���<����
=���	��
�����
�����
���=��>�������
��?��������
�������������
��

�
������������������
���
��������	���
���������
�
�
���

������������������
�������������@ABACDDEFGHI;����������������	�

���������
�����
���������!"#$%&'�����
������	�����������
���J�J
������������
����	
��������
����
����
����������		����
����K�
������
���(��
��	��������
����������������
���
�
��������������;���������������
�����
��
�

������
��	�������
���
��	��

��	����������
�
����	��

����
���
������������
���
��
��L;�����

��
���
������������
����������������������
���(���
���������
���
��	��
	�����������
����������
���
���
������
��������	������
������������
���
��
��
�����M�
���������������
�������
������
����		�����������
�
����	��

�
���
��������������
�������
���	��	���
����GNNEOPQNRSRTGPURVDEFWEGXXOTWYZ[
��
������
���
�������
�����
���������	���������������������(�\���Y]J[
��
�����
���
�������
��	����������������
��	��

���
�
���
���
������
���������;��������
���	����������	�

����
��
���������������
��

���
�
���
���
���������	�����

�����
���
���
�����������;���
���������
���������
���
���	��
�����������
������������������;���		�����������������	����������RXPRVVRVXFVRÛYJ[���!"#$%&'��������������������
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Abstract

Research groups develop plenty of tools aimed at solving real industrial problems. Unfortunately,
most of these tools remain as simple proof-of-concept tools that companies consider too risky
to use due to their lack of proper user interface, documentation, completeness, support, etc that
companies expect from commercial-quality level tools.

Based on our tool development experience in the AtlanMod research team, specially regard-
ing the evolution of our ATL model transformation tool, we argue in this paper that the best
solution for research teams aiming to create high-quality and widely-used tools is to industrial-
ize their research prototypes through a partnership with a technology provider.

Keywords: tool, ATL, prototype, industrialization, model-driven

1. Introduction

In software engineering, many research groups work on topics directly linked to (and some-
times also inspired by) real industrial problems. This research activity usually end ups imple-
mented in a tool that serves as proof of concept for the developed techniques.

These tools are technically good and solve real problems but unfortunately most times they
are largely ignored by software practitioners. Technical quality is just one of the many factors
that companies analyze when deciding whether to take the risk of adopting a new tool. Examples
of other factors that influence this decision are: user support, good documentation or usability
aspects. The problem is that resources of research groups are very limited and cannot be usually
devoted to work on this non-core research activities (also because funding for tool development
is not exactly a priority for funding agencies). Because of this, research groups risk missing the
opportunity of having a large user base for their tools along with the benefits that this brings to the
table (e.g. empirical validation of their research, feedback, visibility, collaboration opportunities
and so on). This is specially true in emerging software engineering areas with growing industrial
interest but without a dominant tool/s monopolizing the market and where some of our research
tools could make a difference.

We believe that Model Driven Engineering (MDE) is one of these areas. MDE is a software
engineering paradigm based on the use of models as primary artifacts of all software engineering
activities. Many of these activities imply model manipulations, usually implemented as model
transformations. Therefore, availability of tools for specifying and executing model transforma-
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tions is crucial. Right now, the most popular1 model transformation language and toolset is ATL
(AtlanMod Transformation Language [1]). Regardless the technical quality of ATL (comparing
technical aspects of ATL with respect to other alternative tools, as graph transformation tools [2]
or QVT-based tools [3] is not the topic of this paper) we believe its non-technical features have
been one of the key factors of its success.

In this sense, the goal of this paper is present our experience in the development of a long-
term sustainable model for ATL and the choices (both at the technical and business model level)
we have made during this process. In particular, we will emphasize our industrialization approach
for ATL (through a partnership with the technology provider Obeo [4]) that has permitted us to
meet the needs of our large user base while at the same time committing our resources only to the
research aspects of the language. This business model has proven to be feasible and beneficial
both for the company and for ourselves as a research group.

The rest of the paper is structured as follows. The next section introduces the ATL tooling.
Section 3 comments on the challenges of developing a commercial-quality level tool while Sec-
tion 4 and 5 explain our best practices to overcome these challenges at the technical and business
model level, respectively. Section 6 generalizes these results to other tools and, finally, Section 7
presents some conclusions and further work.

2. Overview of ATL

This section provides some background on the history (Section 2.1) and characteristics (Sec-
tion 2.2) of the ATL model-to-model transformation language [1] and highlights the complexity
of the tool as it stands today 2.3.

2.1. History of ATL

ATL is a model-to-model transformation language created by AtlanMod [5], a joint research
team between INRIA and Ecole des Mines de Nantes. ATL was first developed as part of the
Phd Thesis of Frédéric Jouault [6] started in 2003.

Simultaneously to the definition of the language, a toolset with the same name to specify
and execute ATL transformations was also implemented. This allowed the first concrete use of
ATL on industrial scenarios that took place in 2004 in the context of the French project CAR-
ROLL/MOTOR, in collaboration with CEA and Thales. Then, the development of the language
and tooling has continued, mainly as part of two consecutive European integrated projects called
MODELWARE (October 2004 - September 2006) and MODELPLEX (September 2006 - Febru-
ary 2010) which provided many concrete industrial use cases of ATL in various and varied con-
texts. These use cases provided new research challenges that helped us to improve the language.

ATL is integrated in the Eclipse open source community. It joined the Eclipse-Modeling
GMT (Generative Modeling Technologies) project in 2004 and then moved to Eclipse-Modeling
M2M (Model-to-Model Transformation) project [7] in 2006. This was the effective recognition
of ATL as one of the de-facto modeling standards in Eclipse. We believe this integration in the
Eclipse foundation has contributed a lot to the development of the community and of the tool in
general.

1At least among researchers, based on the number of works referencing and/or using ATL; there are plenty of indus-
trial users as well but this is more difficult to quantify and compare against other tools
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Finally, as we will explain in the next sections, the ATL ecosystem and the user community
became too large to manage only with the resources available in the AtlanMod team. Therefore,
in 2007, it was decided to start a collaboration with the Obeo company with the purpose of
industrializing ATL. This situation is still going on today and has proved to be very beneficial for
both AtlanMod and Obeo.

2.2. Transforming models with ATL

ATL is a model-to-model (M2M) transformation language. M2M transformations specify the
production of target models from a number of source models. ATL enables developers to define
how source model elements must be matched and navigated in order to create and initialize
the target model elements. Roughly speaking, an ATL transformation is defined as a set of
declarative rules. Each rule matches a subset of the source model and creates an excerpt of the
target model. Pattern matching conditions are expressed in the OCL language [8].

Source and target models can be instance of different metamodels. A simple ATL transfor-
mation Mt (see Fig. 1 transforms a model Ma, which conforms to a metamodel MMa, into a
model Mb, conforming to a metamodel MMb. Since in MDE everything should be considered,
as far as possible, as a model, Mt itself is defined as a model conforming to the ATL model trans-
formation metamodel MMt. All three metamodels conform to a metametamodel MMM such as
MOF or Ecore.

Figure 1: Model-to-Model transformation principle

As an example, Figure 2 shows an excerpt of the classic ClassToRelational model-to-model
transformation example. The objective of this transformation is to transform a class diagram into
a relational database schema, with the corresponding tables, columns, etc. In this example, the
source metamodel is Class and the target metamodel is Relational. The actual transformation
defines several rules (as Class2Table and DataType2Type) defining the mappings between the
concepts from the two metamodels, and one helper method (helpers factorize ATL code that can
be called from different points of an ATL transformation) navigating the input model to retrieve
some data needed during the mappings.

Fig. 2 shows part of the ATL Perspective, with the Project Explorer presenting the different
resources involved in the transformation, an excerpt of the ATL transformation displayed using
the ATL Editor and the Outline of the transformation displaying all its important information.
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Figure 2: The ATL perspective with a simple transformation example

2.3. Current status: the ATL project

More than a simple model transformation language, ATL has evolved into is a full Eclipes
project [9] directly under the umbrella of the Eclipse Modeling top-level project

As an Eclipse project, ATL proposes to the community a complete Eclipse IDE (Integrated
Development Environment) coming along with the ATL language, core components and many
different kinds of resources (see Figure 3). The ATL project is implemented as a set of specific
Eclipse plug-ins and features. ATL has a dedicated Eclipse perspective, its own project nature
and builders (and corresponding creation wizards) for ATL projects and files. An editor with ex-
tended capabilities (syntax highlighting, runtime parsing, compilation and error detection, code
completion, etc) and corresponding outline, a debugger, profiler, launcher and ATL Ant tasks
have also been implemented.

Apart from the regular plug-in downloads that can be get from the various update sites the
project offers a large range of online information: conceptual overview, user guide, developer
guide, technical specifications, etc. Many training resources like simple examples, tutorials or
complete use cases are also available. Moreover, the project also provides a library of more than
one hundred open source model-to-model transformations, all written in ATL and developed by
various contributors, concerning many different metamodels and domains. These transforma-
tions can of course be taken as examples, but also reused as is or refined/extended for specific
transformation scenarios.

Besides this, the ATL community is continuously expanding. There are already several exter-
nal tools using ATL as their standard model-to-model transformation technology and, in addition
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Figure 3: The ATL project on Eclipse.org

to the various publications and presentations related to ATL in major events, project committers
and contributors regularly give support to ATL users via the dedicated Eclipse forum, Eclipse
Wiki or Eclipse Bugzilla. For instance, around 40 different topics (i.e. discussion threads) di-
rectly concerning ATL have been active in the Eclipse-M2M forum just in the two first weeks of
July 2010.

3. Challenges in the Development of a Commercial-Quality ATL

As ATL was growing into the nowadays complex ecosystem (see previous section) it was
clear that ATL had the chance to become the reference model-transformation solution for com-
panies starting to adopt MDE as their development paradigm. As a research group, this was
very appealing since it would allow us, among many other benefits, to: 1 - Empirically validate
our transformation language and, in general, our research ideas; 2 - to provide good on-the-field
experimental data; and 3 - to increase the AtlanMod team visibility, increasing the number of
companies/groups that could discover (and become users of) our other works in the MDE field
and opening opportunities for future collaborations (e.g. technology transfer contracts or joint
participation in international projects).

However, we quickly realize that it would be very difficult to maintain all the components of
the ATL project and give proper support to users only with the resources available in the team.
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Furthermore, focusing on providing a good technical solution would not be enough to keep and
expand our user base, for potential users (specially companies) technical quality is only one of
the many aspects they take into account when selecting a tool. ATL users started to ask for:

• better user support (e.g. responsiveness to questions, bugs and feature requests)

• up-to-date and complete tool documentation

• good user experience (ergonomy)

• long-term perspectives for the tool

• frequent upgrades and interoperability with the latest versions of other common used tools

• extensibility, adaptability, and all the other typical -ities

• backward compatibility (which many times is difficult to combine with innovative re-
search)

In fact, we agree that all these aspects are important (as first users of the tool we would
also benefit from them, e.g. when hiring a new team member a proper documentation set would
ease his/her integration in the team activities) and they have been always in the wish-list of ATL
though hardly ever made it to the actual to-do list. The main reason is that the low availability
of funding for pure tool development forces us (and, in general, all research groups) to focus our
resources on the most innovative and research aspects of ATL neglecting all these other issues.
This is a direct consequence of the fact that most (all?) government agencies evaluate research
groups (and their members individually) exclusively based on the number of papers published
by the group, ignoring the impact in the community of the tools developed by them. This makes
extremely difficult to convince young researchers pursuing a permanent position to dedicate time
to any task that does not immediately and directly lead to new research results.

To overcome this situation, we have put in practice two kinds of strategies during the develop-
ment of ATL. First, the design of the tool itself simplifies some of these problematic aspects and,
more importantly, tries to facilitate the collaboration and technological transfer among all exter-
nal actors contributing to the ATL development. The second strategy deals with the problem of
convincing external people to contribute to ATL. In fact, given the open source license2 of ATL,
one could have the (naive) initial assumption that it would be easy to find external contributors
ready to jump in and start working on all aspects a research group cannot cover. However, this
assumption fails because few projects are succesful involving external contributors [10] and most
times, these external users also prefer to work on the most challenging tool features and not, for
instance, write documentation or improve the graphical user interface. For instance, many impor-
tant ATL contributors are members of other research groups that extend or improve ATL as part
of their research interests.3 Therefore, we realized that, apart from having a good tool design,
we needed to define a business model for ATL to guarantee a continuous influx of resources to
satisfy the requests of our users while allowing us to keep focusing on the core research aspects
of the tool. Section 4 and Section 5 elaborate on these two kind of strategies.

2More specifically, ATL follows the Eclipse Public License
3See, for instance, the program of the two ATL workshops organized so far: http://www.emn.fr/z-

info/atlanmod/index.php/MtATL2009:Program and http://www.emn.fr/z-info/atlanmod/index.php/MtATL2010:Program
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4. The ATL Solution: Technical Aspects

ATL tool design has been influenced by the principles of modularity, interoperability and use
of standard (de facto) technologies as a way of facilitating contributions from independent actors
taking part in the ATL development. Apart from this, becoming intensive users of your own tool
is also a best practice to test if the previous design priciples have been properly followed.

4.1. Modularity

The ATL framework has a modular structure based on the extension mechanism of the Eclipse
platform [11], that in turn is built upon the OSGi open modular system. The core modules of
ATL are shown in Figure 4. These modules are in charge of the operations that lead to the trans-
formation execution: code parsing and static checking, compilation and bytecode interpretation.

Figure 4: Components involved in the execution of an ATL transformation

The first component is the ATL parser (i.e. the injector in the figure) which takes an ATL
source file as input and produces a model that conforms to the ATL metamodel as output plus
a problem model storing all errors detected in the code. This error information is then used by
the ATL editor to display the corresponding error markers in the ATL source file. The second
component is the ATL compiler in charge of converting the ATL model into bytecode (ASM
format) interpretable by the ATL Virtual Machine (VM). It has been implemented using ACG, a
compiler-oriented DSL [12]. The last core component, the ATL VM, takes the compiled transfor-
mation and actually executes it on the specified input model(s) to generate as a result the output
one(s). Additional ATL modules are implemented on top of these core ones to provide the main
functionalities of the ATL development environment (e.g., editor, debugger, profiler, launcher).
Communicaton between the modules is done thanks to the standard Eclipse extension interfaces.
These same interfaces can be used by external developers wanting to make use of ATL in their
own Eclipse plug-ins (e.g., AMW [13]).

This modularization of the ATL core allows for a clear separation of concerns among the
basic components in charge of the transformation processing. This decoupling has proven to be
a valuable asset for collaborative work over the ATL core. For instance, it is common for inde-
pendent research groups to locate a research problem in only one of these components. Thanks
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to the ATL modularization the group only needs to get familiar with a limited set of technologies
(e.g. ACG for the compiler) and can provide an updated interchangeable version of the module
addressing that specific research issue. Examples of this are the optimization of the collection
handling approach of ATL by updating only the virtual machine [14] or the development of an
incremental execution mode for ATL by changing only the ATL compiler [15].

The modularization of ATL has shown its importance in several projects during the last years.
As a further step in this direction, we plan to introduce a new fine-grained extension system
for the ATL core components by defining a new set of extension-points in the core, i.e. of
functionalities that can be delegated to externally provided plug-ins.

4.2. Standard technologies

An important driver in the success of ATL has been the selection of the right core technolo-
gies for grounding the tool. The search for an open framework, supported by a solid open-source
community, and that could become the de-facto standard platform for open software engineer-
ing tools, lead us to choose the Eclipse platform. The growing popularity of Eclipse and the
increasing number of tools migrating to this platform proves our decision right and increases the
opportunities of collaborations between ATL and the other Eclipse projects.

A first benefit of integrating ATL in Eclipse is that Eclipse relieves the ATL project from im-
plementing most of the components of the IDE. The ATL perspective reuses many of the standard
IDE components provided by Eclipse and adapts them to the specific needs of ATL. Eclipse also
provides an extensibility mechanism that facilitates the definition of ATL extensions. Eclipse
plug-ins can define extension-points. An extension point indicates that the plug-in is able to
delegate that specific functionality to a different plug-in. Extension-points can be answered by
extensions, that implement an interface and descriptor matching the extension-point. Availability
of a standard extension mechanism is a key factor in enabling the creation of re-usable compo-
nents from a complex and heterogeneous community.

Finally, the success of a model transformation technology like ATL has necessarily to rely
on the success of the underlying modeling framework it uses (i.e. if models to be used as in-
put/output of ATL transformations had to be conformant to a modeling framework nobody uses
then, obviously, few people would use ATL). While the modular architecture of ATL favors inter-
operability and adaptation to different frameworks (see next subsection), we decided to privilege4

the Eclipse Modeling Framework (EMF) since it soon appeared that among several possible al-
ternatives, EMF stood out as the de facto standard solution for model handling. The fact that
today most model-based tools in Eclipse work with EMF facilitates the selection of ATL as a
model transformation language for their model manipulation activities.

4.3. Interoperability

While the early choice of Eclipse and EMF has certainly influenced the success of ATL, the
design of its architecture has followed the principle of maximum independence from specific
technologies so that we can change these technological choices in the future. For instance, as
a transformation language, ATL should be independent on the particular way a model is repre-
sented and handled in the modeling environment.

4We say that EMF is a privileged modeling framework in the ATL toolkit because there is an optimized version of
the virtual machine available for EMF that guarantees the maximum efficiency when working with EMF models
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On the one hand, this criterion guarantees that the longevity of ATL will not be influenced
by a particular technology (e.g., EMF) going out of fashion. This is particularly important in an
industrial context, where the preservation of investments is a central requirement. On the other
hand this independence enables a straightforward path for exporting ATL to other modeling
environments (e.g., Microsoft DSL Tools [16]), with the opportunity of remarkably expand the
user base.

As technical solution for remaining independent from the modeling layer we introduced the
notion of virtual machine to execute the ATL compiled bytecode. The ATL Virtual Machine is
an abstract computing machine, associated with its own instruction set and specialized in model
manipulation. Within the virtual machine, an intermediate component called Model Handler
Abstraction Layer deals with the specifics of the modeling layer. This component translates the
instructions of the VM for model manipulation into instructions for a specific model handler. By
implementing an ad-hoc model handler it is possible to use the same VM on top of various model
management systems (e.g., Eclipse EMF, Netbeans MDR, Microsoft DSL Tools) [17].

Moreover, porting the VM itself to other runtime environments (e.g. from Java to .NET)
opens the door to immediately execute ATL transformations in them since any compiled ATL
transformation can be indifferently executed on all implementations of the ATL VM that conform
to the provided specification, independently of the underlying technology [17].

4.4. Eating your own dog food
We believe it is important that research groups are the first users of the tool and that the

tool is bootstrapped when possible. For instance, the ATL compiler towards ASM bytecode
is written in the ACG DSL. The ACG compiler is bootstrapped, being itself written in ACG
and being parsed, compiled towards ASM and executed using the same technology (the TCS
parser, ACG compiler, ASM virtual machine) used to parse user defined ATL transformations.
In the same way the execution of ATL transformations is partially performed using other ATL
transformations (e.g. to generate the problem model).

Apart from being a non-trivial test for the tool, the main benefit of this is that any improve-
ment on the tool components improve not only the user-defined transformations but also the ATL
engine itself.

5. The ATL Solution: Business Model

The software engineering best-practices that have been followed since the first years enabled,
in a first phase, the construction of an initial open-source community around the tool under the
guidance of the research group AtlanMod. However, as argued in Section 3, once the user base
started to grow and the ATL project became more complex this was not enough to guarantee a
durable and expanding environment for ATL. A novel business model was required, to coordinate
needs and efforts of the actors operating around ATL.

In 2007, the industrialization process for ATL started. AtlanMod partnered with Obeo [4] to
ensure the existence of an open source but commercial-quality version of ATL. As part of this
agreement, Obeo started committing resources on the non-core aspects of ATL (the amount of
resources is more or less equivalent to the ones AtlanMod devotes to ATL research topics).

From the point of view of the research group, the main goal of the agreement is allowing
AtlanMod to focus its resources on new research activities, and letting Obeo take over tradi-
tional software development and maintenance tasks, including performance and usability im-
provements, bug fixing and user support. Thanks to this agreement, ATL technology reaches an
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industrial quality, becoming a very attractive tool for company users and a stable base for new
research directions.

Obeo, on the other hand, gets to strenghten its presence and visibility within the Eclipse
community and among industries using its open-source tecnologies. This strategic positioning
is used to create a network of key partner companies that help to expand the Obeo market. As
part of the agreement, Obeo also becomes the lead ATL training company (AtlanMod redirects to
Obeo all ATL-specific course requests coming from companies) and can deliver adapted versions
of ATL to specific companies with special needs. Moreover, ATL complements well the other
MDE technologies in the the Obeo offering (that already include, for instance, the Acceleo tool
for model-to-text transformations) and it is already been used as a key component in Obeo’s new
tool releases. This in-house development of ATL and the privileged relationship with the creators
and lead research contributors of ATL (ourselves) give Obeo a competitive advantage over other
companies that also propose products based on ATL.

More specifically, and according to the agreement with AtlanMod, Obeo takes responsibility
over a precise set of activities around the ATL technology:

Quality assurance. The main responsibility of Obeo is in maintaining the ATL software at a
quality level that is acceptable for wide industrial use. This task is twofold, since it includes
a reactive part, mainly related to managing bug reporting and correction, and a proactive
part, for the optimization of the ATL codebase, with a special attention to scalability.

Interoperability. The ATL tool is intended as a part of a complex modeling system, composed
both by modules built within Obeo itself (e.g., Acceleo) and tools provided by third parties
(e.g., modelers, modeling frameworks). Obeo takes care of the issues connected with the
interoperability among ATL and the related modules, and implements new solutions to
improve this interoperability.

Continuity. In an industrial context it is important to guarantee that the evolution of develop-
ment tools will not unexpectedly break existing projects. The integration in ATL of new
technical solutions, coming from Obeo or academia, has to be performed in an incremental
way, carefully preserving backward compatibility with previous versions.

User experience. One of the priorities of the industrialization of ATL is the improvement of the
general user experience in the development environment. Obeo makes use of ergonomy
principles for the improvement of the IDE, and adds typical facilities such as wizards and
hints. The company also takes care of the internationalization of the user interface.

Release management. Obeo takes charge of the management of ATL releases, by defining mile-
stones, building, testing, packaging and distributing new versions.

User support. Finally Obeo offers support to the user base, in both the forms of free and
subscription-based support. Casual users are assisted for free by managing the newsgroup
and the mailing list on the Eclipse website. Obeo also commits in extending and updating
the documentation of the ATL components. On the other hand Obeo has an immediate
income from offering industrial users a personalized support and training programs.

At the same time Obeo took the lead of the official (stable) version of ATL, a new branch of
ATL was formed, ATL Research, to host the experimental ATL versions, under the supervision
of AtlanMod. Figure 5 illustrates the mechanism for technological exchange between the two
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branches of ATL. The official versions of ATL, maintained by Obeo, are publicly distributed and
constitute the baselines upon which research prototypes are built. These experimental ATL Re-
search prototypes exhibit novel solutions for particular research projects. In the cases in which
these solution are considered interesting for the general public, they are integrated in the subse-
quent official version of ATL. Depending on the stability of the prototype and on its compliance
with a set of quality criteria (e.g., scalability, backward compatibility) the module in ATL Re-
search can be directly imported in ATL, or, more commonly, its functionality is re-engineered by
Obeo before being integrated in the stable branch. We believe this two-branch strategy is a good
solution to avoid any restrictions on the research activities around ATL while not damaging the
stability and backward compatibily properties desired by industrail users.

Figure 5: ATL and ATL Research

We remark that the initial choice of licencing every part of ATL under an open-source li-
cence (this includes both the ATL research branch and the official branch maintained by Obeo)
has remarkably simplified the creation of this new business model. The open source licence au-
tomatically guarantees the possibility to transfer every ATL update between the company and the
research lab. Moreover this open source licence also assures to any third party, especially other
research groups, that this code exchange will not benefit only AtlanMod, but the whole research
community . This guarantee has the effect to stimulate the contribution of new code from ATL
users and researchers, with a return gain for AtlanMod and Obeo themselves.

6. A Sustainable Open Source Business Model for Industrializing Research Tools

We are now replicating this industrialization process with two other MDE technologies from
the group: the software modernization tool MoDisco [18] (together with Mia-Software [19]) and,
more recently, our Megamodeling model management approach [20] (with ProDevelop [21]),
with the same levels of success and satisfaction for the results of the collaboration achieved so
far. Therefore we plan to generalize this strategy in most of the new projects of the team.

In this sense, this section sketches our sustainable open source business model for industri-
alizing research tools triangle that summarizes the general industrialization schema we envision.
There are three main actors in this triangle: the research lab, the technology provider and a big
company/user community (see Figure 6). The triangle allows connecting research groups and
industrial users and match their interests.

The triangle works as follows:
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Figure 6: Open source triangle for the successful industrialization of research tools

1. Big companies (or big user communities) describe a challenging problem they face in their
domain and that they would like to see solved (e.g. the industrial use cases that helped to
drive the development of ATL in its early beginnings)

2. The lab evaluates the problem and decides whether it is a relevant research problem
3. If it is, the lab conducts the research (and publishes papers about it) and implements a

proof-of-concept to present the results to the big company
4. The big company evaluates these results and decides whether to go forward and request an

industrialized version of the tool to use in its day-to-day practice
5. In that case, the big company, with the help of the research lab, selects a technology

provider.
6. The research lab assists the technology provider during the industrialization of the tool
7. The technology provider releases the tool

The fact that this is an application-driven research (i.e. the starting point is a real problem that
a big company wants to be solved) ensures the return of investment for the technology provider.
Adopting open source as the common denominator in all these activities is not absolutely manda-
tory but facilitates a lot the communication between the different actors and maximizes the ben-
efits of the relationship (e.g. for the research group it is easier to publish papers about it and the
technology provider could commercialize services and adaptations on top of the tool for other
big companies sharing the same problem). This triangle can also be used to characterize many
other interesting scenarios between the actors. For instance, when the research group is not inter-
ested in the problem expressed by the big company, the company can still search for a technology
provider to solve that problem. Detailing all possible relationships cannot be done here due to
space limitations.

This idea of intertwining research groups and industry partners has been already praised for
its benefits [22]. Similar to the industry-as-laboratory approach presented there, we believe
that continuous communication and technology transfer, between research lab and industry, is
very benefitial for both partners. However, we believe that our triangular structure can help
overcoming the limitations identified in [22] (such as the short-term/long-term and evolution-
ary/revolutionary different interests between the lab and the industry), since it gives to the re-
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search lab the flexibility to combine the benefits of working with real end-users and technology
providers at the same time in a coherent global schema.

We strongly believe that this schema can be successfully adopted by other research groups
as a strategy to develop industrial quality level tools with all the benefits that this brings to the
group.

7. Conclusion

We have presented our strategy for developing high-quality tools that can become widely
used by the software engineering community: industrialization of the research prototypes thanks
to the partnership with a technology provider. We believe this is the best solution to ensure that
somebody external to the team (in our case, this technology provider) is in charge of all non-core
research aspects of the tool development (documentation, usability, user support, etc). These
aspects are key to convince external users (specially companies) to adopt our tools but cannot
be taken in charge by the research teams themselves due to their limited resources. We have
validated this strategy during the development of our ATL tool and we are now replicating it
with other tools of the group.

We believe our experience can be useful to other research groups willing to go from proof-
of-concept tools to real industrial-level tools, with all the benefits this may bring to the team (in
terms of visibility, feedback, project opportunities and so on). We also hope our example helps
to convince as well technology providers and development companies about the advantages of
participating in such joint initiatives; there is a viable business model behind it, as companies
like Obeo or MIA-Software have demonstrated.

As further work, we would like to formalize a protocol for the establishment and execution of
this kind of partnerships so that roles, resources and responsibilities of each participant are clear
from the beginning. This will facilitate explaining this open source industrialization concept and
developing new partnerships in the future. This is being investigated as part of our contribu-
tion to the OPEES European project [23] aimed to ensure long-term availability of innovative
engineering technologies in the domain of dependable / critical software-intensive embedded
systems.

Additionally, we plan to create a web-based collaboration platform for ATL extensions (we
tag this project ATL labs due to its similarity with existing initiatives as the recent Eclipse-
Labs.org proposal) to facilitate the autonomous experimentation and contribution by other people
beside our main partner. This project will provide a sandbox where researchers can experiment
with ATL and extend it for specific purposes. Such specialized extensions cannot be done on the
official ATL branch since there the contribution policy is quite rigid and they don’t fit in the tree
structure of the ATL Research branch. ATL Labs is meant to host a number of orthogonal ATL
extensions for specific needs that potential users can select and compose to get a specific ATL
“flavor” adapted to their needs.

Finally, we plan to start using social networking tools to build a community of ATL users that
can easily share their experience, help each other and participate in discussions about the future
of ATL; the limited participative mechanisms in Eclipse (mailing lists, bugzilla, forums, ...) are
not enough for this.

Acknowledgments. The present work has been partially supported by the ITEA2 OPEES Euro-
pean project.
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Disnix: A toolset for distributed deployment

Sander van der Burg, Eelco Dolstra
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Abstract

The process of deploying a distributed system in a network of machines is often very com-
plex, labourious and time consuming, while it is hard to guarantee that the system will work as
expected and that certain non-functional requirements from the domain are supported. In this pa-
per we describe the Disnix toolset, which enables automatic deployment of a distributed system
in a network of machines from declarative specifications and offers properties such as complete
dependencies, atomic upgrades and rollbacks to make this process efficient and reliable. Disnix
has an extensible architecture, allowing the integration of custom modules to build a distributed
deployment architecture that takes non-functional requirements of the domain into account. Dis-
nix has been under development for almost two years and has been applied to several types of
distributed systems, including an industrial case study.

Keywords: Software deployment, Distributed systems, Service oriented systems

1. Introduction

The software deployment process of a distributed system, which consists of steps such as
building components from source code, transferring the components from producer side to con-
sumer side and the activation of the system, is usually a very difficult, expensive and time-
consuming process. In many cases, there is a lot of labour involved, it is hard to guarantee that a
system will work as expected, the system may break completely and it is a process which cannot
be performed atomically (i.e. during upgrading a user may observe that the system is changing).
Furthermore, there are non-functional properties from the domain that must be supported, such
as security, privacy and performance.

In order to reduce the complexities in the software deployment cycle, several solutions have
been developed. Many of these tools are specifically designed for component technologies such
as Enterprise Java Beans [1], or designed for environments such as Grid Computing [2]. Further-
more, some general approaches have been developed, such as [3].

While these tools are useful for its purpose, some distributed systems are not homogeneous
(i.e. not implemented by a single component technology or for a single platform/architecture).
For instance, many Java EE systems are composed of components implemented in the Java pro-
gramming language, but also of non-Java components, such as databases, which cannot be com-
pletely and reliably deployed by existing deployment tools.

Email addresses: s.vanderburg@tudelft.nl (Sander van der Burg), e.dolstra@tudelft.nl (Eelco Dolstra)
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Figure 1: Architecture of the StaffTracker example system. Objects represent distributable components. Arrows represent
dependency relationships between components.

Therefore we have developed Disnix, a toolset built on top of the Nix package manager [4, 5]
used to automatically deploy a distributed system in a network of machines. In contrast to other
tools for distributed deployment, Disnix is designed to support the deployment of complete het-
erogeneous systems, which are composed of components using various technologies on various
platforms/architectures. Moreover, Disnix offers features to make the deployment process safe
and reliable, such as models to describe services and machines in the network to automatically
perform deployment steps, complete dependencies, atomic upgrades and rollbacks, garbage col-
lection to safely remove obsolete components and a modular architecture to integrate with the
domain in which the system is to be used. We have applied Disnix to several use cases, such as
a service-oriented system designed for hospital environments [6].

In this paper we explain the concepts underlying Disnix, as well as its architecture, which
consists of primitives to perform deployment steps in a generic manner and is extensible to make
the deployment process suited to the target domain in which the system is to be used.

The paper is organised as follows. We first introduce a motivating example in Section 2. We
then provide some background information in Section 3. Section 4 briefly discusses the purpose
and concepts of the Disnix toolset. In Section 5, we explain the architecture of Disnix, such as
its tools, libraries and design choices. Section 6 explains some extensions built on top of the
Disnix toolset to make deployment more convenient for specific domains. Section 7 explains our
experiences with the development and testing of the toolset, an open source community in which
Disnix is being developed and some use cases. Finally, Section 8 concludes and outlines future
work.

2. Motivating example

Figure 1 shows the architecture of the StaffTracker system, a simple distributed system de-
veloped as one of the example cases for Disnix that can be publically used. The StaffTracker is a
system to manage staff of a university, and uses several web services to look up the location of a
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staff member from an IP address, a staff member’s zipcode from a room number, and an address
from a zipcode.

The architecture of the StaffTracker consists of three layers. The data layer contains compo-
nents that actually store data in MySQL databases. The service layer contains web services, pro-
viding an interface to the data stored in the databases (the GeolocationService uses GeoIP [7] to
track the country of origin from an IP address). The presentation layer contains the StaffTracker
web application front-end, which can be used by end users to manage staff of the university. This
application invokes the web services in the middle layer to retrieve records or to modify the data
stored in the databases.

All the components in Figure 1 are distributable components (which we call services later on
this paper), i.e. they can be distributed across various machines in a network. For instance, the
zipcode database may be located on a different machine as the StaffTracker web application.

To deploy the StaffTracker system, a system administrator or developer must install the data-
bases on one or more MySQL servers. Moreover, all the web services and web application front-
end must be built from source code, packaged, and activated on one or more Apache Tomcat
servers.

There are various reasons why a developer or system administrator wants to deploy compo-
nents from Figure 1 on multiple machines, rather than a single machine. For instance, a system
administrator may want to deploy the StaffTracker web application on a machine which is pub-
lically accessible on the internet, while the data, such as the zipcodes, must be restricted from
public access since they are privacy-sensitive. Moreover, each database may need to be deployed
on a seperate machine, since a single machine may not have enough disk space available to store
all the data sets. Furthermore, multiple redundant instances of the same component may have to
deployed in a network, to offer load-balancing or failover.

Because of all these constraints, the deployment process of a system such as the StaffTracker
becomes very complex. This complexity increases for every additional machine on which com-
ponents of the system are deployed. Existing research and solutions are able to make the de-
ployment easier for specific components and environments, but cannot manage a hetereogeneous
system such as the StaffTracker on multiple platforms and offer properties such as dependency
completeness and atomic upgrades. Moreover, they also do not offer the ability to guarantee
non-functional requirements, such as privacy.

3. Background

Disnix is a toolset used to perform distributed deployment tasks and is built on top of Nix [4,
5], a package manager with some distinct features compared to conventional package managers
(e.g. RPM [8]) to make deployment safe and reliable, such as model-driven deployment, com-
plete dependencies, atomic upgrades and rollbacks and a garbage collector.

Nix stores packages in isolation from each other in a directory called the Nix store. Every
package has a special file name such as /nix/store/5am52fmn...-firefox-3.6.6, in which the first
part 5am52fmn... is a cryptographic hash derived from all the inputs (e.g. libraries, compilers,
build scripts) used to build the component. If a user decides to build the component with, say,
a different compiler, this will result in a different hash and thus a different filename in the Nix
store. This approach makes it safe to store multiple versions and variants next to each other,
because no components share the same name.

Since every component is stored in isolation in the Nix store rather than a global directory
such as /usr/lib, we have stricter guarantees that its dependencies are correct and complete. With
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Figure 2: Overview of the disnix-env tool

conventional package managers the fact that a package builds successfully does not guarantee
that the dependency specification is correct, since dependencies are stored in global locations.
In Nix, all packages reside in the Nix store and must therefore be explicitly specified. This
guarantees that if a package builds correctly on one machine, it will build on other machines of
the same type as well.

Nix supports atomic upgrades and rollbacks, because components are stored safely next to
each other and are never overwritten or automatically removed. Thus there is no time window in
which a package has some files from the old version and some files from the new version (which
would be bad because a program may crash if it is started during that period).

Moreover, Nix uses a purely functional domain-specific language called the Nix expression
language to specify build actions. This makes building a package deterministic and reproducable.
A garbage collector is included to safely remove packages that are no longer in use.

Because of these features, Nix is a very good basis to build a distributed deployment tool to
make the deployment process of a distributed system, such as the StaffTracker efficient, reliable
and atomic. However, Nix only deals with intra-dependencies, which are either run-time or
build-time dependencies residing on the same machine. In order to deploy a distributed system
into a network of machines additional features are provided by Disnix. Most importantly, these
include models to describe machines in the network, and management of inter-dependencies –
the run-time dependencies between components residing on different machines.

4. Overview

Figure 2 shows an overview of the disnix-env tool, which is used to perform the complete
deployment process of a distributed system automatically from models. Three types of models
specified in the Nix expression language are required as input parameters to automate the de-
ployment process, each capturing a specific concern. All the remote deployment operations are
performed by the DisnixService, a service that exposes deployment operations through a cus-
tom RPC protocol and must be installed on every machine in the network. All the deployment
operations are initiated from a single machine, called the coordinator.

A services model is used to specify the available distributable components, how to build
them, their inter-dependencies, and their types. The latter determine how a service is to be
activated or deactivated. An infrastructure model is used to specify what machines are available
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{distribution, system}:

let pkgs = import ../top-level/all-packages.nix { inherit system; }; in 1
rec {
### Databases

rooms = { 2
name = "rooms";
pkg = pkgs.rooms;
dependsOn = {};
type = "mysql-database";

};
...

### Web services
RoomService = {

name = "RoomService"; 3
pkg = pkgs.RoomService; 4
dependsOn = { 5
inherit rooms;

};

type = "tomcat-webapplication"; 6
};
...

### Web applications
StaffTracker = {
name = "StaffTracker";
pkg = pkgs.StaffTracker;
dependsOn = {
inherit GeolocationService RoomService StaffService ZipcodeService;

};
type = "tomcat-webapplication";

};
}

Figure 3: Partial services.nix model for the StaffTracker

in the network, how they can be reached in order to perform remote deployment operations, and
other relevant capabilities and properties. A distribution model is used to specify a mapping of
services to machines in the network.

Figure 3 shows a partial service model for the StaffTracker system. This expression is a set
of attributes in which every attribute (such as 2 ) represents a component from the architecture
described earlier in Figure 1. Every attribute is itself an attribute set defining the relevant prop-
erties of the service, such as the name of the service 3 , a reference to the function that builds
the service from source code 4 , the inter-dependencies of the service 5 (which correspond to the
arrows shown in Figure 1) and its type 6 . The functions that build every component from source
code and its intra-dependencies (such as libraries and compilers) are defined in a seperate file,
which is imported at 1 (not covered in this paper).

Figure 4 shows an infrastructure model used to capture the machines in the network and
their relevant properties/capabilities. This model is also an attribute set. Here, every attribute
represents a system in the network, such as a machine called test2 7 . For each machine relevant
properties are defined such as the architecture of the system 10 , so that Disnix can build a service
for the desired type of platform, and a hostname attribute 8 so that Disnix knows how to reach
a target machine to perform remote deployment operations. The other attributes are optional and
are used to activate particular types of services. For instance, the tomcatPort attribute 9 specifies
through which port the Apache Tomcat server can be reached.

A distribution model, shown in Figure 5, maps services to machines in the network. In this
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{
test1 = {
hostname = "test1.testdomain.net";
tomcatPort = 8080;
system = "i686-linux";

};

test2 = { 7
hostname = "test2.testdomain.net"; 8
tomcatPort = 8080; 9
mysqlPort = 3306;
mysqlUsername = "user";
mysqlPassword = "secret";

system = "x86_64-linux"; 10
};

}

Figure 4: An infrastructure.nix model for the StaffTracker

{infrastructure}:

{

GeolocationService = [ infrastructure.test1 ]; 11
RoomService = [ infrastructure.test2 ];
StaffService = [ infrastructure.test1 ];
StaffTracker = [ infrastructure.test2 ];

ZipcodeService = [ infrastructure.test1 infrastructure.test2 ]; 12
rooms = [ infrastructure.test2 ];
staff = [ infrastructure.test2 ];
zipcodes = [ infrastructure.test2 ];

}

Figure 5: A distribution.nix model for the StaffTracker

model, the name of each attribute corresponds to a service defined in the services model, while its
value is a list of machines defined in the infrastructure model. For instance, 11 specifies that the
GeolocationService must be deployed on the test1 machine defined in the infrastructure model. It
is also possible to deploy multiple redundant instances of the same service by specifying multiple
machines in a list, such as 12 , which deploys the ZipcodeService on both test1 and test2. More
details on how these models can be specified can be found in [9].

By writing instances of the three models mentioned above the user can deploy a complete
system in a network of machines by running:

$ disnix-env -s services.nix -i infrastructure.nix -d distribution.nix

This command performs all the deployment steps to make the system available for use; i.e. build-
ing all the services defined in the services model from source code, transferring the services and
all their intra-dependencies to the machines in the network and finally activating them in the
right order derived from the dependency graph. By adapting the model instances above and by
running disnix-env again, an upgrade is performed instead of a full installation. In this phase
only the changed components are built from source code and transferred to the target machines
and only obsolete services are deactivated and new services activated in the right order of activa-
tion. In case of a failure, Disnix will perform a rollback, which will bring the system back in its
previous deployment state.
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Figure 6: Architecture of disnix-env. Rectangles represent objects that are manipulated by the tools. The ovals represent
a tool from the toolset performing a step in the deployment process.

A machine in the network may be of a different architecture than the machine distributing the
services and thus incapable of building a service for that particular platform. Therefore, Disnix
also provides the option to build services on the target machines in the network, instead of the
coordinator machine.

Disnix has several important features. Since it is built on top of the Nix package manager,
it will inherit properties to ensure that all intra-dependencies are always complete, components
can be stored safely next to each other, and because Nix never overwrites files, an upgrade will
not break the system in case of a failure. Moreover, Disnix can also be used to block or queue
connections during the upgrade phase so that users will not be able to observe that the system is
changing to make the upgrade process fully atomic. More details on this can be found in [9, 10].

5. Architecture

The disnix-env tool, which performs the complete deployment process, is composed of sev-
eral tools each performing a step in the deployment process, shown in Figure 6.

Firstly, the disnix-manifest tool is invoked with the three models as input parameters. This
tool generates a manifest file, an XML file that specifies what services need to be distributed to
which machine and a specification of the services to be activated. The manifest file is basically
a concrete version of the abstract distribution model. While the distribution model specifies
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which services should be distributed to which machine, it does not reference the actual service
that is built from source code for the given target machine under the given conditions, i.e. the
component in the Nix store. This tool iterates over the distribution model and builds the services
and all their dependencies for the given target machine and produces the manifest file referring
to the build results.

The generated manifest file is then used by the disnix-distribute tool. This tool will efficiently
copy the components and their intra-dependencies to the machines in the network through the
remote interfaces. Only the components that are not yet distributed to the target machines are
copied, while keeping components that are already there intact. Moreover, this process is also
non-destructive, as no existing files are overwritten or removed. To perform the actual copy step
to a single target, the disnix-copy-closure tool is invoked.

Finally, the disnix-activate tool is executed, which performs the activation phase. In this
phase all the obsolete services are deactivated and all the new services are activated in the right
order, by comparing the manifests of the current deployment state and the new deployment state.
During this phase every service receives a lock and unlock request to which they can react, so that
optionally a service can reject an upgrade when it is not safe or temporarily queue connections
so that end users cannot observe that the system is changing. This allows the upgrade process to
be completely atomic. More details about this process can be found in [9, 10].

Disnix provides an optional feature to build services on the target machines instead of the
coordinator machine. If this option is enabled two additional modules are used. The disnix-
instantiate tool will generate a distributed derivation file. This file is also an XML file similar to
the manifest file, except that it maps store derivation files (low-level specifications that Nix uses
to build components from source code) to target machines in the network.

It then invokes disnix-build with the derivation file as argument. This tool transfer the store
derivation files to the target machines in the network, then builds the components on the target
machines from these derivation files, and finally copies the results back to the coordinator ma-
chine. The disnix-copy-closure tool is invoked to copy the store derivations to a target machine
and to copy the build result back.

Finally, it performs the same steps as it would do without this option enabled. In this case
disnix-instantiate will not build every service on the coordinator machine, since the builds have
already been performed on the machines in the network. Also, due to the fact that Nix uses a
purely functional deployment model, a build function always gives the same result if the input
parameters are the same, regardless of the machine that performed the build.

The disnix-env process is a composition of several other processes, for the following reasons:

• A user should be able to perform steps in the deployment process separately, for instance
a user may want to build all the services defined in the model to see whether everything
compiles correctly, while he does not directly want to activate them in the network.

• Testing and debugging is relatively easy, since everything can be invoked from the com-
mand line by the end user. Moreover, components can be invoked from scripts, to easily
extend the architecture.

• Components are implemented with different technologies. The disnix-manifest and disnix-
instantiate tools are implemented in the Nix expression language, because it is required
to build components by the Nix package manager. Other tools are implemented in the
C programming language such as the disnix-distribute and disnix-activate tools and shell
scripts: disnix-env.
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Figure 7: Architecture of the DisnixService

• Prototyping is relatively easy. A tool can be implemented in a high level language first and
later reimplemented in a lower level language.

The principles above are quite common for developing UNIX applications and inspired
by [11].

5.1. Disnix service

Some of the tools explained in the previous subsection have to connect to the target ma-
chines in the network to perform deployment steps remotely, e.g. to perform a remote build or
to activate/deactivate a service. Remote access is provided by the Disnix Service, which must be
installed on every target machine.

The Disnix service consists of two major components, shown in Figure 7. We have a com-
ponent called the core that actually executes the deployment operations by invoking the Nix
package manager to build and store components and the activation modules package to activate
or deactivate a service. The wrapper exposes the methods remotely through an RPC protocol of
choice, such as an SSH connection or through the SOAP protocol provided by an external add-on
package called DisnixWebService.

There are two reasons why we choose to make a separation between the interface component
and the core component:

• Integration. Many users have specific reasons why they choose a particular protocol
e.g. due to organisation policies. Moreover, not every protocol may be supported on every
type of machine.

• Privilege separation. To execute Nix deployment operations, super-user privileges on
UNIX-based systems are required. The wrapper may need to be deployed on an applica-
tion server hosting other applications, which could introduce a security risk if it is running
as super user.

Custom protocol wrappers can be trivially implemented in various programming languages.
As illustrated in Figure 7, the Disnix core service can be reached through the D-Bus proto-
col [12], used on many Linux systems for inter-process communication. In order to create a
custom wrapper, a developer has to map RPC calls to D-Bus calls and implement file transport
of the components. D-Bus client libraries exist for many programming languages and platforms,
including C, C++, Java and .NET and are supported on many flavours of UNIX and Windows.
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5.2. Disnix interface

In order to connect to a machine in the network, an external process is invoked by the tools
on the deployment coordinator machine. An interface can be configured by various means, such
as specifying the DISNIX CLIENT INTERFACE environment variable. The Disnix toolset in-
cludes two clients: disnix-client, a loopback interface that directly connects to the core service
through D-Bus; and disnix-ssh-client, which connects to a remote machine by using a SSH con-
nection. The separate DisnixWebService package includes an additional interface called disnix-
soap-client, which uses the SOAP protocol to invoke remote operations and performs file trans-
fers by using MTOM, an XML parser extension to include binary attachments without overhead.

A custom interface can be trivially implemented by writing a process that conforms to a
standard interface, calling the custom RPC wrapper of the Disnix service.

5.3. Activation modules

Since services can represent many things, such as processes or databases, and cannot be
activated generically, Disnix provides activation types, which can be connected to activation
modules as illustrated in Figure 7. In essence, an activation module is a process that takes two
arguments: the first is either ‘activate’ or ‘deactivate’ and the second is the Nix store path of
the service that has to be activated/deactivated. Disnix passes all the properties defined in the
infrastructure model as environment variables, so that system properties such as port numbers
can be used.

The Disnix toolset includes a set of activation modules that can be used for activating com-
monly found services such as Apache Tomcat web applications, Apache HTTP server web appli-
cations, MySQL databases, NixOS configurations and generic UNIX processes. Moreover, there
is a wrapper activation module, which will invoke a wrapper process with a standard interface
included in the service.

Custom activation modules can be trivially implemented by a process that conforms to the
activation module interface.

5.4. Libraries

Many of the tools in the Disnix toolset require access to information stored in models. Since
this functionality is shared across several tools we implemented access to these models through
libraries. The libmanifest component provides functions to access properties defined in the mani-
fest XML file, libinfrastructure provides functions to access to properties defined in the infrastruc-
ture model and libdistderivation provides functions to access properties in a distributed derivation
file.

We rather use library interfaces for these models, since they are only accessed by tools im-
plemented in the C programming language and do not have to be invoked directly by end users.

5.5. Additional tools

Apart from disnix-env and the tools that compose it, the Disnix toolset includes several other
utilities that may help a user in the deployment process of a system:

• disnix-query. Shows the installed services on every machine defined in the infrastructure.

• disnix-collect-garbage. Runs the garbage collector in parallel on every machine defined in
the infrastructure model to safely remove components that are no longer in use.
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• disnix-visualise. Generates a clustered graph from a manifest file to visualise services, their
inter-dependencies and the machines to which they are distributed. The dot tool [13] can
be used to convert the graph into an image, such as PNG or SVG.

• disnix-gendist-roundrobin. Generates a distribution model from a services and infrastruc-
ture model by applying the round robin scheduling method to divide services over each
machine in the infrastructure model in equal portions and in circular order.

6. Extensions

Although the Disnix toolset itself provides useful features to make automated deployment
of a distributed system possible and properties to make this process efficient and reliable, the
toolset itself has a very generic approach. For instance, some non-functional properties cannot
be addressed in a generic manner, since they are specific to the domain in which the system has
to be used. We have to extend the toolset architecture to make this process more convenient, by
integrating modules dealing with such non-functional properties.

In this section, we illustrate some of the extensions that we have designed. These extensions
are implemented, but are still works in progress and not as mature and usable as the basic toolset.

6.1. Virtualization

In some cases, especially while developing a system, users may want to test a certain de-
ployment scenario in virtual machines, instead of performing a real deployment scenario, which
requires having physical machines available somewhere with a preconfigured base system.

While Disnix manages the services constituting a distributed system, Disnix does not manage
the system configurations of the target machines. This basically means that the virtual machines
for testing have to be configured by other means (i.e. manually, by following the installation
procedure of the operating system), which still could take a lot of effort.

In [14] we have demonstrated an approach in which we can automatically and efficiently
instantiate a network of virtual machines from a declarative specification and automatically per-
form test cases on those virtual machines. This work builds upon NixOS [15], a GNU/Linux
distribution which uses the Nix package manager to manage all packages, including the Linux
kernel, system services and configuration files. Because Nix uses a purely functional approach
for packages, we can share the Nix store components across virtual machines and the host sys-
tem, which makes virtual machine instances relatively cheap.

To overcome the burden of creating virtual machines to test a deployment scenario with
Disnix, we developed a tool called disnix-vm-env. This is a wrapper around the regular disnix-
env that instantiates and launches virtual machines to simulate the network as defined by the
models.

To do this, the infrastructure model is replaced by a network model, which defines the config-
uration of a network of NixOS machines. Figure 8 shows a partial network model, which can be
used to deploy the StaffTracker in a virtual environment. This model is an attribute set in which
every attribute represents a system, such as 13 representing machine test1. Each attribute refers
to a NixOS configuration that describes the complete system configuration, such as the running
services, configuration files and system properties. For instance at 14 , the configuration of the
Apache Tomcat container is specified, which is tuned with a specic Java virtual machine option
to increase the heap space at 15 . Other required services such as MySQL are defined at 16 . This
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{

test1 = {pkgs, ...}: 13
{
services.openssh.enable = true;
services.disnix.enable = true;

services.tomcat = { 14
enable = true;

catalinaOpts = "-Xms64m -Xmx256m"; 15
...

};
...

};
test2 = {pkgs, ...}:
{
services.openssh.enable = true;
services.disnix.enable = true;

services.mysql.enable = true; 16
services.tomcat = {
enable = true;
catalinaOpts = "-Xms64m -Xmx256m";
...

};
...

};
}

Figure 8: Partial network.nix model for the StaffTracker

file can be used to automatically build a network of NixOS systems conforming to the given
system configurations. More details about this model and its applications can be found in [14].

The main difference between the infrastructure model and the network model is that the
infrastructure model is an implicit model; It should reflect the system configurations of the ma-
chines in the network, but the system administrator must make sure that the model matches the
actual configuration. Moreover, it only has to capture attributes required for deploying the ser-
vices. The network model is an explicit model, because it describes the complete configuration
of a system and is used to deploy a complete system from this specification. If building a sys-
tem configuration from this specifcation succeeds, we know that the specification matches the
given configuration. Unfortunately, this property only works because we built upon NixOS; other
operating systems such as FreeBSD or Windows cannot use this approach.

The following instruction from the command line spawns a network of machines defined in
the network Nix expression and then deploys the StaffTracker system into the virtual machines:

$ disnix-vm-env -s services.nix -n network.nix -d distribution.nix

Figure 9 shows the architecture of the disnix-vm-env tool, which is a composition of several
tools similar to the basic Disnix toolset. The disnix-generate-vms tool uses the network model
to instantiate and launch a network of virtual machines running NixOS with the given config-
urations. The disnix-vm-generate-infra tool generates an infrastructure model from the network
model which the disnix-env tool can use. Finally, the service model, generated infrastructure
model and distribution model are used by disnix-env to perform the actual deployment on the
virtual machines.

In order to connect to the DisnixService instances on the virtual machines a disnix-backdoor-
client has been developed, which connects to each virtual machine through a UNIX domain
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Figure 9: Architecture of disnix-vm-env

socket. This offers developers the advantage that no network settings have to be configured on
the host system such as IP or port forwarding.

A limitation of this approach is that currently only NixOS configurations are supported. De-
ploying on a FreeBSD or Microsoft Windows system still requires the user to manually configure
a base system.

6.2. Dynamic deployment

The deployment specifications required by Disnix are very static; a user must explicitly de-
fine all the machines and their relevant properties in the infrastructure model and has to explicitly
define for each service to which machines they should be distributed. Maintaining such specifica-
tions by hand for large networks is impractical. Therefore a more dynamic approach is required.
In [16] we have outlined the requirements for such an approach in which we want to generate
an infrastructure and distribution model. Thus, we treat the infrastructure as a dynamic cloud, in
which we automatically deploy components implementing a service to the right machines in the
network, taking capabilities and quality of service attributes into account.

Although the Disnix toolset includes a very simple distribution generator called disnix-gendist-
roundrobin, we would rather have a more sophisticated distribution generator that copes with
non-functional requirements from the domain that we want to support.

By having a dynamic infrastructure and distribution generator, we can construct a service
that continuously monitors the infrastructure and installed services and can react upon a change,
e.g. perform a redeployment to fix the system if a machine breaks or to increase the capacity if a
machine is added to the network.

Figure 10 shows an architecture of a dynamic deployment tool. The user provides a services
model and a quality-of-service model, taking non-functional properties from the domain into
account. A discovery service generates an infrastructure model. A distribution model generator
maps the services to machines in the generated infrastructure model taking the constraints in
the QoS model into account. Finally the services model, generated infrastructure and generated
distribution model are passed to the disnix-env tool, which performs the actual deployment.
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Figure 10: Architecture of a dynamic distributed deployment tool

Currently, we are working on a conceptual extension framework with an infrastructure model
generator using Avahi [17] and a distribution model generator that uses a single variable (typi-
cally a system resource such as memory usage) to find a suitable distribution. Moreover, we are
investigating non-functional requirements in the medical domain to build a more sophisticated
dynamic deployment extension.

6.3. Service design abstraction

While Disnix provides properties to make the deployment of a distributed system safe and re-
liable and offers integration with modules to take non-functional requirements of the domain into
account, not every non-functional property can be supported in the architecture of Section 6.2,
because they are implicit in the design of a service.

An example of these issues are reliability issues, such as failing connections that are not
automatically restored. If, for instance, the database connection with the rooms database fails
and is not restored again, the RoomService will be inaccessible forever. Another possible issue is
static lookup of inter-dependencies, which requires a user to deploy a new version of the service
if a dependency is moved to another location. For example, if the zipcode database moves to
another location all the inter-dependent services (ZipcodeService and the StaffTracker front-end)
must be redeployed, since their configurations have to be adapted. Often service developers do
not want to manually implement such constraints or even think about these issues, because they
are too complex and too much effort.

We have developed ideas for higher level abstractions hiding such implementation details.
One of our experiments is integrating WebDSL [18], a domain specific language for developing
web applications with a rich data model into the dynamic deployment architecture.

By using an architecture integrated with a service abstraction layer (such as WebDSL for web
applications), a developer only has to provide a high level specification of a web application and
(optionally) some QoS attributes. The deployment architecture will make the resulting system
available for use in a complex environment taking the QoS attributes into account.
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7. Experience

7.1. Development

Disnix has been under development for almost 2 years. The initial prototype was designed
for use with SDS2, our first industrial case study, and was implemented by using the same tech-
nology, such as the Java programming language and the Apache Axis2 library to create a SOAP
interface exposing deployment operations.

Later on, Disnix was applied to different types of distributed systems implemented with dif-
ferent technologies. Some initial implementation choices turned out to be impractical and there-
fore a new version of Disnix was developed.

Java was an impractical dependency, because it requires a Java Runtime Environment, which
is quite large and not every platform has a decent Java Runtime implementation available. More-
over, it was impractical for systems not using Java, such as PHP web application systems, to
deploy an entire Java environment to make deployment possible. Furthermore, it was also desir-
able for developers to execute certain tasks separately and to use different protocols than SOAP.

In the second version of Disnix all the Java modules were rewritten in C. This was not a very
huge effort since their purposes were already well explored and the libraries used in the C version
were almost as convenient as the Java ones. This also eliminated the large Java dependency, since
the libraries used in the C versions were much smaller and quite common on Linux systems.

Moreover, a more modular architecture was designed in which communication was per-
formed by an external process instead of using a Java interface. This choice gave us the option
to directly invoke remote machine operations from the command-line and to use a programming
language of choice to implement the interface (e.g. the disnix-soap-client was implemented in
Java, since the Java SOAP libraries were more convenient to use and the disnix-ssh-client was
implemented as a shell script not requiring a complex dependency such as Java).

Furthermore, the concept of activation types was developed in which types were mapped to
external processes with a standard interface performing the activation and deactivation. Process
composition was very practical in making the system more modular, since the modules can be
implemented in various technologies and invoked directly by end-users.

In the third version (which became release 0.1) support for heterogeneous networks (net-
works consisting of machines with different architectures and operating systems) was imple-
mented. The format of the models were changed in order to facilitate abstraction over architec-
ture types.

7.2. Testing

Disnix and its extensions are continuously built and tested by Hydra, our continuous build
and integration server built around Nix [19]. Testing is done by using the approach described
in [14] (also used for the virtualization extension described in Section 6.1), in which we declara-
tively instantiate cheap networks of virtual machines and perform automatic test-cases on them.
By using this approach we continuously test the deployment operations of Disnix for various
protocols.

7.3. Community

Disnix is released as free and open source software under the GNU Lesser General Public
License version 2.1 or higher. Extensions such as the activation modules and DisnixWebService
are released under the MIT license.
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Disnix is part of the Nix project (http://nixos.org/), in which solutions based around
the Nix package manager are developed, such as NixOS, a GNU/Linux distribution using the
Nix package manager and Hydra, our continuous build and integration server. All Nix related
software is released under free and open source licenses.

The Nix project has a small community of developers and contributors consisting of re-
searchers from various universities, developers from companies and enthusiastic individuals.
Having a community offers us useful contributions such as compilers, libraries and end user
applications in Nixpkgs [20], a repository consisting of over 2,500 packages that can be automat-
ically deployed by the Nix package manager. These can be used to construct and deploy services
with Disnix. Another major contribution is cross-compilation support which can also be used
with Disnix. Maintaining all the parts in the Nix project ourselves is too much effort and would
limit ourselves in achieving new results.

7.4. Use cases

We have used Disnix for automating the deployment of various types of distributed sys-
tems consisting of diverse kinds of services, such as MySQL databases, PHP web applications,
Java based web applications, Java based web services and UNIX processes. Moreover, we have
applied Disnix to an industrial case study from Philips Research called SDS2 [6], which is ex-
plained in [9].

Our repository contains several examples with full source code to demonstrate possible ap-
plications of Disnix. Some of these examples are:

• A PHP/MySQL web application system with multiple databases.

• The StaffTracker application described in this paper: a service-oriented system imple-
mented mostly in Java, consisting of 3 layers (databases, web services, web application
front-ends)

• Another Java-based service-oriented system to demonstrate how concepts such as load
balancing and lookup can be implemented and used with Disnix.

• A distributed system consisting of processes communicating through TCP sockets, which
can be adapted to block/queue connections to make the upgrade process atomic. This
example is explained in [10].

• A network of NixOS configurations.

These examples can be deployed either on physical machines or tested in virtual machines
by using the virtualization extension from Section 6.1. The examples are released under the MIT
license.

8. Conclusion

In this paper we have given an overview of the Disnix toolset, which can be used to auto-
matically deploy a distributed system into a network of machines. We have explained extensions
on top of the basic toolset to deal with certain non-functional requirements from the domain that
cannot be solved generically.
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We have shown that we are using process composition to create a modular deployment archi-
tecture. This offers us various benefits, such as the ability to perform deployment steps separately,
supporting tools implemented with various technologies, easy integration and easy prototyping.
Moreover, we illustrated several extensions implemented on top of the Disnix toolset by using
the process composition approach.

Furthermore, we have discussed our experiences developing Disnix, such as an open-source
community that offers many benefits and the testing process in which we automatically instantiate
a distributed test environment to test Disnix.

We have applied Disnix to various types of distributed systems consisting of various compo-
nents, including an industrial case study in the healthcare domain designed by Philips Research.

Disnix, its extensions and examples as well as other Nix-related projects such as NixOS and
Hydra are released as free and open source software, available from http://nixos.org/.

In the future we intend to maintain the Disnix toolset and further develop the extensions
on top of the Disnix toolset. A dynamic deployment framework will be developed to support
quality-of-services attributes in the medical domain. Moreover, a service abstraction model will
be developed dealing with non-functional deployment requirements implicit in the design of a
service. Furthermore, more evaluation is needed in large environments. Dynamic deployment
support is a precondition to support this. Finally, another industrial case study is in progress,
which is much larger than SDS2.

Acknowledgements. This research is supported by NWO-JACQUARD project 638.001.208, PDS:
Pull Deployment of Services. We wish to thank the contributors and developers of NixOS and
SDS2, in particular Merijn de Jonge, who also contributed significantly to the development of
Disnix.
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Abstract

We present a proof repository that provides a uniform theorem proving interface to virtually any
first-order theorem prover. Instead of taking the greatest common divisor of features supported
by the first-order theorem provers, the design allows us to support any extension of the logic that
can be expressed in first-order logic. If a theorem prover has native support for such a logic, this
is exploited. If the prover has no such support, the repository automatically uses the first-order
encoding of the extension. A built-in proof assistant is provided that allows the user to manually
guide the proving process when all provers fail to prove a theorem. To prove sub-theorems, the
proof assistant is able to use the repository’s full capabilities. The repository also maintains a
database of proven theorems. When a requested theorem has been proved before, the result from
the database is re-used instead of reconstructing the proof all over again. To test the repository,
we constructed a tool for static verification of a basic programming language. This language is
also described in this paper.

Keywords: Theorem proving, Program verification, Software tools

1. Introduction

Many tools for program verification use a layered model [1, 2]. The bottom layer exists of a
logic, usually supported by some (semi)automatic tool. On top of this there is a layer of an
intermediate language in which programs to be verified will be expressed. Typically, this inter-
mediate language is simple, since it will not be used to directly write programs, but only as a
stepping stone to verify programs in a more complex language. The programs in the interme-
diate language are explicitly annotated with assertions that express the program properties to be
verified. For annotated programs written in the intermediate language a verification condition
generator will calculate a set of logical conditions that must hold in order for the program to
be correct. The upper layer consists of the actual programming language. Programs written
in this language will first be translated into the intermediate language. During this translation,
many complex features of the input language are expressed in the much simpler features of the
intermediate language. Also, annotations are inserted into the intermediate program that claim
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absence of null-dereferences, array-index-out-of-bounds, etc. If the actual program is annotated
with additional specifications, these specifications are translated into assertions too.

In order to obtain a high degree of automation, most tools select a single theorem prover to
construct the required proofs and then tweak their proof obligations towards this theorem prover
(ESCJava and SpecSharp use Simplify [1] and Perfect developer [3] has its own built-in theorem
prover). When a proof fails, one can only add assumptions or tweak the program to get different
verification conditions, hoping that these can be proved. Also, none of the aforementioned tools
keep track of the constructed proof. So even if only a small part of the code changed, all the
verification conditions are sent to the prover again. Moreover, during the development of a
program, the context of definitions and assumptions grows larger. Proofs of theorems that were
already proved when this context was small will take much more time to reconstruct in a larger
context.

In this paper, we present a proof repository that provides the following services: (1) A rich logic
to denote program specifications, definitions and abstract datatypes. (2) A single interface to
connect to a wide range of automated theorem provers. This way, the programming tool is not
restricted to using just one. (3) An interactive proof assistant that allows the user to guide the
proof by manually constructing it himself as much as necessary. Instead of guessing assertions
that might help the prover, this allows the user to gain insight in why a proof fails and what
lemmas are needed to complete the proof. (4) A database of completed proofs that avoids recon-
structing proofs for completed theorems all over again. This also implies that the allotted time to
prove the verification conditions can be spent entirely on new or altered verification conditions.

To test the repository, we also introduce a basic programming language designed for modular
verification. This programming language is a small extension of the guarded command language
which is used, among others, by ESC/Java as an intermediate language to express programs to
be verified. Nevertheless, a number of tree and list algorithms can be conveniently expressed in
this language, since it exploits the repository’s inductive type definitions.

2. Tool Structure

The structure of the entire toolkit described in this paper is depicted in Figure 1. The user enters
a program in the text editor. This program is read by a JavaCC generated parser. The result
is type-checked and then verification conditions are computed (see Section 4). Proofs for the
verification conditions are obtained from the proof repository.

The repository first checks for every request whether or not the theorem exists in the database. If
so, the stored result is returned. If not, one or more external theorem provers are launched (either
remotely or on the same machine). For each different prover, the theorem is first translated into
the native input language of that prover by a connector object. The order and time limits for the
theorem provers can be configured by the user. If a proof is found, it is stored in the database for
future re-use and sent back to the programming tool. If no proof is found, the proof assistant is
launched to let the user manually construct a proof. The proof assistant lets the user select tactics
that invoke small proof-steps. At any point the user may request a proof for a sub-theorem from
the repository. In practice the proof-assistance is mainly used to perform a few initial steps
and indicate where induction should be used to complete a proof. Automated theorem provers
typically cannot handle proofs that require induction.
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Figure 1: Architecture of the toolkit: Grey boxes represent external systems. White boxes are
part of the repository. Textured boxes are part of the programming toolkit. Arrows with a @ sign
represent internet connections.

Although the main contribution of our tool is the proof repository with support for inductive types
and recursive definitions, we start in Section 3 by describing the programming language used to
test the repository. This also introduces the notation for formulas and inductive definitions used
by the repository. In Section 4, we explain how to compute the verification conditions. This
demonstrates the kind of theorems for which the repository was constructed. We then describe
the modules that make up the proof repository in Section 5. In Section 6 we explain how we
handle inductive types and recursive function definitions. We conclude in Section 7.

3. The Programming Language

The programming language employed by our tool is an example language to show the usefulness
of the repository. It is designed to be able to express some basic programming problems and to
support simple generation of verification conditions.
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The language is defined by the grammar in Figure 2. It is based on the guarded command lan-
guage of Dijkstra, since he first proposed the weakest precondition calculus to establish formal
correctness of programs. As a result, we support non-deterministic guarded if and do statements
and multiple assignments. In order to make the language a bit more powerful and a more real-
istic test case for the proof repository, we added procedures, inductive datatypes and recursive
specification functions. We will first discuss the main features of this language informally. In
Section 4 we discuss how the tool computes the verification conditions.

Prog ::= program Id; Decl∗ var Idlt {post: Pred} Stat
Decl ::= procedure Id(Idlt, var Idlt) {pre: Exp post: Exp [⇓]} Stat

| type Id is Id(Idlt) [2 Id(Idlt)] ∗ end
| {define Id(Idlt) : Id as (Match | Exp) end}

Stat ::= Stat; Stat | skip | Idl[, Idl]∗ := Exp[,Exp]∗ | |[var Idlt; Stat]|
| if GStats fi | {inv: Exp [dec: Exp]}do GStats od
| match Exp with GStats end
| Id(Expl)

GStats ::= GStats 2 GStats | Exp → Stat
Match ::= match Id with Id(Idl)→ Match[2Id(Idl)→ Match] ∗ end
Exp ::= Exp = Exp | (∀Id : Id.Exp) | (∃Id : Id.Exp) | Id[(Expl)]

| Exp ∧ Exp | Exp ∨ Exp | ¬Exp
| Exp + Exp | Exp − Exp | Exp ∗ Exp

Expl ::= [Exp[,Exp]∗]
Id ::= 〈identifier〉
Idl ::= [Id[, Id]∗]
Idlt ::= [Id : Id[, Id : Id]∗]

Figure 2: The grammar for the example programming language

3.1. Scope rules

Basically, there are two contexts: The program context and the specification context. The pro-
gram context contains all the variables and definitions that are available to program statements.
These are written outside the curly brackets. The specification context contains additional defi-
nitions that are available to program specifications (pre and post conditions, invariants, function
definitions, etc.). In specifications, all definitions and variables of the program context and the
specification context can be used.

Parameters of definitions and procedures only exist within the body of the definition or procedure.
Local variables can be declared between |[ and ]|. These variables only exist within this range.
Local variable blocks can be nested. Within procedures, only variables in the parameter list and
locally declared variables exist. Global variables are not supported in order to avoid aliasing
problems.

The main program can only alter the variables introduced in its own var part and locally declared
variables.
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3.2. Inductive Types

Our language supports inductive type definitions called strictly positive types (See [4]). Given
the syntactic restrictions of our language, all types that can be denoted are strictly positive and
hence, well defined. Hence, there is no need to discuss the theory of strictly positive types in this
paper. Variables of inductive types have value semantics (sometimes called copy semantics).

There is no need for built-in types, but the language assumes fixed definitions of bool and int.
These types are additionally supported by basic operators and universal and existential quantifiers
∀ and ∃. Moreover, guards of if and while statements must be of type bool and may not contain
any quantifiers. Also, we have the polymorphic boolean relation = between elements of any
datatype.

All datatypes other than bool and int must be defined within the program itself. For example,
lists of integers can be defined by:

type list is empty() 2 cons(x : int, tail : list) end

3.3. Specification Functions

Functions can be defined only within the specification context, since the type of definitions al-
lowed does not guarantee computability of the function. Once a function is defined, a procedure
can be written that actually computes it. When this procedure is proved correct, the function
apparently was computable. For instance, the function to compute the length of a list of integers
is written as:

{define length(L : list) : int as
match L with

empty() → 0
2 cons(x, tail) → length(tail) + 1
end

end}

Since function definitions can only occur in the declaration part of a program, they can never
refer to any program variables. Therefore, the match-pattern (following the keyword match)
must be a variable referring to one of the function parameters. Following the with keyword, all
constructors of the recursive type of this parameter are listed (including dummies representing
the constructor’s parameters) followed by→ and a result-expression. This result-expression can
be a direct expression or a match-expression. Note that by definition of the grammar, match-
expressions are no ordinary expressions, since they cannot occur as sub-expressions at arbitrary
places. They are only allowed when providing specification function definitions.

3.4. Match-Statements

To write a procedure implementing a specification function, we support match-statements. Al-
though they are similar to match-expressions there are important differences: (1) The match-
pattern can be any expression instead of just a variable. (2) Result-expressions are replaced by
statements (3) Match-statements are ordinary statements. Semantically, a match-statement is like
an if-statement where all the guards have a specific form and introduce a set of local variables to
the corresponding branch.
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3.5. Procedures

Once a procedure p(a1, . . . , an, var x1, . . . xm){pre: P post: Q} S is defined, it can be called from
all succeeding procedures and the main program. S can only refer to its parameters and locally
declared variables. In order to avoid aliasing problems, all arguments of variable parameters in
a procedure call must be different. Also, expressions used for value parameters in a procedure
call may not depend on any of the variables parameter arguments. We denote p’s precondition
by p.pre and p’s postcondition by p.post.

3.6. Optional termination proofs

It is up to the programmer whether or not termination of (part) of the program has to be proved.
If a bound expression is provided for a loop (after the keyword dec), the required termination
verification conditions are generated. Since procedures cannot be recursive, it is sufficient to
add the optional ⇓ to the postcondition. Terminating procedures may only call other terminating
procedures and all loops within its body must terminate. Loops within terminating loops must
also terminate. The tool checks whether the required bound expressions and ⇓ are present in
these cases.

4. Verification Conditions

The tool parses a string according to the given grammar using a JavaCC generated parser. The
resulting tree is type-checked to find out if the program is valid. If so, verification conditions
are generated based on a weakest precondition approach. That is, for any statement and post-
condition, we compute a weakest precondition that must hold in the initial state, to guarantee
that the postcondition holds in any final state. Apart from the weakest precondition, a set of
side-conditions are computed that also must hold in order for the program to be correct. Based
on this weakest precondition, the verification conditions for procedures and the main program
are computed.

Every verification condition generated is labeled with a name that clarifies the property it ex-
presses. In the remainder of this paper, an overlined term represents a comma-separated list of
terms of the appropriate length.

Definition 1. Weakest Preconditions
The weakest precondition wp(S ,Q) for statement S and postcondition Q is defined as:
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wp(S 1; S 2,Q) = wp(S 1,wp(S 2,Q))

wp(skip,Q) = Q

wp(x := e,Q) = Q[x := e]

wp(|[varx : T ; S ]|,Q) = (∀x : T .wp(S ,Q))

wp( if G1 → S 1
2 . . .
2 Gn → S n

fi ,Q)

= G1 ⇒ wp(S 1,Q)
∧ . . .
∧ Gn ⇒ wp(S n,Q)
∧ (G1 ∨ . . . ∨Gn)

wp({inv:I dec:B}
do G1 → S 1
2 . . .
2 Gn → S n

od ,Q)

= I

Also, the following side-conditions have to be proved:
invariance: I ∧Gi ⇒ wp(S i, I) for any 1 ≤ i ≤ n
finalisation: I ∧ ¬G1 ∧ . . . ∧ ¬Gn ⇒ Q
boundness: I ∧Gi ⇒ 0 ≤ B for any 1 ≤ i ≤ n
progress: I ∧Gi ∧ B = C ⇒ wp(S i, B < C) for any 1 ≤ i ≤ n

where C is a fresh constant
boundness and progress only have to be proved if the optional B is provided

wp(match E with
C1(v1) → S 1

2 . . .
2 Cn(vn) → S n

end,Q)

= E = C1(v1)⇒ wp(S 1,Q)
∧ . . .
∧ E = Cn(vn)⇒ wp(S n,Q)

wp(p(e, v),Q) = p.pre[a, x := e, v]
Also, the following side-condition has to be proved:

correct use of p: p.post[a, x := e, v]⇒ Q

Note that in order to prove a side condition with free variables, we actually prove its universal
closure.

Using the wp function from Definition 1 directly would yield a very rigid system. A procedure’s
postcondition would always have to match the entire postcondition of a procedure call. Usually,
a procedure is used to satisfy only part of the postcondition.

To relax the verification conditions, we will split a postcondition into two parts: A part that is
altered by the program and the part that is independent of the program. In order to define this
split, we first provide some definitions.

FV(P) denotes the free variables in P and is defined as usual.
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Definition 2. Altering Variables
Given a program S , the set of variables that can possibly be altered during execution of S is
computed by the function AV : S tat → P(V). AV is defined as:

AV(S 1; S 2) = AV(S 1) ∪ AV(S 2)
AV(skip) = ∅

AV(x := e) = {x}
AV(|[var x • S ]|) = AV(S ) \ {x}
AV(if G1 → S 12 . . .2 Gn → S n fi) = (

⋃
1≤i≤n AV(S i))

AV({inv: I}do G1 → S 12 . . .2 Gn → S n od) = (
⋃

1≤i≤n AV(S i))
AV(p(e, x)) = {x}

Note that AV is computed from the syntax of the statement. Stated simply: AV(S ) lists all free
variables that occur in S either at the left-hand side of an assignment statement or as an argu-
ment for a var-parameter of a procedure call.

Definition 3. Keeps and Alters
Let Q = Q1∧ . . .∧Qn be a predicate and let S be a statement. Without loss of generality, assume
that FV(Qi) ∩ AV(S ) = ∅ for 0 ≤ i < j and FV(Qi) ∩ AV(S ) , ∅ for j ≤ i < n for some j (if
needed, we can re-order the conjuncts). We define Keeps and Alters as follows:

Keeps(S ,Q) = Q1 ∧ . . . ∧ Q j−1
Alters(S ,Q) = Q j ∧ . . . ∧ Qn

Since Keeps(S ,Q) does not depend on any variable that can be changed by S , it must hold in the
precondition iff it has to hold in the postcondition. We will use this to change the computation of
wp for loops and procedure calls (changing wp for other statements is not necessary).

Definition 4. wp with Keeps and Alters
We use S to denote the entire statement, K to denote Keeps(S ,Q) and A to denote Alters(S ,Q).
wp is redefined for loops and procedure calls by:

wp({inv:I dec:B}
do G1 → S 1
2 . . .
2 Gn → S n

od ,Q)

= K ∧ I

The following side-conditions have to be proved:
invariance: K ∧ I ∧Gi ⇒ wp(S i, I) for any 1 ≤ i ≤ n
finalisation: K ∧ I ∧ ¬G1 ∧ . . . ∧ ¬Gn ⇒ A
boundness: K ∧ I ∧Gi ⇒ 0 ≤ B for any 1 ≤ i ≤ n
progress: K ∧ I ∧Gi ∧ B = C ⇒ wp(S i, B < C) for any 1 ≤ i ≤ n

where C is a fresh constant
boundness and progress only have to be proved if the optional B is provided

wp(p(e, v),Q) = K ∧ p.pre[a, x := e, v]
The following side-condition has to be proved:

correct use of p: K ∧ p.post[a, x := e, v]⇒ Q
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Computing weakest preconditions is not sufficient to obtain all verification conditions for a pro-
gram. Therefore, we will define the function VC, based on wp to compute verification conditions
for procedures and the main program.

Definition 5. Verification conditions
The function VC computes the verification conditions that must be proved in order to establish
the correctness of an entire program. It is defined as:

VC( program n
Proc
var x
{post: Q}
|[S ]| )

= VC(Proc)
∪ {correctness of n:(∀x.wp(S ,Q))}

VC( procedure p(a, var x)
{pre: P post: Q}
|[S ]| )

= {correctness of p:(∀a,x.P⇒ wp(S ,Q))}

Proving all side conditions obtained by computing wp and the conditions computed by VC es-
tablishes full correctness of the entire program.

Example 1. power
By means of a hello world example, we give a program to efficiently compute ab on natural num-
bers. In this example, the power function is defined and implemented. Since recursive function
definitions are only available in specifications, users are forced to call the procedure, which (in
this case) is much more efficient.

. . .
{define pow(a, b : nat) : nat as

match b with
0 → 1

2 suc(x)→ a ∗ pow(a, x)
end

end}

procedure power(A, B : nat, var p : nat)
{pre: true post: p = pow(A, B) ⇓}
|[var a, b : nat;

p, a, b := 1, A, B;
{inv: p ∗ pow(a, b) = pow(A, B) dec: b}
do b > 0 →

if even(b) → a, b := a ∗ a, b div 2
2 ¬even(b)→ p, b := p ∗ a, b − 1
fi

od
]|
. . .
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The generated verification conditions are:

correctness of power: true⇒ 1 ∗ pow(A, B) = pow(A, B)
finalisation: p ∗ pow(a, b) = pow(A, B) ∧ ¬(b > 0)⇒ p = pow(A, B)
invariance: p ∗ pow(a, b) = pow(A, B) ∧ b > 0⇒

even(b)⇒ p ∗ pow(a ∗ a, b div 2) = pow(A, B)
∧¬(even(b))⇒ p ∗ a ∗ pow(a, b − 1) = pow(A, B)
∧(even(b) ∨ ¬(even(b)))

progress: p ∗ pow(a, b) = pow(A, B) ∧ b > 0⇒
even(b)⇒ b div 2 < b ∧ ¬(even(b))⇒ b − 1 < b

boundness: p ∗ pow(a, b) = pow(A, B) ∧ ¬(b > 0)⇒ 0 ≤ b

For a long period of time in the Eindhoven Computer Science curriculum students were taught to
manually derive programs from specifications. This involved (amongst other skills) constructing
and proving verification conditions like the ones in this example. The proofs themselves are an
order of magnitude larger than the program being derived. Hence, the chance of mistake in the
manually constructed proofs was at least as big as the chance of a mistake in the constructed
program.

Apart from the convenience of automatic proof construction, tool support also provides more
certainty about the absence of errors in the proofs. In fact, for somewhat larger programs tool
support is mandatory, since manually constructing the verification conditions becomes infeasi-
ble, let alone proving them.

The verification conditions from the example can be sent directly to the proof repository. In order
to solve them, induction will be needed.

5. A Modular Repository

The repository’s task is to provide proofs for theorems on request. How it does this should not be
the concern of the client application posing the requests. Hence, basically, the proof repository
acts as a theorem prover. All verification conditions mentioned in Section 4 can be handled by
our repository. Also, the inductive type definitions and recursive function definitions are passed
as such.

5.1. The Architectural Modules

The basic architectural design consists of a number of modules: A connector, which connects
an external automated theorem prover to the system; A proof assistant, to interactively construct
proofs; A database, which stores proofs that have already been constructed; and a controller,
which connects all components in a configurable way to the user application.

The user application communicates with the controller and asks for the proof of a theorem. If the
controller finds the theorem in the database, it is returned to the application. If not, one or more
theorem provers are launched to construct a proof. A connector component is used to translate
the theorem into the format of the theorem prover. If a proof is found, it will be stored in the
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database and returned to the application. If no proof is found, the proof assistant can be used to
manually construct one or the application is notified.

In the following subsections, we describe the components in more detail. We assume that a proof
request from the user application has the form Γ ` P, where Γ is the context of definitions and
assumptions and P is the theorem to be proved in this context.

5.1.1. Connector

A connector is responsible for connecting an external theorem prover to the repository. In general
it takes a request Γ ` P and translates it into the form of the external prover. It then launches
the prover to construct a proof and translates the output into the internal representation of the
repository. We provide a separate connector for each prover, but all connectors provide the same
interface.

Also, a connector solves the problem of slight differences in the logic supported by different
provers. For instance, Simplify [5] offers internal support for arithmetic, like the operators +,
− and ∗, while Spass [6] and E [7] do not. We could neglect any extensions and only support
first-order predicate logic with equalities, which is supported by all theorem provers considered.
However, since built-in support for extensions is usually more efficiently than the corresponding
axiomatizations, this would weaken our system.

Therefore, our repository supports any extension to the basic logic that can be defined by ax-
iomatizations in first-order predicate logic. A connector recognizes the use of an extension and
chooses to either use extensions of the external theorem prover or to provide the corresponding
axiomatization. The axiomatization of a theory is given once in the internal representation of our
repository and translated by a connector when needed.

As a result of this approach, our repository provides a very rich language to the user application.
For example: One often needs lists, sets, stacks, etc. These can easily be axiomatized in first-
order logic, but many basic theorems about them are also needed. Since not all theorem provers
support these datatypes, one might be tempted to choose one specific prover at an early stage.
By using the repository instead, one can use all extensions and connect to different provers as
needed. Different provers have different specialties, but the user application can use them all.

Currently, the repository provides native support for the theorem provers Spass [8], Simplify [5],
Z3 [9], and any theorem prover that accepts the TPTP [10] input format (like E-prover [7]).
Also, through the TPTP webservice, more than 50 theorem provers (including different versions)
are directly available. In case of Simplify and Z3, the repository uses their internal support for
integer numbers instead of their translations to first-order axioms. This includes the operators +,
− and ∗.

How the translated theorem is sent to the prover depends on the interface provided by the external
prover. Currently, a file is generated that contains the theorem in the external provers native
format. The theorem prover is then launched as an external process on this file. The resulting
output is parsed and included in the result. In case of the TPTP webservice, the file is sent over
the internet to the TPTP servers and no external process is started.
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5.1.2. Proof Assistant

First-order logic is semi-decidable, meaning that although every valid theorem can (in theory) be
proved automatically, an invalid theorem might cause an infinite proof-attempt. Hence, if after
a given amount of time no proof has been found, one cannot distinguish between the theorem
being incorrect or the amount of time being insufficient. A theorem prover therefore hardly ever
gives other reasons than ’insufficient resources’ (including time) if it fails to find a proof.

When the automatic theorem provers fail (for example, if induction is needed), it is necessary
to (partially) construct a proof manually. For this, an interactive proof assistant is provided (an
extension of the prover used in Cocktail [11]). In this proof assistant, single proof steps called
tactics are used to split the main theorem in smaller sub-goals. These sub-goals can in turn be
passed to the external automated theorem provers to complete the proof. If needed, the entire
proof can be constructed manually by the interactive prover.

5.1.3. Theories

The repository supports first-order logic with equalities, because it (1) is a well-known logic
supported by many systems, (2) is at least semi-decidable and (3) is powerful enough to express
meaningful theorems.

Several systems exist that have more efficient native support for theories often expressed in first-
order logic (e.g. [5] has support for integer numbers and [12] is specialized in Clean programs).
Since we want to exploit this special support, any theory that can be expressed in first-order logic
is added as a theory module in the proof repository. A theory module consists of the first-order
definitions and theorems needed to define this theory for external provers that do not natively
support it. When a connector translates a theorem to an external prover, this theory module is
added to the translation only if the external prover has no native support for the theory. Otherwise,
the translation will exploit the native support, yielding better performance.

The theories module is not really a module as such. It is more like a library of translations from
logic extensions to basic first-order logic that is used by connectors to deal with logic extensions
that are not supported natively by the external theorem prover.

5.1.4. Database

The repository provides a database in which proven theorems can be stored for re-use. Instead
of storing each variant of a theorem, a normal form of the theorem is stored. When searching the
database, we do not look for exactly the same theorem, but for a theorem which is “more gen-
eral”, i.e. a theorem that implies the theorem we seek. As a result, renaming program variables
or adding assumptions does not invalidate previous results. Also, obviously equivalent formulas
are considered equal (e.g. P ⇒ Q and ¬P ∨ Q). The normal form used and the notion “more
general” is defined below.

We first define a Database Normal Form (DbNF) that puts all conjuncts, disjunct and universal
quantifications together and eliminates implications and existential quantifications. This will
allow searching the database in such a way that the exact order of these conjuncts, disjuncts and
universal quantifications is irrelevant. The DbNF of a formula is computed as follows:

12

- 87 -



1. We start by computing the negation normal form of the formula, thereby eliminating ⇒
and putting negations only in front of atomic formulas.

2. Next we replace all ∃-quantifications by skolem-functions. Equivalence of formulas is no
then longer dependent on where exactly the ∃ formula is inserted. That is, ∃x.(P(x) ∧ Q)
and (∃x.P(x))∧Q become equal because they both have the skolem form P(s())∧Q, where
s is the skolem function replacing x. There are several ways to skolemize a formula. We
use the rewrite rule (∃x.A) → A[x := s(x1, . . . , xn)], where s is a fresh skolem function of
arity n and {x1, . . . xn} = FV(A) \ {x}.

3. Then we turn the formula into head-normal form by putting all ∀ quantifiers in front of the
formula.

4. Finally, we compute the conjunctive normal form of the unquantified parts.

We now have a formula of the form ∀x1, . . . xn.C1 ∧ . . . ∧ Cm, where every Ci is a disjunction
L1 ∨ . . . ∨ Lk of literals. The Ci are called clauses.

We also define a Query Database Normal Form (QDbNF), which is only slightly different from
DbNF. The QDbNF is needed, since the skolem functions in the database will be different from
the ones in the query, yet they represent existentially quantified variables that might match.
Therefore, in the QDbNF we keep the existential quantifiers, but skolemize universal quantifica-
tions.

The QDbNF of a formula P is computed as follows: Perform steps 1 till 3 on the formula ¬P,
yielding P′, which is a skolemized head-normal form in which negations only occur in front of
atomic formulas. We then apply step 1 again on ¬P′ and finally apply step 4. The QDbNF has
the form ∃x1, . . . xn.C1 ∧ . . . ∧Cm, where every Ci is again a clause.

It is semi-decidable if a stronger theorem is already in the database. Therefore, we define a notion
of “more general”, which is a more restrictive, but computable claim about theorems. Instead
of checking if a stronger theorem is already in the database, we will check if a more general
theorem is in the database.

Definition 6 (More general clause).
Let L = L1∨. . .∨Ln and L′ = L′1∨. . .∨L′m be clauses and let θ be a mapping from FV(L)∪FV(L′)
to ground terms. L is said to be more general than L′ according to θ if there exists a mapping
σ : {1, . . . , n} → {1, . . . ,m} such that θ(Li) = θ(L′σ(i)) for i = 1, . . . , n. Note that 〈〉 ` θ(L)⇒ θ(L′).

Definition 7 (More general CNF formula).
Let P = P1 ∧ . . . ∧ Pn and Q = Q1 ∧ . . . ∧ Qm be formulas in conjunctive normal form (CNF)
and let θ be a mapping from FV(P,Q) to ground terms. P is said to be more general than Q if
there exists a mapping σ : {1, . . . ,m} → {1, . . . , n} such that Pσ(i) is more general than Qi for
i = 1, . . .m. Note that 〈〉 ` θ(P)⇒ θ(Q).

Definition 8 (More general (Q)DbNF formula).
Let P and Q be formulas, such that the DbNF of P is ∀x1, . . . xn.P′ and the QDbNF of Q is
∃y1, . . . ym.Q′. P′ and Q′ are in CNF. P is said to be more general than Q if there exists a
mapping θ from x1, . . . , xn, y1, . . . ym to ground terms such that P′ is more general than Q′.
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Definition 9 (More general theorem).
A theorem Γ ` P is defined to be “more general” than theorem ∆ ` Q if P is more general than
Q and for every formula in Γ there is a more general formula in ∆.

Theorem 1 (More general implies stronger).
If Γ ` P is more general than ∆ ` Q, then ∆ is stronger than Γ and P is stronger than Q, hence
Γ ` P is stronger than ∆ ` Q.

We consider a theorem to be in the database if a more general theorem is in the database, which
is a valid conclusion because of theorem 1.

In order to store a proven theorem Γ ` P in the database, we first compute the QDbNF of all
formulas in Γ and the DbNF of P. This yields Γ′ ` P′, which is actually stored.

When a query ∆ ` Q is looked up in the database, we compute the DbNF of all formulas in ∆ and
the QDbNF of Q. The unquantified parts of the required normal forms of all formulas to find a
more general theorem in the database are now directly available. The required substitutions are
found by using a simple Robinson unification algorithm [13], which also solves the problem of
the order of universal quantifications. By using an incremental, substitution free unification algo-
rithm [14], the efficiency is comparable to syntactic comparison. To find the required mappings
between conjuncts and disjuncts, we use trial and error (trying for each disjunct and conjunct
every opposing disjunct and conjunct) yielding a quadratic search. This is made almost linear by
imposing an ordering (like lexicographical path ordering, LPO) on the terms within the clauses.

5.1.5. Controller

The task of the controller is twofold: It provides an API to the user application to pose queries
and it manages the tools it has available to answer them.

The queries posed by the user application must have the form Γ ` P, where Γ is a list of declara-
tions, definitions and assumptions called the context and where P is a formula.

To answer the query, the controller first consults the database (if available). If the theorem is not
in the database, external automated theorem provers are launched. The launching order and the
timeout for each theorem prover can be configured within the controller. It is also possible to
launch all theorem prover simultaneously and see which one find an answer to the query first.

The answer to a query can be True, meaning that P holds in the given context Γ, False, meaning
that P does not hold in Γ, unknown, meaning that the repository processed the query completely,
but cannot find an answer, and error, meaning that some error occurred while processing the
query. The answer also contains other information, like the name and version of theorem prover
that provided the result, the time taken to construct the proof and, if desired, the literal proof-
output of the theorem prover.

Access to the repository is provided in two ways: (1) By a direct API of method calls of a Java
object and (2) By commands issued through a socket stream to the repository (i.e. the repository
acts as an internet service). While the first way is more direct and usually easier to implement
for the user application, the second way opens a whole new perspective to use the repository.
A special network connector object is provided that allows one repository to consult another

14

- 89 -



Figure 3: Using a separate machine for each theorem prover

repository as if it were a theorem prover. A controller then only configures the provers available
on the local machine. By connecting the local repository to other repositories on other sites, the
entire setup of the system becomes configurable. We will elaborate on this in Section 5.2.

5.2. Configurations

The main user applications we had in mind when designing the repository were tools for prov-
ing correctness of programs. Usually these tools are linked to a specific prover. For instance,
ESC/Java [1] and Boogie are linked to Simplify [5] and ZAP [15], the Omnibus system [16] is
linked to PVS [17], Perfect Developer [3] and Cocktail [11] use their own internal provers, etc.

By connecting these systems to the repository instead, they are able to benefit from the strengths
of several theorem provers. Also, proofs only have to be constructed once, since the database
prevents the same proof from being constructed repeatedly. Reconstruction of proofs proved
to be a drawback of systems that rely solely on automated theorem provers, like ESC/Java and
Perfect Developer (see [18]).

Also, the modules can be used to boost computational power: One can configure one machine
for each theorem prover, using only one connector and the controller (without database). The
machine running the user application then consults the other machines through the special net-
work connector instead of running its own theorem provers (see Figure 3). One can also setup
one additional node that only runs the database to implement a central repository that is used
by several user applications. An extreme case of this situation is to run the entire repository as
Software as a Service.

Using the modules with the database only locally and with just one prover is already useful to
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support reusing proofs. This will already speed up a user application by avoiding the needless
reconstruction of proofs.

6. Handling inductive types and recursive functions

Inductive datatype definitions and recursive function definitions are supported by the repository
and its built-in proof assistant. As useful as this kind of definitions are to the user, they are not
part of standard first-order logic and not generally supported by first-order theorem provers. The
reason for this is that proving properties of inductive type definitions usually requires induction
proofs, but induction proofs only prove the property for elements of the inductive type with a
finite size. Theorem provers do not assume that all models only map to values of finite size and
hence, they do not use induction. We only consider programs about elements of finite size, so
we can safely allow induction proofs in our system.

Since the theorem provers do not support inductive types, their definitions must be translated into
a set of first-order formulas to send to the theorem provers.

We use a translation function to1st to translate inductive datatypes and recursive functions into
first-order logic.

Definition 10. Translation function to1st
Inductive type definitions and recursive specification function definitions are translated into sets
of first-order declarations and axioms (assumptions) by the translation function to1st:

to1st(type t is C1(p1) 2 . . .2 Cn(pn) end) =

t : ∗s;
C1(p1) : t;
. . .
C2(pn) : t;
Cons t : (∀v : t.(∃a1.t = C1(a1)) ∨ . . . ∨ (∃an.t = Cn(an)));

∗s is used to denote the set of all sets (i.e. t : ∗s declares that t is a type). The Cons t axiom
enables the external provers to make case distinctions when proving properties over elements of
t (every element of t can be written as the result of one of its constructors). Note, that Cons t can
be derived from the inductive definitions by an induction proof.

to1st(define f (p) : t as M end) =

f (p) : t;
T ( f (p), id,M)

where id is the identity mapping (the empty substitution). T translates the match-expressions
for a function to a set of assumptions. T (F, θ, E) with F a function, θ a substitution and E a
(match-)expression is defined by:
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T (F, θ,match v with C1(a1)→ E1 2 . . .2 Cn(an)→ En end) =

T (F, [v 7→ θ(C1(a1))] ◦ θ, E1);
. . .
T (F, [v 7→ θ(Cn(an))] ◦ θ, En)

T (F, θ, E) = C(θ(F) = θ(E)) if E is not a match-expression

where C(P) denotes the universal closure (∀FV(P).P). These declarations and assumptions are
such that any first-order theorem prover is able to handle them.

Example 2. trees For example, consider the following inductive definition of trees and the func-
tions to compute the number of leafs and nodes in a tree:

type tree is leaf (x : int) 2 node(L,R : tree) end
{define leafcount(t : tree) : int as

match t with
leaf (x) → 1

2 node(L,R)→ leafcount(L) + leafcount(R)
end

end}
{define nodecount(t : tree) : int as

match t with
leaf (x) → 0

2 node(L,R)→ nodecount(L) + nodecount(R) + 1
end

end}

The translation into first-order logic then becomes:

tree : ∗s;
leaf (x : int) : tree;
node(L,R : tree) : tree;
Cons tree : (∀t : tree.(∃x : int.t = leaf (x)) ∨ (∃L,R : tree.t = node(L,R)));
leafcount(t : tree) : int;
(∀x : int.leafcount(leaf (x)) = 1);
(∀L,R : tree.leafcount(node(L,R)) = leafcount(L) + leafcount(R);
nodecount(t : tree) : int;
(∀x : int.nodecount(leaf (x)) = 0);
(∀L,R : tree.nodecount(node(L,R)) = nodeount(L) + nodecount(R) + 1;

which are indeed first-order axiomatic definitions that can be handled by any theorem prover.

If we now request a proof for (∀t : tree.leafcount(t) = nodecount(t) + 1) from the repository, no
theorem prover is able to proof it, by lack of induction (note that the property does not hold for
infinite trees). We then indicate in the built-in proof assistant that we want to prove the main goal
by induction (just selecting the correct tactic). This yields two new subgoals (see the screenshot
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in Figure 4), namely the base and the induction cases:

(∀x : int.leafcount(leaf (x)) = nodecount(leaf (x)) + 1)
(∀L,R : tree.(leafcount(L) = nodecount(L) + 1)⇒

(leafcount(R) = nodecount(R) + 1)⇒
(leafcount(node(L,R)) = nodecount(node(L,R)) + 1))

Both of these can be proved by automated theorem provers connected to the repository.

Figure 4: A screenshot of the proof assistant doing induction on trees.

7. Conclusions and Future Work

The language as described fulfils its purpose as a test suite for the proof repository. It can be
used to express smaller algorithmic examples that lead to interesting verification conditions that
cannot always be proved fully automatically.

The interactive theorem prover supports the inductive types and recursive definitions directly,
allowing the user to split some of the harder theorems into simpler sub theorems that are then
handled by the repository.

Since all proofs are stored in the database, verification conditions that have not changed after a
small change in the program are not proved again. This constitutes a dramatic speed-up when re-
verifying a program after small changes have been made. The time allotted to verify the program
can now be entirely spent on those verification conditions that are actually new or changed.
Also, since the database has some limited deductive capabilities, renaming variables or adding
new definitions does not lead to re-constructing proofs of verification conditions.

Next, we want to extend the language to include more advanced features (recursive procedures,
references, arrays, etc.) in order to write more interesting programs. Also, the language would
then become more interesting to serve as an intermediate language to verify real-world programs.

We also will test the repository in several different situations (e.g. educational settings) and
configurations (local repositories, a central database, etc) to find out what more is needed for
large scale application.

18

- 93 -



References

[1] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, R. Stata, Extended static checking for Java,
SIGPLAN Not. 37 (5) (2002) 234–245. doi:http://doi.acm.org/10.1145/543552.512558.

[2] M. Barnett, K. R. M. Leino, W. Schulte, Vol. 3362 of LNCS, Springer, 2005, Ch. The Spec] Programming System:
An Overview, pp. 49–69.

[3] G. Carter, R. Monahan, J. Morris, Software refinement with Perfect Developer, Software Engineering and Formal
Methods, IEEE, 2005, pp. 363–372.

[4] P. Morris, T. Altenkirch, N. Ghani, Constructing strictly positive families, in: CATS ’07: Proceedings of the thir-
teenth Australasian symposium on Theory of computing, Australian Computer Society, Inc., Darlinghurst, Aus-
tralia, Australia, 2007, pp. 111–121.

[5] D. Detlefs, G. Nelson, J. B. Saxe, Simplify: A theorem prover for program checking, Journal of the ACM 52 (3)
(2005) 365–473.

[6] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, P. Wischnewski, SPASS Version 3.5, Automated
Deduction–CADE-22 (2009) 140–145.

[7] S. Schulz, E – A Brainiac Theorem Prover, Journal of AI Communications 15 (2/3) (2002) 111–126.
[8] C. Weidenbach, B. Afshordel, E. Keen, C. Theobalt, D. Topić, Spass theorem prover, in: URL: http:
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Abstract

Nowadays modern software development processes are well established and are one of
the mayor success factors for software projects. However, many software projects in sci-
entific organisations have serious quality issues since they lack a feasable development
process. In this paper we discuss a feature based development process for scientific
software projects that addresses the specific characteristics of scientific software. More-
over, we introduce a set of best practices for the infrastructure and management of such
projects.

Keywords: software development process, best practice, scientific software

1. Introduction

Software tools are a vital prerequisite for scientific research. They can be used to
demonstrate the relevance of research results and their applicability in practice. Software
tools enable to conduct case studies in scientific as well as in industrial environments.
Furthermore they extend the addressees of research results and are often the root for
industrial or open source software development projects.

Although the importance of software tools for research is well accepted in the scientific
community the quality of scientific software is seldom adequate. Scientific software is
often error prone, doesn’t implement the intended functionality or is only usable by the
developers since either the documentation is missing or outdated.

In our experience quality problems of scientific software are mostly caused by an in-
adequate software development process and an insufficient development infrastructure.
Many scientific software projects don’t define a dedicated development process or im-
plement a process that doesn’t cope with the specific constraints of scientific software
development. However, this induces various problems in the management of the software
and in the collaboration of the developers. Those problems often lead to severe quality
issues in the software.

The remainder of this paper is structured as follows. In chapter 2 we characterize sci-
entific software projects and delineate them from other development projects. In chapter

Email addresses: vhoff@swc.rwth-aachen.de (Veit Hoffmann), lichter@swc.rwth-aachen.de
(Horst Lichter), alexander.nyssen@itemis.de (Alexander Nyßen)
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3 we briefly describe ViPER, a scientific software development project that inspired most
of the results presented in this paper. Chapter 4 defines a set of goals for an adequate
scientific software development process for medium to large size, long living projects. In
chapter 5 we introduce a process frame that enables those defined goals. Afterwards we
introduce best practices for our process frame in chapter 6. Finally chapter 7 situates
our best practice approach with some related research before we give some concluding
remarks in chapter 8.

2. Characteristics of Scientific Software Projects

Scientific software projects are very diverse. They vary in size, lifespan, application
domain and used base technology. Therefore it is impossible to define one single fixed de-
velopment process that fits for all those projects. Anyhow, all scientific software projects
can be distinguished by two major characteristics that clearly separate them from other
development projects like open source or commercial development.

1. Scientific software projects are embedded in one or more research projects.
This has various impacts to the software and its underlining process, because re-
search directions may change based on obtained results, research opportunities or
funding. This usually shifts the focus of the software and often induces changes
of the requirements and architecture. Additionally not every research produces
the expected results. Empirical studies may uncover misconceptions and flaws in
earlier research. This often also impacts the software since empirical results may
show that methods or technologies supported by the software are not feasible. Thus
scientific software projects have to deal with dead-ends and rollbacks regularly.

2. Scientific software projects are preformed with heavy student involve-
ment. Main parts of the functionality of many scientific software projects are
developed in students’ theses or with the help of student developers. This causes
two special problems.
First, students are usually inexperienced. Many students have never been in real
world development projects. They often lack software engineering know-how and
have no experience with tools, languages, libraries or frameworks that are used in
the project.
Second, students just take part in the development of the software for a very lim-
ited period of time. Students typically join the development team just for their
thesis and are seldom a part of the development team for more than nine months.
Additionally students often only contribute to a very limited part of the project,
namely the specific feature that is being developed in the context of their thesis.
Thus students often don’t have overview over the project as a whole and have little
interest in the overall project success.

Any development process aiming to support and guide scientific software projects has to
consider these special characteristics. In the following however we concentrate on medium
to large size, long lining development projects, like SESAM [20], Fujaba [7] or MontiCore
[11]. I.e., we primariliy consider scientific development projects with a livespan of at least
several years and at least 5-10 developers. Those projects typically create software, that
should be used in multiple contexts, by several different kinds of stakeholders, especially
those who are not directly involved in the development process. Although several of
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the described best practices are also useful in smaller projects the development process
described here is not adequate for small prototype projects that don’t have to address
documentation or architectural quality because it enforces different quality assurance
measures that are unnecessary in those situations.

3. Viper - A Scientific Software Development Case Study

In the following we briefly describe the ViPER project that we run for several years.
The essence and the lessons learned of this project are the central experience basis to
propose a process frame for scientific software projects.

ViPER (Visual Tooling Platform for Model-Based Engineering) [21] is a tooling plat-
form to leverage model-based engineering. It is based on Eclipse [6] technology and offers
support for UML-based visual modeling, UML-based ANSI-C code generation, extended
support for editing and simulating of detailed narrative use case descriptions, as well as
built-in dedicated methodical support for the MeDUSA-Method [12].

Having started in July 2004 as a mere experiment to evaluate Eclipse related EMF
and GEF technologies in the form of a simple UML state machine diagram editor, which
was bundled into a single plug-in and accounted for about 3800 lines of source code,
ViPER has grown into a rich and extensive tooling environment in the following years.
It up to now bundles round 50 plug-ins and subsumes more than 200,000 lines of code,
incorporating the contributions of 18 developers (scientific staff as well as students) over
the years. In the recent years some parts of ViPER have been promoted to the Eclipse
frameworks or to separate open source projects.
As ViPER grew the development infrastructure and the process management measures

had to be adopted several times and nowadays ViPER is developed with a defined de-
velopment process that relies on independent features, build on a common platform and
a common development infrastructure.

The development infrastructure of ViPER consists of a CVS-Version-Management
Repository [5] and a Bugzilla-Issue-Tracker [4], that are connected by a SCM-Bug [19]
integration. Additionally ViPER maintains a dedicated build server for release engineer-
ing and quality assurance. This build server runs an ANT based Eclipse product build
that creates releases on a nightly basis. Apart from the assembly of the ViPER-Product
each build includes the validation of the source artifacts with checkstyle rules and the
creation and execution of a regression test suite to assure functionality and conformance.

Inspired by Scrum [18] the ViPER project defines a lightweight sprint oriented plan-
ning process and uses Bugzilla as planning tool. Every sprint is connected to a target
milestone in the Bugzilla system and all intended functionality is filed as enhancement
requests against this milestone.

Since the ViPER development team is quite small the ViPER process relies on direct
communication and the coordination of different features is done in weekly management
meetings. Those management meetings are the core activity of the ViPER process and
must therefore be attended by all project members. They are used for planning, the
coordination of feature projects and the maintenance of the platform. They regularly last
for about 1,5 hours. Every team meeting is started with a short status report from every
project member. Afterwards team meetings include a management part, where sprints
and scoping sessions are planned or development tasks are assigned. The meetings often
end with an open discussion session where specific problems are discussed.
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Figure 1: ViPER Screenshot

Currently ViPER is managed in a well established process that supports its efficient
development. Although it is lightweight enough to enable an easy setup of new feature
projects it includes measures to assure integration and quality. Moreover parts of the
ViPER process have been successfully transferred to several other scientific development
projects. In the next sections we present the essence of the ViPER process in the form of
an extensible process frame and a set of best practices for scientific development projects.

4. Objectives of a Scientific Software Development Process

As stated before we primarily target long living scientific software projects that should
be used by several different kinds of stakeholders. The primary objective of a development
process for this kind of scientific software projects is to enable the development of software
in sufficient quality. For most scientific software projects a beta-quality level is sufficient,
since it is neither possible nor necessary to develop the software to full commercial quality.
Anyhow, since scientific software must be usable in case studies and field research they
have to provide a minimal level of usability and robustness. Apart from implementing the
intended features correctly the software must be documented and robust against simple
misuses like invalid input data.

Additionally the architecture is a core concern for many scientific software projects,
since the software is often enhanced by new features or restructured due to new require-
ments. Thus the maintenance of sustainable software architecture is a vital task for a
scientific software development process.
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To achieve those objectives the process must especially address the specific charac-
teristics of scientific software projects presented in chapter 2. This implies that a feasible
development process must provide support for agile, evolutionary development, which is
induced by the volatile development. Changes caused by shifted tool usage and the im-
pact of requirement changes to the architecture must be manageable, too. Furthermore
the software has to be rolled back to defined baselines after reaching a dead-end in the
project.

Additionally a development process must address the specific human factors in sci-
entific software projects, which means it must enable students to produce high quality
results and to contribute to the project. Thus a development process must define clear
rules and provide measures to transfer existing and new know-how. Producing high qual-
ity results however demands a lot of discipline especially from inexperienced developers
like students. Therefore the development process has to provide team measures to raise
the involvement of the participating students and to raise their interest in the project
success.

5. A Process Frame for Scientific Software Projects

As denoted before scientific software projects have two specific characteristics that
affect their lifecycle and development processes. First, they undergo continuous changes
since they evolve alongside the theoretical research. Second, most of the functionality is
developed in different thesis works performed by students.

In this section we describe an iterative, incremental and evolutionary process frame
for scientific development projects that explicitly addresses those specific characteristics.
This process frame should be enhanced with best practices described in the later sections
of this paper.

Scientific software projects resemble open source projects in many ways. They are
evolutionary, open, focused on an extensible infrastructure to react on usage shifts, suffer
from quick changes in the development team and mainly develop functionality in dedi-
cated subprojects. Therefore we have adopted many ideas from open source development
projects for the proposed process frame and the best practices.

Our process frame reflects the overall project organization approach of incremental
development projects based on feature development. A feature may be defined as a set of
related functions that are implemented together to realize a specific goal. Furthermore
it explicitly considers the systematic development of reusable features, which we call
platform.

To maintain a stable feasible architecture and manage the development of the various
features, the process frame consists of three separate but interconnected sub-processes:
a platform-process, a set of feature-processes and an underlying coordination and collab-
oration process (see Figure 2). We will explain these processes in the following.

5.1. Platform Process

The objective of the platform process (similar to project line development) is to
ensure that a reusable platform (called the platform feature) is developed and maintained
continuously. The platform process is initialized by the platform team at the start of
a scientific development project and is performed until project end. It manages the
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Figure 2: Dependencies between the sub-processes

platform feature, a single feature that contains two different kinds of information. First,
it contains the software’s common code platform (e.g. reusable functionality that is used
as a basis for feature development). Second, it manages the software architecture. It
defines an architectural pattern for the entire software and a common scheme for the
definition of interfaces between features. Additionally it introduces a set of tasks for the
maintenance and quality assurance of the software architecture, e.g. scoping, revalidation
or measurement tasks. Because the platform-feature is the core of the development and
the platform process is performed continuously, the platform team should consist of
experienced developers that are responsible for the project and accompany the project
for a longer time. Thus, in most cases the platform team is formed by PhD students,
post-docs or assistant professors.

5.2. Feature-Process

As the main functionality of the software is developed in feature projects, a new fea-
ture process is initialized for each feature development. Because every feature process
is performed by an autonomous feature team, several feature processes can be run in
parallel. The single feature processes may vary broadly, since the feasibility of a devel-
opment process for a feature is dependent on the type of the feature, the abilities of the
team, the schedule and the workload. But it has to be ensured that each feature process
includes an internal planning for the feature, a requirements engineering session, the def-
inition of the feature’s architecture as well as the feature’s implementation, integration
and documentation.
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5.3. Coordination and Collaboration-Process

Finally, the coordination and collaboration process manages and coordinates the evo-
lutionary feature based development of the software. It defines all process standards, i.e.,
process rules and documentation standards and templates for the platform and all feature
processes. Furthermore, it defines and establishes the development infrastructure, consti-
tuting of e.g., configuration and change management, release engineering infrastructure
and development environment. Moreover, the coordination and collaboration process
determines the project’s global time schedule, i.e., it defines synchronization points for
the platform and all feature projects. Finally, it nails down global management tasks
for the coordination of development teams. The coordination and collaboration process
is typically managed by a coordination board that is created out of developers from the
feature and platform teams.

Figure 3: Project snapshot showing sub processes on the timeline

Although each feature process may define its own specific development lifecycle, all
feature processes as well as the platform process must adhere to the coordination and
collaboration process. They must apply the defined development infrastructure and the
documentation must conform to the templates. Additionally the coordination and col-
laboration process defines the project pulse, i.e., it defines the releases and corresponding
milestones that are obligatory for all feature processes.

The presented process frame on the one hand enables to efficiently develop features in
dedicated feature processes, since feature processes are lightweight an rely on a common
infrastructure. On the other hand a global, sustainable platform can be developed and
maintained. Thus a set of management practices must be established to coordinate the
decentralized sub processes of the presented process frame. A set of best practices ad-
dressing especially the most pressing management challenges is presented in the following
section.

6. Best Practices

In the following we present a couple of best practices that we recommend for scientific
software projects. These best practices are often adaptations of agile or open source
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techniques and are mostly associated to the platform-process or to the coordination and
collaboration process.

6.1. Release and Version Management

Apply a sprint based Release Management

Industrial strength release planning is typically inadequate for scientific software
projects where features can quickly emerge and disappear again, because it is too heavy-
weight and inflexible. However, the delivery of the features and their integration in the
platform needs to be managed. We therefore recommend a lightweight release planning
similar to sprint planning in Scrum [18]. We recommend sprints of about three months.
Although this is longer that typical Scrum sprints we have very positive experiences.
First, the development speed is often slower compared to commercial projects because
often developers (students) are inexperienced and the feature-teams are very small. Sec-
ond, we recommend that each milestone should include contributions from every active
feature-project. This positively raises the acceptance of milestones as the most important
delivery target. But this can only be achieved if the sprints are not too short. At the
end of each sprint a release is build which should contain all completed features as well
as those features under development that have reached a stable state.

Use an integrated Change Management and Version Control System

Scientific projects are performed in a decentralized way and evolve evolutionary.
Therefore the management of changes and their impact to existing project artifacts is
a crucial task. This demands a close integration of the version and change manage-
ment system. Every bug or enhancement request should be handled by a ticket of the
change management system and every change to a project artifact must be associated
to a respective ticket. This enables to keep track of changes and to trace changes back
to project artifacts. Moreover all artifacts (including source code, documentation, test
cases and examples) should be under version control. This has three mayor benefits.
First, storing all kinds of documents in a version control system reduces loss of impor-
tant information since even less important information is stored. Second, the actuality
of non-code artifacts, like requirements or architecture definitions, is raised significantly.
Third, monitoring the impact of changes to all affected artifacts is supported. Addition-
ally we recommend to version all artifacts of a single feature project together.

Implement all new features against the head revision

Each new feature should be developed against the head revision of adjacent feature
projects and the platform project. This demands some discipline from the developers,
since changes to the interface of one feature may directly affect others. Thus a stable
interface design and continuous communication are needed. We experienced only little
communication overhead if the interfaces are defined upfront and described explicitly.
Besides, the integration effort of components developed in parallel is reduced. Addition-
ally an immediate integration of features under development has positive effects on the
team spirit, since developers get a quick feedback about their results.
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Use an automated build and test system

An automated build system should be used to assure the integration of all features
including those that are under development. We recommend a dedicated build process
performing nightly integration builds to assure the compilability and integration of the
components. Additionally the build system should create release builds on a regular
basis. We recommend one release alongside each sprint. A release should always be
preceded by several release candidates used for manual testing.

Furthermore we recommend enriching the build system with automated regression
tests and static analyses performed after each successful build. This is especially im-
portant since many developers only work on fragments of the system functionality and
don’t test the integration with other fragments or features. Although the integration of a
dedicated quality assurance infrastructure in the build system needs quite a lot of setup
effort, it is worthwhile since deficiencies and problems in the source code are detected
very early.

Provide an update infrastructure

Scientific software often changes and evolves quickly. Therefore an update infrastruc-
ture should be provided once the software is released, e.g., for field studies. An operative
update infrastructure improves the user’s acceptance to use the respective software, since
they can experience the evolution of the software and keep up to date with only little
effort. Therefore a single available source for updates and software releases should be
established and users should be informed about new updates.

6.2. Quality assurance

Create regression tests

The platform project and its feature projects change rapidly because requirements
are changed or new requirements emerge. Moreover functionality is moved from feature
projects to the platform or vice versa as a result of scoping sessions or performed refac-
torings. This demands to run regression tests as often as possible to assure the stability
of the software. We recommend implementing black box regression tests for the plat-
form and every feature. Moreover the coverage of those tests should be measured and
additional tests should be added if the coverage is insufficient.

Perform a quality assurance phase for each feature project

Feature projects should plan a feature freeze and a quality assurance phase at the end
of their development (often called endgame). The endgame should assure three important
quality aspects. First, it must assure that the required functionality is implemented and
that the feature is correctly integrated in the platform. Second, it should assure that
the feature’s architecture conforms to the platform’s architectural rules. Third, the
endgame should assure that sufficient documentation is available. Since feature projects
are typically performed in the context of students’ thesis works and students are often
unavailable after the end of the thesis a rigorous endgame is vital for the overall project
success. Thus any information that is not handed over is lost and can only be recovered
with very high effort. Additionally we recommend that the platform team performs a
platform scoping session as part of the endgame together with the feature team (see best
practices of platform management).
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Measure the architectural quality on a regular basis

The architecture is a core concern for most scientific software projects. To maintain
a sustainable architecture in the dynamic environment of scientific software projects the
conformance of feature implementations to the architecture definition in the platform
must be measured and checked regularly. Nowadays, there are several tools to mea-
sure and assess software architectures [9] [10] that can be used. The results of those
measurements should be discussed in team sessions to sensitize the developers for the
architectural demands of the platform and thus to get less violations in upcoming sprints
or feature projects.

Explicitly define the interfaces of each feature

The interfaces of every feature should be explicitly defined and access to any feature
should only be allowed through those interfaces. Thus the impact of changes of a feature
to other features is reduced and manageable. The adherence to this rule should be
checked automatically alongside the quality measures performed by the build system.

Define templates and rules for project artifacts

A template and a respective set of rules for all kinds of project artifacts (code and
non-code) should be defined. Templates increase the readability of documents and ease
identification of changes if a version management system is used. We recommend to use
style rules defining formatting and encoding for all code artifacts and to check those rules
by an automatic checker.

6.3. Platform Management

Perform platform scoping sessions on a regular basis

The platform contains reusable code that should be used by all feature projects. Its
main purpose is to prevent feature projects from developing the same functionality several
times. However, most of the functionality is developed in feature projects including
reusable functionality that should be part of the platform. Therefore special platform
scoping sessions should be performed regularly to transfer reusable parts from feature
projects to the platform. A scoping session is a joint session of a feature team and the
platform team and has two purposes. First, potential platform candidates useful for
other features should be identified. Second, each candidate should undergo a detailed
scoping analysis. This analysis has to define a migration strategy for the candidate, i.e.,
a set of refactoring and generalization steps that are necessary to integrate the candidate
with the platform. Every migration strategy should afterwards be planned as a normal
task in a sprint.

Perform refactoring analysis before developing a new feature

Whenever a new feature should be developed the first step is to evaluate the cur-
rent platform architecture to ensure that the platform architecture is still adequate to
implement the new feature. If this is not the case, a set of refactoring steps have to be
identified to improve the architecture and to enable the integration of the new feature.
These refactorings are performed (typically by the platform team) before the new feature
project is started. This results in a stable and maintainable architecture and minimizes
the integration effort of new features.
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Check for obsolete features on a regular basis

Since resources in scientific software projects are short no effort should be wasted to
develop or maintain features that are no longer needed. Thus it is necessary to check for
features that are no longer needed regularly. A feature may become obsolete for three
reasons. Either because the usage of the tool has changed or it was replaced by a new
feature or it can be replaced by functionality imported from e.g., open source projects.
We recommend to check for obsolete features at least every time a sprint is planned. For
each obsolete feature the platform team has to define a decommission strategy. It defines
necessary steps how to migrate those features depending on an obsolete feature to the
replacing one. The implementation of the decommission strategy should be planned as
a normal task in the upcoming sprint, similar to a migration strategy.

6.4. Team Management

Perform pair programming sessions with new developers

Inexperienced developers should at first do some pair programming session together
with an experienced developer (often a member of the platform team). This is highly
accepted and has three mayor benefits. First, it enables the new developer to bridge
the technological gap. Second, the experienced developer can transfer knowledge about
rules and standards to the new team member easily. Third, the integration of new team
members to the development team is facilitated, since they get to know other team
members better.

Provide an infrastructure for knowledge documentation

Every project should provide an infrastructure to document and transfer knowledge,
e.g., an open wiki or a blog. This is extremely useful if the project is using a lot of open
source technologies and frameworks where the documentation is scattered in the Web.
Those systems serve as a starting point for developers to search for documentation, tips
and advices.

Perform regular team sessions

The project team should meet on a regular basis. Those meetings are a central
practice in our experience and have four mayor purposes. First, they are a management
and planning instrument. In the team meetings every developer should present the status
of the current work and the next upcoming development steps, to keep track of the overall
project status. Additionally new sprints should be planned in the meetings. This raises
the developers’ commitment to deliver in time, because they are involved in the planning.
Second, team meetings are a discussion platform for specific problems of the developers
which has the following benefits. First, whenever a developer is stuck with a problem the
team may help him to find a feasible solution and second the discussions can be used to
spread technical as well as process knowledge. The third purpose of team meetings is to
maintain the platform architecture. Therefore the results of architectural measurements
should be discussed, architectural decisions should be made and scoping sessions should
be planed. The last and maybe the most important purpose of the team meetings is to
create a team spirit and raise the developers’ involvement in the project. Therefore team
meetings should have a casual ambience and encourage open discussions.
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6.5. Best Practices in Context

Obviously some of the presented best practices have different relations to each other.
Some are prerequisites for others or the implementation of one practice positively influ-
ences others. Figure 4 shows a sketch of those dependencies.

Figure 4: Best practices in context

These dependencies obviously influence the sequence to establish practices in a project,
typically practices should be introduced in related groups.

7. Related Work

Feature oriented development processes have been discussed in several publications.
According to the feature driven development approach proposed by [13] all features are
defined upfront. Afterwards all features are developed in an iterative fashion, where in
each iteration one feature is realized. Several agile development processes like Scrum [18]
or XP [2] use features for the planning of iterations but during devlopment all features
of the iteration are developed together by one development team.
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The product-line engineering community [14] introduced the idea of a common plat-
form and scoping techniques for its maintenance. However, those approaches mainly
focus the management of variability of multiple products. Thus they are not specific
enough for scientific software development projects with only one single product, which
consists of a platform and several features.

Best practices for development processes have be discussed by several authors. [3]
e.g., focusses mainly human aspects in development projects whereas [1] describes a
quite elaborated set of process patterns for large-scale object-oriented systems. In resent
years several open-source projects like Gnome [8] or Eclipse [6] have evolved to software
ecosystems where one project builds the platform for the development of several others.
Most of those define a development process with a milestone oriented release planning and
best practices. [16] discusses different management aspects of those projects. However,
those projects don’t aim for one integrated solution. Thus no exlipicit scoping and
revalidation of the platform is planned.

Today none of the current development approaches explicitely concerns the specific
characteristics of scientific development projects. Although many of the discussed ap-
proaches and techniques can be usable in scientific development projects most of them
need to be adopted to those projects specific needs.

8. Conclusion and Outlook

In this paper we discussed the importance of a feasible development process as basis
for the creation of high quality software in long living scientific development projects
and we depicted the specific aspects of scientific software projects that impact a feasible
development process. We outlined a generic process frame, that addresses the specifics of
scientific software projects and sketched a set of best practices for the presented process
frame. Furthermore we presented the ViPER project as one case study for a success-
ful scientific development project, that was managed according to the presented best
pratices.

We have sucessfully performed the QMetrics project [17, 15] with the described best
practices and we are currently running several other scientific projects we perform at the
faculty and with different industrial cooperation partners, with the presented process
frame and the described best practices. Our experience in all these projects are also
very positive. Additionally we plan to do a systematic analysis of the process and its
respective best practices. Therefore we intend to perform a series of questionnaire ori-
ented qualitative analyses in several scientific projects that may or may not implement
our process frame.

Until now the described process frame only considers generic basic best practices. In
the future we plan to enrich the best practice section with a set of optional measures for
specific project settings. Moreover we plan to provide strategies for the introduction of a
best practice based process frame in a new project or the migration of a running project
to such a process.
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Abstract

In our research group we work on software development process modeling and particularly deal
with the question how a defined development process can be brought to life in a project. Model-
ing of complex processes with hundreds of elements requires comprehensive tool support. Suc-
cessful enactment of a process during project lifetime does depend on how well the process
is supported by tools for project execution – among equally important factors that deal with
psychological and organizational questions. To prove ideas developed in research and to ease
our day-to-day work in industrial cooperations, we are developing many tools ourselves. In this
paper, we present the Process Development Environment and the Process Enactment Tool Frame-
work that support intuitive modeling of development processes and their enactment. We give an
overview over the organization and the process of our tool development, challenges we are fac-
ing, and present the lessons learned from academic tool development both from the researchers’
and the students’ point of view.

Keywords: meta modeling, process models, enactment, development organization, student
team, academic tools

1. Introduction

“Nice work with the process, but how does it support me during the project?” – it is such
questions that we are facing in our day-to-day work with partners from industrial practice. Most
of our projects deal with software development process design and enactment, especially with
the question how a defined process can be applied and brought to life in a project.

The software development processes that we deal with are based on formal meta-models. Not
only are such processes perfectly suited to be supported by tools (e.g., for derivation of project
plans, generation of artifact templates and documentation), tool support is a necessity during
design (the German V-Modell XT process XML description file for example is 4.8 MB big with
a couple of ten thousand elements). Some tools are available that partly suit common needs. Yet,
many needs coming from industrial projects or ideas we would like to try out in the context of
our own research are not addressed. We are therefore developing many special-purpose tools

Email addresses: kuhrmann@in.tum.de (M. Kuhrmann), kalus@in.tum.de (G. Kalus), then@in.tum.de
(M. Then), wachtel@in.tum.de (E. Wachtel)
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ourselves. These range from “quick and dirty” micro-tools up to comprehensive frameworks
with a quality level close to commercial solutions.

The tools that we are building cover all stages of the life cycle of a development process. We
have tools for definition, design, and validation of process models. We have also built process-
aware tools for project execution. Our long-term goal is to cover the whole life cycle of the
software development process from process design to its enactment with seamlessly integrated
methods and tools.

Challenges. Because our software is motivated by industrial cooperation projects and in use by
industrial partners, we have to maintain certain quality standards with our software. However,
as a university, we are no solution provider and do not have a professional development staff. In
fact, we do not have “real” development resources. Most of the development work is done with
and by students. This fact greatly influences the way that we (must) organize tool development.
Some noteworthy implications are:

• It is not easy to find students.

• The duration of student theses is limited.

• A thesis must contain conceptual and theoretical work.

• It is hard to assess the qualification and suitability of students.

• The results vary in quality and in how easy they can be integrated into our tools.

• Researchers and students sometimes have different goals.

• It is difficult to establish a meaningful development roadmap.

• Our selected technology is usually not taught in lectures.

Outline. Before explaining in greater detail the specific challenges with tool development in
our research group in Section 3, we present the tools themselves in Section 2. We are covering
only the tools developed at Technische Universität München in the research group Development
Processes1. Other research groups at our chair are also developing tools of considerable size and
are facing similar challenges. In Section 4, we give an overview over our group’s organization
that is a direct consequence of our experience with academic tool development during the last
years. In Section 5, we describe the transfer strategy to promote our software. The paper is closed
in Section 6 with a discussion and open questions with regards to academic tool development.

2. Process-aware Tools

Historically, requirements coming from industrial cooperation projects as well as questions
from our own research work have lead to the development of a couple of prototypical tools
that were only used by ourselves. Over the years and many student projects later, some of

1The chair for Software & Systems Engineering is organized in several competence centers. Each has a focus to a
particular area of Software Engineering. The emphasis of the competence center Development Processes is the modeling
of variable development processes and their systematic enactment.
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the tools have outgrown the experimental stage and are now covering large parts of the life
cycle of a software development process. In this section we first give a short impression of how
we understand development process models and what we consider important for modeling and
enactment of such processes. We then present our two flagship tools PDE (Section 2.2) and PET
(Section 2.3). Finally, we give a short overview over some other (smaller) tools that we have
developed or are developing.

2.1. The Life Cycle of a Development Process and its Modeling

There is a large variety of software development processes and methods, reaching from small
“agile” methods to comprehensive structured process models. The process models and methods
themselves are not in the scope of this paper and we refer to previous works [8, 2, 14] for an
in-depth discussion. Whatever the flavor of the process or method, it usually cannot be used
out of the box. It must be customized to the special needs of an organization or project and
adequately supported by tools for project execution. To facilitate customization, most process
models have concepts and rules for tailoring. Inspired by software product lines [12], so-called
process lines [21] describe a set of stable core process assets (commonalities) that are mandatory
to all projects plus optional process assets (variabilities) to be applied in specific project contexts.
For the enactment of processes in tools [16], process models based on formal meta-models are
of greatest interest to us.

Process 
Release

Process Meta
Modeling

Process Modeling 
and Delivery

Process 
Improvement

Project
Project

Project
Project

Feedback for 
Improvement

Process 
Execution

Process Life Cycle Runtime

Figure 1: Process life cycle with associated tools

The life cycle of our process models is described by Figure 1, based on [15]: (1) Process
meta-modeling defines fundamental process model language structures using techniques such as
XML-Schema or custom domain-specific languages [9]. (2) In the second stage the process is
modeled (creating structures e.g. work product milestone associations and content e.g. activity
descriptions). This stage is finished with a release of a process, which is delivered for (3) ap-
plication in projects. A feedback loop is established, which opens the door to (4) continuous
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process improvement [13]. The tools we are developing are closely aligned to the development
process’s life cycle.

Implementation Technology. We have made the strategic decision to implement all our tools on
the same platform. We chose Microsoft .NET with C# for all our tools. One single implemen-
tation technology for all our tools makes integration (relatively) easy. The ability for integration
of our software is important because the students developing the software come and go and we
have to make sure that their work does not depend on others to complete. Source code as part of
a thesis is therefore normally developed in isolation and integrated after completion to create an
integrated tool chain that comprises all components for the different stages of the development
process life cycle.

2.2. Process Modeling: the Process Development Environment

The Process Development Environment (PDE) [25] is a tool for the design of process models.
It is based on domain-specific languages (DSL) [9, 3] to (1) describe the concepts of the process
that the tool shall support and (2) to generate the development environment for process engineers.
PDE provides functionality beyond what standard tools are capable of. In particular, it supports
process model families or process lines [21] and offers a couple of custom views that should help
the process engineer to deal with the complexity of process models.

Context. The design of a comprehensive, flexible, and customizable software development pro-
cess is a complex task, which requires adequate tool support. Tool-supported process design
should include not only modeling capabilities for the process model itself but also the ability
to find inconsistencies and to generate feedback to the process engineers similar to the instant
feedback provided to programmers by modern IDEs. Inconsistencies in a process model can be
inaccurate or missing relationships, which, based on the complexity of the model (model element
and dependency structures), can be difficult to find and, if not found, can have fatal consequences
at later project stages. The development of PDE was motivated by practical experience gathered
in projects with industrial and public service partners where we modified and customized the
V-Modell XT standard2. The standard tools coming along with the V-Modell XT make modi-
fication and customization work cumbersome as those tools provide no visual representation of
the higher-level model structures one would normally want to work with, nor is there any support
for finding inconsistencies. Errors are communicated in a cryptic manner, if at all, with the error
messages typically saying not much more than “Element is Null”. As the XML-model of the
V-Modell XT contains a huge number of elements and relations, locating errors and finding their
source is hard and time-consuming. PDE was therefore developed for our own convenience with
a strong focus on the V-Modell XT. The reliance on a DSL allows us to implement constraints
and validation rules into the tool. In addition to the original V-Modell XT version we have in
the meantime developed a variant for the proprietary development process of T-Systems. We are
using this variant of PDE in a currently ongoing cooperation with T-Systems.

2The V-Modell XT [6, 7] is the German standard development process model for IT-projects in the public service
area. The meta-model [23] is implemented using a XML-schema.
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Overview. PDE [25, 26] uses the Microsoft DSL tools [3]. The graphical modeling application
for the process engineer is generated from the DSL description of the process model. In general,
the application is inspired by well known integrated development environments (IDE) for pro-
gramming but with respect to process engineers’ special needs. PDE provides a number of key
features, such as:

• Language-specific validation including design time feedback.

• Multiple, language-specific graphical views (language-integrated or plugins).

• Plugin interface for additional functionality or graphical views.

Architecture. PDE’s architecture [25] basically consists of a family of (meta-)models that are
implemented by DSLs as shown in Figure 2. The core model of PDE is the Language Meta-
Model that describes the domain of software development processes, used to specify the Domain
Meta-Model, which is the representation of a concrete (process meta-) model (e.g. SPEM). The
domain meta-model’s structure is further used to automatically generate the Domain Model as an
instance of the domain meta-model for integration with the Tool Framework. The tool framework
is an extensible framework used to visualize and modify the domain model. A DSL created with
PDE can host multiple view such as model trees, property grids, graphical designer surfaces or
error lists (see Figure 4).

Language 
Meta-Model

Domain 
Meta-Model View Model Domain 

Model

Tool Framework

Serialization

Validation

Language DSL Domain DSL

instance of

Figure 2: DSL Model Family for Process Modeling

Because of the multi-layered architecture with each DSL serving a specific purpose, the
implementation of a new process model requires a couple of steps shown in Figure 3:

1. Specification of the domain meta-model.
2. Generation of the domain model and integration into the tool framework.
3. Applying optional extensions.
4. Building the editor.

The first step is done using the Language DSL Designer, which is a Microsoft Visual Studio
extension. If the meta-model of the process is already explicitly written down, this step means to
translate the meta-model of the process to the domain meta-model of PDE. In the case of the V-
Modell XT, this first step involved the translation of the V-Modell XT’s XML schema definition
to the domain meta-model. The second step generates code from the domain meta-model using
T4 templates [22]. The generated code can either be used as is or it can be extended – for example
with custom validation rules or extensions (step 3). The “language engineer” can decide on the
degree of modeling and which extensions will be available to the user. It is possible for instance
to implement validation using functional programming languages such as F# instead of modeling
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Figure 3: Concept of developing DSLs with PDE

a constraint (due to the ability of the .NET platform to mix several languages). An example of a
coded validation rule is a checking algorithm for a graph being free of cycles. A plugin for PDE
can be basic and only define additional functionality or it can provide custom views and editors
that are integrated in the PDE main application. After customization and extension, PDE is ready
to build in step 4. The result is the PDE process editor application (in Figure 4) for the specified
model.

Research Questions. PDE is a fully functional application with functionality already going be-
yond the possibilities of standard tools. Yet, there is plenty of room for further work: Currently,
validation constraints are specific to the process model. It would simplify the development of
variants for new process models, if validation rules defined in a generic validation language
could be reused across models. The same observation is true for serialization: currently, seri-
alization rules have to be specified for each element individually. Another aspect is that it may
be useful to combine several models into a larger model. A process engineer may then develop
process components and assemble those to the overall process (similar to method libraries in the
Eclipse Process Framework [4]). We have yet to gather practical experience on how to deal with
model evolution and how it impacts the DSL-based generated working environment.

Implementation Statistics. As of June 2010 PDE had a code size of 40 KLOC. Additional 320
KLOC are generated by the T4 templates from the DSLs, adding up to a total code size of 360
KLOC. The readability of the generated portions largely depends on how well the domain model
is modeled. If meaningful element names are chosen for the model, the associated source code
is human-readable. However, generated and custom code are strictly separated through .NET’s
mechanism of partial classes, so a developer usually does not have to bother with the generated
code other than for debugging of T4 templates.

2.3. Process Enactment: The Process Enactment Tool Framework

The Process Enactment Tool Framework (PET, [17]) is a process transformation framework
that bridges the gap between the defined process and project execution. It provides a generic pro-
cess intermediate model, which arbitrary processes can be mapped onto and which transformed
data can be extracted from. PET applies ideas and concepts of model-driven design & develop-
ment to process enactment. The input to PET is a machine-readable process description (data
model); its output side is usually a process-aware tool that provides some kind of process support
to users during project execution. PET thus makes a contribution to the enactment of processes.
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Figure 4: V-Modell XT DSL

Context. Tools can be helpful with regards to acceptance and enforcement of a software develop-
ment process by providing assistance and automation [16]. Certain tasks prescribed by a process
can be automated – relieving the team of repetitive process-related work. Many tools provide
rich automation and assistance capabilities that can be used to make the process transparent to
users (where adequate). Examples for such tools are Microsoft Team Foundation Server [18],
Microsoft SharePoint [27] and IBM Rational Jazz3. The challenge is to enable these tools to
access development process data and interdependencies to support users in their work relieving
them of “process-only” tasks. A process defines a common terminology and thus is a medium
for communication in a project. With regard to tool chains (integrated and loosely coupled ones)
it is therefore essential that all tools “talk” the same process. Because different tools focus on
different aspects of the overall development process, a challenge is to extract from the process
model exactly the information relevant for a particular tool in a consistent manner, yet ensuring
that data exchange between tools/tasks is possible.

3http://jazz.net/
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Overview. The feature distinguishing PET from other transformation frameworks is that it de-
couples the tasks process parsing and output data generation by design. Plugins that read pro-
cess models are called process providers, whereas tool data-generating plugins are named tool
providers. Through this separation, it is possible to use the same process model parsing logic
to create input data for different output data generators. Consequently, one output generation
logic works for any process. Between the input process model and the output generator, PET
introduces a generic meta-model that process models are mapped onto. This so-called intermedi-
ate/core meta-model contains common process elements, such as roles, work products, activities,
milestones including their semantics and their interrelations. The intermediate meta-model was
not designed to accommodate every possible element of process models but as a lean common
subset. Thus, not every construct of a process may be mappable onto the intermediate meta-
model. However, the elements it does define are sufficient for process enactment using tools (the
main use case for PET). At the time of this writing PET process providers were implemented for:

• V-Modell XT 1.3.

• SPEM-based processes (currently under development).

Tool providers exist to generate:

• Process templates for Microsoft’s Team Foundation Server 2008/2010.

• Project portals including document templates for SharePoint Portal Server.

• Word 2007/2010 document templates in the Office Open XML (.docx) format.

Architecture. The architecture of PET [17] is shown in Figure 5. The framework’s architecture
contains PET’s core, process providers, tool providers, and an application frame.

Application
Frame

GUI-FrameWorkflow 
Engine

PET Core (incl.
intermediate model)

Process 
Plugin

Tool
Plugin

«use»

«use»

«use»

«use»

«use» «use»

«use»
V-Modell XT 
Meta-Model SPEM

Team Foundation
Server

Sharepoint
Server

Word docx
Templates

PET Model and Components Runtime

Figure 5: Schema of PET’s architecture.

The PET core is at the center of the framework. It contains the interfaces and methods that
are used by all process and tool providers as well as by the application frame. The core includes
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the intermediate/core model, the process- and tool provider interfaces, and the conversion pro-
cess interface, which gives plugins some control over the transformation steps. Process providers
bridge the gap between the input process and the intermediate model. They are responsible for
reading a process model and mapping it onto the generic PET process model, while preserving
the process’ semantics. Tool providers are responsible for the generation of the output data of
the process transformation. Their input is the intermediate model, which was initialized before.
Because parsing and (code) generation is encapsulated in self-contained provider plugins, a plu-
gin developer can use arbitrary existing frameworks for parsing and output generation. Another
central component is the application frame. It orchestrates the execution of the different trans-
formation steps displayed in Figure 6. The graphical user interface allowing the selection of the
different provider plugins and a couple of infrastructure components such as plugin configuration
serialization and deserialization are also part of the application frame.

Show Welcome
Page

Select Process 
Provider

Configure Process 
Provider

Select Tool 
Provider

Configure Tool 
Provider

Execute 
Transformation

Store/Exit 
Transformation

Controlled by
Process Provider Plugins

Controlled by
Tool Provider Plugins

Application Frame integrated Process

dynamically loaded dynamically loaded

Figure 6: PET transformation workflow.

Research Questions. As already mentioned, there are two process providers available for PET
(V-Modell XT [6] and SPEM [19]) at the moment. It would be interesting if other process models
can be processed in equal manner. As mentioned above, the intermediate meta-model contains
common elements of process models. Special elements of a process model possibly would get
lost in the mapping process. We have to gather further experience with regard to extensibility of
the intermediate model. Already, it is possible for process providers to add “custom” elements
and non-standard semantics to the intermediate model. The downside of this approach is that
tool providers will not understand the semantics of these elements by default and probably ig-
nore them (a problem well known in the UML/MOF world [20, 1, 10, 11]). Allowing process
providers to extend the intermediate model limits the set of tool providers that can be used with
a certain process provider. The associated research question is how this can be done without
contradicting PET’s general transformation approach. PET’s current architecture assumes the
existence of exactly one process- and one tool provider per transformation. An idea we have yet
to realize is the chaining of multiple tool providers, using the previously created output as input
data. A scenario may be for example to first generate work product templates and then upload
these to a SharePoint portal that will be used as project workspace.

Implementation Statistics. The PET code base has a size of 2.5 KLOC. The current version is
around 15 months old. It is the result of an effort to combine a couple of independent transfor-
mation/generation tools that we had developed since 2005.

2.4. Further Tools
The previous sections presented the main development lines – tools motivated by practice

and in a state and quality near “real” products. Besides those, we developed small tools for (1)
solving individual problems of our projects and (2) experimental tools.
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In the first category we have add-ons supporting specific tasks during process design and im-
plementation. Examples include assessing constructive process model conformance. Currently,
it is available as early prototype, which will be integrated in PDE to support process engineers.
We also have available specialized build tools supporting delivery of a customized process.

In the second category, we are currently working on an experimental work item tracking sys-
tem that supports process design and execution, flexible work item structures, and arbitrary as-
sociations between elements [24]. Additionally, starting from this project, we investigate project
runtime support. We are developing and testing assistance systems in the experimental work item
environment to prepare for integration into PET. We do for example have an early version of a
plug-in for Microsoft Word that provides additional functionality for PET-generated document
templates.

3. Challenges in Academic Tool Development & Lessons Learned

In Section 1, we have briefly highlighted the special challenges that we are facing in academic
tool development. To handle these challenges (discussed in detail in Section 3.1), we have found
over time and through (sometimes negative) experience a couple of best practices, discussed in
detail in Section 3.2. To provide an overview, Table 1 roughly puts in relation the challenges that
we face and countermeasures we are applying.
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Finding students (C1) X X
Student fluctuation (C2) X X X

Kind of student work (C3) X
Qualification of students (C4) X

Result quality (C5) X X X
Goal congruency (C6) X X X X

Development roadmap (C7) X X X
Technology (C8) X X

Table 1: Challenges and strategies

3.1. Challenges

The greatest influencing factor on our tool development is that we do not have a permanent
development staff and are mostly relying on students for the development work. In some way or
the other, most of the challenges are related to this factor:

10

- 118 -



(C1) It is not easy to find students. As members of a large faculty with 22 chairs, that we compete
for the best students. The subjects of lectures, practical courses, and theses we are offering
may look unattractive to many students compared to other offerings. Courses such as “Game
development for the iPhone” will always have a greater appeal to students.

(C2) The duration of student theses is limited. The duration of a normal student thesis is limited
to 6 months. That time frame imposes a natural boundary for the size of the work package to be
worked on by the student. Furthermore, the relatively short time that we normally have with one
student implies a high turnover in our student team.

(C3) Kind of student work. A topic for a student thesis must contain a certain amount of concep-
tual and theoretical work. We cannot formulate a thesis topic that only contains programming
work. Yet, some of the features that we would like to see implemented consist mostly of pro-
gramming work. For such features to be realized, we either have to pick special course formats
with less emphasis on theoretical work than a Master’s thesis or we have to tailor the topic so
that it does meet the difficulty requirements.

(C4) Qualification and suitability of students. It is hard to judge beforehand how capable and
suited a student is. Furthermore it is very difficult to not accept a student interested in a subject
– firstly because we have to be thankful for every student (see C1) and secondly because of
university regulations (we do not have legal means to turn down a student).

(C5) Result quality & integration maturity. There is a large variation in the quality of the out-
comes of students’ works. Some results we can use and incorporate into our tools – some we
cannot. If the outcomes meet the expectations, there is usually some integration work left to be
done. In the case of students struggling with our expectations, we often have more effort with
supervision than for other students while the outcome may turn out not to be usable.

(C6) Differing goals of researchers & students. Researchers and students do not necessarily have
congruent goals. Researchers want to check and validate their scientific ideas and to establish
good relations with industrial partners for possible funding. Students usually want to get good
marks with the least effort. Additionally – as studying is expensive – many students are interested
in a job. Taking a job in industry is often more attractive as the payment usually higher.

(C7) Development Roadmap. It is almost impossible to establish a meaningful development
roadmap as we often do not know if, when, and for how long students will be available. Schedul-
ing detailed work packages only works if students are available. Any project plan is meaningless
without development resources that we can reliably plan with. Also, if we find a student willing
to work in our team, it does depend to some extent on the preferences of the student which work
package he or she takes over.

(C8) Implementation Technology. For historical reasons we are using .NET for all our tools (Sec-
tion 2). In the introductory lectures at our faculty, Java is used to teach students programming.
Many students do not have the motivation to learn additional platforms. The chosen technology
limits the number of students we can consider for our work.
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3.2. Measures
Over time and thorugh experience, we have established measures to face the challenges listed

above. In the following we describe how we handle the challenges. For each of the measures,
we indicate in brackets the addressed challenge(s).

(M1) Advertisement of courses and seminars. We are still looking for the best ways to recruit
students (C1). All our open student thesis topics, courses and seminars are held in a database
on the chair’s servers. The database is accessible through the chair’s Web site and the theses are
also displayed on the individual researchers’ Web sites. Other chairs have similar facilities. In
addition, courses and seminars are managed in a faculty-wide database, so there is one central
site where students can find and pick their courses. We will soon move our thesis offerings to a
faculty-wide database, too. Some thesis topics do not find interested students for a couple of years
– sometimes until the topics do no longer fit our own strategy. Our hope is that this move will
result in a greater visibility of our “job offerings”. Another measure that we are experimenting
with is the advertisement of courses using offline media, especially posters. For the future we are
considering to post an announcement for our courses in a popular student Web forum.

(M2) Payment for students. A central goal is to reduce student turnover (C1, C2) and to create
longer-term relationships with students. We are employing students that have proven their capa-
bilities to keep them in the team beyond the regular thesis runtime. Contrary to an employment
in industry where the students may get higher wages, the students remain very flexible when
working for the research group. Work can normally be done at home and we do not require
fixed working times. We are also making sure that the work does not interfere with other obli-
gations such as learning for an exam (C6). Another advantage is that we can assign “normal”
programming work to employed students – something we cannot in the context of theses (C3).

(M3) Publications for students. In addition to payment, we are trying to give further incentives
(C2) by publishing interesting results of student works – for example from a thesis, as shown in
[26] – together with the students. Some benefits for the students are (1) the publications can be
helpful if the student eventually pursues an academic career, (2) it is a good exercise for the final
master’s thesis, (3) the students get insight and background information on the work subjects
(C6).

(M4) Project responsibility for students. With the tools and the code base we have built over the
years, it is the exception that a completely new and isolated tool is developed in student projects.
Most of the practical courses or theses that we are offering deal with the implementation of new
features for existing tools. The strategy and requirements come from the research staff. However,
the responsibility for the code itself is usually with an employed student (C2, C6) of the core
student team (see Section 4). These students are also responsible for much of the integration
work (C5, C7).

(M5) One central repository. We have one subversion repository. The research staff and the
students all work on the same repository. Students even use the repository to manage the LATEX
source files of their theses. The central repository helps to create an atmosphere of openness.
More importantly, it has grown to a huge knowledge base over time. The source code, LATEX
sources and other documents can be used by everybody looking for examples or best practices
(C5). One repository for all our students and for ourselves creates a certain amount of manage-
ment overhead and is not common practice at our faculty. Most researchers and students maintain
their own, private repositories.
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(M6) One technological platform. We have made the strategic decision to only use C# and .NET
as technological platform. Whenever a problem involves programming work, it must be done in
C#. This is one of the few non-negotiable preconditions before we accept a student. The result of
the strategy is that (1) we are able to provide detailed programming support to students (C4), (2)
we are able to provide students with the necessary tools, for example Visual Studio, (3) we are
able to understand every detail of the outcomes, (4) students can understand each others code and
profit from each other. If there is a lack of resources in one tool project, it can be compensated
by other members, and (5) we can integrate outcomes of different student projects into a larger
software (C5). Some portions of the source code were originally developed to solve a particular
problem and only much later assembled to form an integrated solution.

(M7) Active promotion of our software. We are actively looking for collaboration partners to
use our tools and to drive development forward. (1) The tools are used in industrial cooperation
projects and often demonstrated and showcased to interested parties. (2) Large parts of our code
are put up on CodePlex4. (3) We work together with another university where we act as client
and a student team at the other university was building a component for PET in a practical course
(C7).

(M8) Flexible and “opportunistic” strategy. As mentioned above, one challenge in academic
tool development is that we cannot reliably plan our development resources and we can judge the
quality of the outcomes of students’ works only after the fact. Our product strategy is therefore
very flexible and opportunity-driven (C7). Some of the tools have not been build with a clear
roadmap in mind but only after, for example, a student thesis was completed (C6). The opposite
is also true where we had high expectations for a thesis but the outcomes were not usable and
were not integrated into our code base. Another factor influencing our tool strategy is that we
have to quickly respond to the requirements coming from our (funding) industrial partners.

(M9) Lectures. With regards to our chosen implementation technology one can roughly distin-
guish two types of students: Some students already have knowledge with .NET and are interested
in the platform. Because Java is the de-facto standard in teaching at our faculty, such students are
rare. There are also students who show interest in the platform but do not have any experience
with it (C8). To make students familiar with .NET and to identify the interested students we are
offering specialized lectures – for example a seminar about the basics of C#.

Summary

Summing up, we are trying to tackle the challenges in academic tool development by creating
a positive working environment for students that lasts longer than just for the time of a practical
course or thesis. Because the tool development is driven by industrial cooperations or our own
research, the students find challenging, relevant, state-of-the-art and “real” problems to work on.

Figure 7 shows the number and distribution of student works, their types and the associated
tool projects. To give an idea for the topics students work on, we refer to [24] and [25]. As can
be seen in the diagram “Projects”, PET is the oldest and still most active project. Especially with
regards to project execution support, we are developing many new prototypes in the context of
PET. The diagram “Types” shows the distribution of different kinds of student works. It (still)

4http://www.codeplex.com
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Figure 7: Distribution of projects and students’ works

shows a high number of Diploma theses, which will decrease due to the Bologna Process5 [5].
This development is actually an advantage for us because a student joining our group for his
Bachelor’s thesis usually stays at university for another two years to earn his Master’s degree.
Such students are candidates for employment in our group. If we get to know a student while he
completes his Diploma thesis, it is too late to think about employment. Most of those candidates
are leaving university soon after.

Measures that worked. We have observed that a new lecture is not very popular when offered
for the first time. Offering the same lecture periodically, we notice increasing visibility and
popularity. As an example, we are offering a seminar about object-oriented programming with
C# where we have twice the number of participants in the current winter term 2010 compared
to the previous year. Another example is a practical course that we are offering every semester
where we have a stable number of participants.

Measures that did not work. For some courses, we have designed posters that we put up near
the entrances to our faculty building. The first time we tried posters, these did not seem to have
any effect. We had zero students for the advertised course. We are currently trying posters again
for two courses and have yet to see if they make a difference to find students. So far, it appears
that again the posters have no effect. If we are getting feedback from students about our lecture
offerings, it is usually from students coming to us because they are interested. Much more
interesting of course would be why a seminar or practical course did not generate the desired
interest. We are however not aware of a working method to collect feedback from students not
interested in our offerings. One possibility may be to open an “advertisement” thread in a popular
student Web forum (see also measure M1). We have however not made such a posting yet.

5The Bologna Process harmonizes the European graduation system. In Germany, the Diploma degree is getting
replaced by Bachelor’s and Master’s degrees.
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4. Organization & Development Process

In this section we describe how our group is organized today. The organization has steadily
evolved over the last couple of years and is basically a result of our experiences outlined in
Section 3. It also reflects the fact that as members of a university, most of our funding comes
from collaborations with industrial partners. Not just for the tools, the partners take on the role
of the customers. How they are involved and how we work together internally with researchers
and students is outlined in the following.

Organization. The rough structure of our research group is displayed in Figure 8. We are orga-

Project

Project

Project

Research Staff
(Core Team)

Student Staff
(Core Team)

External 
Researchers

Students
(temporary)

Projects and external
Partnern

Common 
Repository

partial access

(supervising all
developments)

Figure 8: Organization of the research group

nized in four areas: (1) the core team consists of the employed researchers (including ourselves)
and students. The research staff owns the common repository, supervises the students and coor-
dinates projects and tool development. Each of the employed students is responsible for one tool
and coordinates integration, especially of the parts developed by temporary students. (2) Exter-
nal researchers are people that do their research at our chair but are not on the chair’s payroll.
They are available only temporarily and are generally not as much involved as the employed
staff – they do not for example have teaching obligations. (3) Temporary working students –
e.g. working on their theses – are also embedded in the research group. (4) External partners
participate according to their projects’ context, mainly by consuming tools.

A central component is the common repository. All data of the group is stored there. Every-
body has complete access, except for a couple of directories that contain sensitive/confidential
data, e.g. grades or financial calculations. For legal and privacy reasons we cannot give access to
this data to all users of the repository. These areas are only open for the employed research staff.

Processes. Our development process varies depending on the tool project. If it is (1) an experi-
mental (component of a) tool, then the development is self-organized by the developing student.
If it is (2) a tool that is mature for release or already released, an organized development process
is established in the research group as shown in Figure 9. In general two aspects must be men-
tioned: At first the continuous development in the research group and furthermore developments
and publications to the community. For the internal development, a team is constituted, which
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Figure 9: The tool development process of the research group

consist of at least two researchers (core team), one student (core team, senior student), and addi-
tional temporary students. External researchers and partners contribute where appropriate. In a
tool project, the senior student is responsible for the development tasks in the project (coordina-
tion, integration, test). The development is planned using simple feature lists – if a tool is already
published to the Open Source community, the facilities of the Open Source community site – for
example issue trackers – are used.

Development starts with selecting features, defining the goals, the design of the architecture,
and a rough schedule. Once the first implementation is available, the internal tests start. Inter-
nal test does not only mean running test cases but also checking the implementation against the
requirements and improving the source code. Having finished the internal tests, a milestone for
a (new) release is reached. At this point, two activities are performed: (1) the internal release
is built and stored as a baseline in the common repository; (2) the tested code and release (exe-
cutables, documentation, etc.) are published at the Open Source site. Furthermore, the published
sources and tools are provided to the partners for their work. In the meantime feedback loops
are established. We collect feedback from both the community and the partners. In combination
with the original feature list, we plan new releases.

At this point it is important to know that the development is still driven by the research group
– not by the community. The community sponsors new or updated components, but testing,
integration in a release and so on is controlled by the group. The reason is quite simple: we
involve temporary students who obtain their grades by taking part in our tool development. To
align the strategy and the students’ goals, we must control the development. This strategy creates
additional effort, but is necessary to hold the working environment stable for the students.

16

- 124 -



5. Transfer Strategy

Academic tools need validation by practice. As most of our developments are motivated by
practical problems, we always look for cooperations in industry and the research area to apply
the tools. This section gives an overview over our transfer strategy.

Academic Research & Projects. The first part of the transfer strategy is in the academic area.
We (1) use our tools for teaching. Lectures and seminars for instance include PDE besides
standard environments such as the Eclipse Process Framework [4]. Practical student works as
well as theses address PET. We (2) work together with other universities, e.g., the University of
Applied Sciences in Rosenheim, to drive development forward (a student team of the University
of Applied Sciences in Rosenheim has developed the SPEM process provider for PET – we only
contributed the requirements). Furthermore, our tools are a matter of current research. We (3)
use PDE and PET for modeling and proof of concepts developed in Ph.D. theses.

Industrial Cooperation Projects. PET has been in use for the generation of work product tem-
plates in cooperation projects for example with the Federal Network Agency and Siemens. The
Federal Network Agency’s internal software developers are using Microsoft Team Foundation
Server. We are currently working on a process enactment strategy with the Agency involving
their TFS infrastructure and PET. PDE is relatively new and early versions are delivered to se-
lected partners. First cooperations are already established, e.g., with T-Systems where PDE is
used to model the proprietary development process of this company.

Within cooperation projects, we are using the tools ourselves to gather experiences before
providing the tools to partners. For example as PDE now provides the required minimum of
stability and enough features for efficient work, it replaces other design tools such as EPF or the
V-Modell XT reference editor [6] in our own work.

Open Source Strategy. To reach a broad audience, we make our tools accessible to the Open
Source community. Due to our .NET framework-centered development activities we publish and
manage our projects6 on CodePlex, Microsoft’s Open Source project hosting site.

Our Open Source strategy offers advantages for both the tools’ users and our team. The users
get to review the program’s functionality and quality before using it in their projects. Through
the projects’ openness and availability, we hope for a growing user base that reports bugs and
inspires new features, which helps us improve the tools.

As described in Section 2, our tools are specialized for a specific domain. They are no mass-
market consumer tools and require a lot of know-how. The industrial cooperation or funded
research projects do usually not contain a budget for tool development. As a university we are
“selling” know-how – our tools are something that we bring in for free. As such, we do not lose
anything by publishing the source code.

6. Conclusion

For our specialized work on software development processes, we have a constant demand for
tool support. Many of the requirements that we have or simply ideas that we want to try out are
not covered by existing tools. We are therefore developing many tools ourselves. Several mature

6Usually we publish the tools under the Apache 2.0 license.
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tools have been developed over time. Developing the tools was possible only by finding an
organization structure that respects the particular concerns (listed in Section 3) of the academic
environment: we are facing some specific challenges developing tools because there usually is
no budget for software development and because we do not have a dedicated development staff.
Most of the development work is done by students, for example in the context of a Bachelor’s
or Master’s thesis. We have taken certain measures and found out things that worked and things
that did not with regards to our kind of “development team”.

Discussion. Experiments such as using offline media to advertise courses have had very lim-
ited success so far. Whether moving all our thesis offerings to a central database will make a
difference has yet to be seen. A measure that worked is the employment of students to build a
stable team. If the students are integrated in the team, their performance often goes beyond the
curriculum’s requirements. So, if for example a Master’s thesis is calculated with an effort of 6
man-months, the real amount of work done by the student is often two to three times as much
(estimated based on the size and volume of the deliveries). However, this requires a special,
highly self-motivated, open-minded and creative kind of students.

It is not possible to employ every student due to project, administration, and financial limita-
tions. The selection process for students’ employment must respect long-term perspectives and
enough time for learning for the students as well as for the researchers’ goals.

Referring to the challenges that we are facing (Section 3), our experiences lead to further
questions:

• Learning vs. working: Students need time for their studies. We have established a structure
for our employed students that enables them to control their working style. For students
that work with us only temporarily, we set clearer goals – normally aligned to the cur-
riculum’s requirements. We currently have only a handful of lecture formats to choose
from. A question we do not have an answer to is what adequate lecture format is for our
requirements.

• Lecture format: Currently we only have lectures, seminars, and practical courses (1) to
advertise and (2) to provide students with work. Are there other forms of teaching possible
that make our area of work more attractive to students?

• Cooperation style: For the core team (shown in Figure 8), we have a flat organization
and cooperation style where each member has certain responsibilities. The flat hierarchy
creates an open working atmosphere but limits the size of the team. This style works good
for us but implies a risk: It works as long as the team is relative stable, as a high turnover in
the student staff results in management effort (training, repository, contracts). What other
organization styles are possible?

At the same time, budgets for tool development (including students’ payments) are scarce.
So, we are forced also to include non-employed students with the effects stated in Section 3.
The availability of non-employed students is almost impossible to plan, which destabilizes our
planning and strategy. Relevant questions arise from this situation are:

• Alternative transfer strategies: We selected Open Source as basic concept for transferring
our tools. In combination with research and consulting projects, we attract funding but
must align the strategy according to the current projects. What are other strategies for a
transfer? Are there alternatives to a spin-off?
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• Planning: Planning the development depends on project situations and resources. While
we do have a long-term “product strategy”, it is hard to set milestones and completion
dates (see Section 3). What other styles of project-independent planning exist?

• Target achievement: The achievement of the objectives is also closely coupled with the
current projects. How well is the target achievement in other than our situations? What
about the quality of the resulting tools?

The tools that have been developed in our group are evidence enough that the organization
of our group and the measures we are taking to deal with the special challenges of the academic
environment work in principle. The organization, the measures and the development process
that we have outlined in Section 4 are the result of an ongoing learning process. Especially
the development process we have not designed from scratch but refined based on the lessons
learned. It has now stabilized to a point where for the first time we can consider to formalize it.
Such formalization would allow us to apply PDE and PET more extensively for our own group.

Currently we have a relatively stable team that works together efficiently. However, some
of our core team students have stayed with us for a couple of years and will finish studies soon.
They are still the first generation of students that we have worked with in the described way. We
will see how robust our organization is when we bring up a new generation. We are offering
several seminars and lectures to get in touch with potential candidates in the current winter term
2010.
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Abstract

When implementing a new programming language construct, it is important to consider and
understand its implications on program semantics. Simply hacking compiler code, even in com-
bination with the use of a debugger, does not allow for easily keeping track of the global picture
of overall execution semantics. We present a graph-based implementation of the delMDSOC vir-
tual machine (VM) model in AGG, as a platform for experimenting with programming language
constructs. More specifically, given the nature of the delMDSOC model, it is aimed primarily
at languages supporting the modularization of crosscutting concerns, such as aspect-oriented or
context-oriented languages. Our delMDSOC implementation visualizes programs as graphs at
the VM level, in terms of well-known and intuitive concepts: objects, messages, delegation and
actors. Implementing new high-level language constructs involves expressing them in terms of
these concepts. Since delMDSOC is implemented as a graph rewriting system, program execu-
tion can be visually simulated and program state can be inspected at all times, providing insight
in the implications of the new language construct on execution semantics. We demonstrate our
approach by means of two language constructs: the context-oriented layer construct and a new
aspect-oriented construct, the “concurrent cflow” pointcut.

Keywords: virtual machine model, programming language development, modularizing
crosscutting concerns, graph rewriting

1. Introduction

New constructs are being added to programming languages regularly, sometimes leading to
language extensions or even completely new programming languages. For the language devel-
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Haupt), hirschfeld@hpi.uni-potsdam.de (Robert Hirschfeld)
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oper, as well as the language user, it is crucial to understand the semantics of such new constructs,
and their implications on the execution semantics of programs written in this language.

New constructs are often simply “hacked in” by modifying compiler or interpreter software,
the semantics being established by their implementation. The language user then either relies on
high-level documentation, which is often lacking, or on the compiler or interpreter itself, using
it as a black box to figure out the semantics of such constructs.

This paper presents a platform that can be used to experiment with object-oriented language
constructs. This platform is based on the delMDSOC (delegation-based Multi-Dimensional Sep-
aration Of Concerns) virtual machine (VM) model [1] and its implementation in the AGG graph
transformation tool [2]. In essence, delMDSOC is a VM model that is designed as a compila-
tion target for programming languages aiming to increase modularization and enhance (multi-
dimensional) separation of concerns (MDSOC). Examples of such languages include aspect-
oriented programming [3], context-oriented programming [4] and role-based programming [5].
Much attention and effort is devoted to experimenting with new language constructs within this
fairly young area of programming language research [6, 7, 8, 9].

Our AGG implementation of delMDSOC visualizes programs as graphs at the VM level.
The behavior of the programs represented by these graphs is determined by a set of graph rewrite
rules [10] which constitute the operational semantics of delMDSOC. As such, AGG allows for
visual simulation of program execution by repeatedly transforming the program graph through
application of these rules. In between rule applications, execution can be paused and the entire
program state can be inspected and modified, including the VM code that each object imple-
ments, and even the runtime stack. Because program state is represented by a graph, it also
is possible to make backup copies thereof, such that execution can always be resumed from a
backup.

What makes this platform useful for experimentation is the fact that, unlike most intermediate
languages, delMDSOC’s abstraction level is much closer to a high-level programming language
than it is to a typical machine instruction set. Because the distance between the programming
language and the VM instruction set is decreased, it becomes easier to reason about the program-
ming language. More concretely, languages that are implemented on top of delMDSOC will be
expressed in terms of the following well-known high-level concepts: prototype objects, message
sending, delegation and actors. A wide range of language constructs can be created using these
building blocks [1, 11], due to the delMDSOC model’s dynamic nature: All message sends are
late-bound and delegation relations between objects can be modified at runtime.

The remainder of this paper is structured as follows: Sec. 2 provides an overview of the
delMDSOC machine model. Next, Sec. 3 presents the model’s operational semantics in depth.
In Sec. 4, we apply our semantics to two examples of language constructs: the existing context-
oriented layer construct and a new aspect-oriented construct, the “concurrent cflow” pointcut.
Sec. 5 discusses related work, and 6 concludes and briefly outlines future work.

2. Overview of the delMDSOC model

The delMDSOC machine model was originally introduced in [1]. In this section, we give an
overview of the model’s operation.

As the model is a prototype-based object-oriented environment, the model’s basic entities are
objects, which can communicate with each other by means of message passing. We opted for
prototype objects in favor of a class-based object-oriented model because we wanted the model
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Figure 1: An example of a composite object

to consist of a minimal amount of concepts, keeping it as simple as possible. As there is no
concept of classes in prototype-based languages, this was an easy choice to make.1

Objects can be connected to each other using delegation, resulting in a chain of objects, also
called a composite object. An example of such a composite object is shown in Fig. 1. During
message lookup, if an object receives a message it cannot understand, the message is delegated
to the next object in the chain, and so on, until a matching implementation is encountered in one
of the objects’ message dictionaries.

In delMDSOC, the first object in a composite object’s delegation chain is a so-called proxy,
which does not understand any messages at all. Its purpose is to serve as a fixed access point,
establishing the identity of the composite object. This is important because delegation chains
are not fixed, but may be modified at runtime. This mechanism allows for dealing with dynamic
deployment of crosscutting modules. In such a scenario, objects may be inserted into or removed
from delegation chains in order to dynamically modify a composite object’s behavior in response
to certain messages. The listCache object in Fig. 1 is an example of a crosscutting module
that is currently enabled, as it is inserted between the list proxy and the listObj object.
During message lookup, the self pseudovariable always remains bound to the receiver of the
message, i.e., the proxy, ensuring that lookup for messages sent by a composite object to itself
always starts at the front of the delegation chain.

In order to introduce concurrency into delMDSOC, we have opted for the actor-based model
of concurrency. Actors were chosen in favor of threads, also because of simplicity reasons: Be-
cause actors do not allow for shared state, issues such as deadlocking are avoided for the most
part. However, we do not adhere to the pure actor model, but rather take an approach similar
to the one employed in the E language [12], in which a distinction is made between actors and
objects: Actors act as containers of objects. An object can send an asynchronous message to
an object belonging to another actor, which results in this message being appended to the other
actor’s mail queue. The mail queue essentially is a buffer where messages are kept until the mes-
sage that is currently being processed has finished its execution. When this happens, the message
at the front of the mail queue is removed and is pushed onto the process stack. Although an actor
may at all times receive additional messages in its mail queue, it will not process them until it
has dealt with the messages currently residing on the process stack. Furthermore, executing a
message on the process stack may result in other message sends. If these messages target ob-
jects within the same actor, they immediately end up on the process stack, which means they are
processed synchronously. In short, communication between objects within one actor (intra-actor
communication) occurs synchronously, whereas communication involving two different actors
(inter-actor communication) occurs asynchronously by default. Asynchronous inter-actor com-
munication may result in a future object [13] being returned. Upon accessing a future’s value,
the actor is blocked until the value has been calculated. This blocking mechanism can be also
used in order to simulate synchronous inter-actor communication.

1If needed, classes can always be emulated using prototype objects in combination with delegation [1].
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Figure 2: Type graph of the delMDSOC model

2.1. The model’s operation
The delMDSOC model is described as a set of graph rewrite rules. These rules can be subdi-

vided according to the cycle of steps that each actor goes through:

1. Move the first message from the mail queue to the process stack. (This step is detailed in
Sec. 3.1.)

2. Perform the lookup procedure to find the message’s implementation, also called the mes-
sage body. (Sec. 3.2)

3. While the message body has not been executed completely:
(a) Fetch the next instruction from the message body.
(b) Perform some preprocessing on this instruction, if any. (Sec. 3.3)
(c) Execute the instruction. (Sec. 3.4)

4. Pop the message from the process stack and start over at step 1.

While the model’s graph rewrite rules can be matched in a non-deterministic order, they are set up
such that each actor will indeed follow the above sequence of steps. It should also be mentioned
that, while delMDSOC supports a whole set of different instructions, this paper will only focus
on a few of these instructions. Several instructions, such as integer addition, do not modify the
graph structure, but only attribute values, which is of limited interest in this context. Instead,
message sends and object (un)deployment will be discussed in depth in Sec. 3.4. These are more
interesting because the mapping of several high-level MDSOC constructs onto the delMDSOC
machine model will involve these instructions.

2.2. Type graph
Fig. 2 shows the type graph associated with our model, which specifies the model’s different

kinds of nodes and edges, and how both connect to each other. Three kinds of nodes are available:
actors, objects and messages. Node attributes are typed by Java classes.2 Object nodes contain

2It is important to note that we only make use of a minimal subset of Java’s functionality. Java expressions are only
used in order to read and update attribute values, but they are not allowed to cause side-effects to the graph structure.
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Figure 3: An intermediate state of a simple program

two attributes: name and messages. The name attribute is a String acting as a unique
identifier. The messages attribute is a message dictionary containing implementations for the
messages it understands. It has the MsgBodyMap type, which is a wrapper class around a hash
map, mapping each message name to a list of instructions.

Message nodes contain three attributes: name, curInstr and body. Once a message has
been looked up, the message body is stored in the body attribute as a MsgBody, a linked list
of Statements, the latter being a wrapper around a String. When a statement is executed,
it is removed from body and is then stored in the curInstr attribute, which represents the
instruction currently being executed.

Next to the three types of nodes, there also are several types of edges:

• The contains edge connects an object to the actor containing it.

• The delegate edge indicates the next object in a composite object’s delegation chain.

• The mailNext edges form an actor’s mail queue. If the source node of a mailNext
edge is an actor, the edge indicates the first message in an actor’s mail queue. Otherwise,
it indicates the next message in a mail queue.

• Analogous to the mailNext edge, the processNext edges are used to form an actor’s
process stack.

• The lookup edge indicates the object currently being checked in the message lookup
procedure. A lookupResult edge then indicates the object where a message was un-
derstood.

• The self edge indicates a message’s self object. Analogously, the param edge indicates
a message’s parameter object, used to pass parameters along with a message send.

• The future edge indicates that a message’s return value should be stored inside a future
object.

The graph in Fig. 3 illustrates an example that complies with the above type graph. It shows
an intermediate state of a running program that will calculate the value of ∑

3
c=1 c and store the re-

sult in aObj.s. It incorporates several of the model’s elements: There is one actor that contains
one composite object a. The actor has two pending messages in its mail queue and is currently
executing the instruction self.c=self.c+1, as shown in the message that is on the actor’s
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NAC

Figure 4: Process message rewrite rule

process stack. The rewrite rules described in the following section will give a general idea on
how the execution of this program will continue.

3. Graph rewriting semantics of the delMDSOC model

This section presents the essentials of delMDSOC’s semantics, in the form of a set of single-
pushout graph rewrite rules.3 Each graph rewrite rule contains at least two graphs: a left-hand-
side (LHS) and a right-hand-side (RHS). The application of a rule then consists of searching
for the rule’s LHS within the graph that we wish to transform. If a match was found, it will be
replaced by the RHS and the rule application will have succeeded; otherwise, the rule application
has failed. Optionally, a rule can also have multiple attribute conditions and negative application
conditions. An attribute condition (AC) is a Boolean expression that must evaluate to true in
addition to matching a rule’s LHS. A negative application condition (NAC) specifies a subgraph
that may not occur when matching a rule.

3.1. Processing messages in the mail queue
The graph rewrite rule in Fig. 4 comes into play when an actor has an empty process stack,

which is ensured by the rule’s NAC. If an actor’s process stack is empty, this means it is waiting
for new messages to process. The rule’s RHS removes the first message from the mail queue and
moves it onto the actor’s process stack. The message also receives a lookup edge, indicating
that the lookup procedure should start, which is handled by the rules in Sec. 3.2. It should be
noted that this rule will not work in the case where only one message is in the actor’s mail queue.
This issue was solved by making use of AGG’s amalgamated rules, which makes it easier to
create, maintain and combine variations on rules, rather than having to specify each variant as a
separate rule. Using this technique, a variant (not shown here) was created that handles the case
with one message in the mail queue.

3.2. Message lookup
The lookup procedure described in this section behaves exactly like the lookup procedure

discussed in Sec. 2. In case the desired message implementation is not found in the object cur-
rently indicated by the lookup edge, the rule in Fig. 5 matches. This is ensured by attribute
condition !msg.contains(m), which checks whether the object contains an implementation

3The complete set of graph rewrite rules as described in AGG is available at http://fots.ua.ac.be/
delmdsoc/.
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AC !msg.contains(m)

Figure 5: Iteration rule of the lookup procedure

AC msg.contains(m)

Figure 6: The end of the lookup procedure

for a message named m. Its RHS moves the lookup edge to the object’s delegate, such that the
lookup procedure continues there.

In the other case, if the desired implementation was found in the current object, the rule in
Fig. 6 matches. Its RHS copies the implementation into the message’s body attribute and the
lookup edge is changed into a lookupResult edge, indicating that the lookup procedure
has finished and that the body can now be executed.

3.3. Preprocess the current instruction

Before an instruction can be executed, some preprocessing may be required. Any references
to the self pseudovariable in an instruction are replaced by the name of the self object, as
indicated by the current message’s self edge. Similarly, references to formal parameters and
future objects can be resolved in the preprocessing phase.

Instructions that contain subexpressions that haven’t been evaluated yet are also handled
during preprocessing: There is a rule that will push a new message on the process stack that is
meant to evaluate this subexpression. Once this is finished and the message can be popped, the
subexpression’s resulting value is resolved in the original instruction.

3.4. Execute the current instruction

The intermediate language implemented by our machine model supports several different
types of high-level instructions:

There are the usual assignments, if statements, print statements and (implicit) return state-
ments, but there also are more interesting instructions for sending messages, resending messages
(analogous to the aspect-oriented proceed statement), creating new actors, cloning objects and
(un)deploying objects in delegation chains. This section concentrates only on sending messages
and object deployment, as these form the essence of the examples in Sec. 4.
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AC c.isSend() && c.getReceiver().equals(n)

String f = getUniqueName()

Figure 8: Inter-actor communication

3.4.1. Intra-actor communication
The rule handling communication between objects within the same actor, i.e., intra-actor

communication, is shown in Fig. 7. The first AC makes sure the current instruction has the
syntax of a message send and that its receiver equals the object with name n. (For example, the
instruction listObj.get(3) sends the message get to receiver listObj with parameter
3.) The second AC will check for the presence of the actual parameter object that is passed along
with the message send. For simplicity reasons, the delMDSOC model can currently only pass
one parameter; multiple parameters can be simulated by using this one parameter object as a
container. It also is possible to perform a message send without any parameters; amalgamated
rules are used here once again to define the variant of this rule without parameters.

Once this rule matches, the new message that will be sent is pushed onto the actor’s process
stack. As this message is now at the top of the stack, the other messages on this stack have to wait
until the new message has been looked up and executed. In other words, this is a synchronous
message send.

AC c.isSend() && c.getReceiver().equals(n)

c.getParameter().equals(p)

Figure 7: Intra-actor communication

3.4.2. Inter-actor communication
Sending messages between two different actors is handled by the rule in Fig. 8. This rule is

one of the few occasions where it becomes apparent that our graph rewriting rules do not use
injective matching, in which each node in a rule must be different from each other. This means
it could occur that both actors, node 1 and 2, are the same actor. To prevent this situation, a NAC
was added that ensures the two actor nodes may not be the same.

In contrast to intra-actor communication, the new message does not immediately end up at
the top of the receiving actor’s process stack, but it is added to the back of its mail queue. To
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AC c.startsWith(“DEPLOY”)

c.getParameter(0).equals(m) && c.getParameter(1).equals(n)

Figure 9: The deployment instruction

retrieve the last message in the mail queue, transitive closure4 (marked by the asterisk on edge 8)
is used in combination with another NAC. The actor that initiated the message send can continue
immediately, meaning that message sends between different actors are asynchronous by default.

To be able to move the return value back to the sending actor once it is available, we make use
of futures [13]. In the rule’s RHS, a new object is created with a unique name f and a future
edge pointing to it; this is a future object. Once the message that was sent has been executed, the
return value will be stored inside this future object. In the meantime, the message that caused the
message send (node 3) will receive a reference to the future object as a temporary return value.
This reference can be assigned to fields and be passed around as a parameter without a problem,
even though the future object may still be empty. When accessing the future object however, the
actor will block until the return value is present in the future object. Once the return value is
available, another rewrite rule will make sure that accesses to the future object are replaced by
the return value contained within. All of this happens in a transparent manner, in the sense that
someone making use of delMDSOC does not need to be aware of the existence of future objects
to be able to use them. Synchronous inter-actor communication can be simulated using the
future’s blocking mechanism, which is done by making an asynchronous call and immediately
attempting to access its return value. An explicit SYNC instruction is available that provides this
functionality.

3.4.3. Deployment
The deploy instruction is a key component that allows the model to be used in an MDSOC

context. This instruction is used to insert an object within another specified delegation chain. For
example, when executing the statement "DEPLOY(objectA,objectB)", objectA will be
inserted between objectB and its delegate. The rule handling this instruction is shown in
Fig. 9. The attribute conditions of the rule express that the current instruction must be a deploy
instruction and that both of its parameters should match with the objects respectively named m
and n.

4AGG currently does not support transitive closures, so an additional type of edge is used to explicitly mark the last
message in a mail queue.
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Figure 10: Initial program state

4. Examples

We will now, by means of two examples, illustrate how the set of graph rewrite rules de-
scribed in the previous section, as well as their simulation in AGG, can be a useful tool while
experimenting with language constructs. The first example involves an existing construct that
forms the basis of context-oriented programming: layers. The second example introduces a new
variation on the aspect-oriented cflow pointcut, called concurrent cflow, or ccflow.

4.1. The context-oriented layer construct

Before diving into any details of the example, we will first give a brief introduction to context-
oriented programming [4]. The main idea behind context-oriented programming is that some
functionality may behave differently when executed in a different context. To this end, the layer
construct was introduced; a layer contains the behavioral variations of certain methods in a par-
ticular context. More concretely, alternate definitions of any method can be written within a layer.
These alternate definitions can then be explicitly activated, i.e. replace their original definitions,
whenever a particular dynamic scope is entered.

Listing 1 shows a simple context-oriented example that we wish to map to the delMDSOC
model. It is written in a ContextJ-like language [4], which is a context-oriented extension of
Java. In this example, two classes are present, Person and Employer; each of these defines
a toString method. We redefine the toString method of each class within the Verbose
layer. Also note the use of the proceed statement within this layer definition; this represents a
call to the original method definition. In Person.main, the layer is activated using the with
block construct. In other words, all code executed in the dynamic scope of the with block will
make use of the redefined toString methods.

Fig. 10 shows the corresponding representation of the initial state of this program in delMD-
SOC. (The messages and body attributes are hidden, as they would clutter the graph.) At this
point, the Verbose layer is not active yet. The main method is called by sending a main mes-
sage to object p1. Given that delMDSOC assumes an object-based environment, classes are rep-
resented as objects, just like their instances. Instances hold fields corresponding to the attributes
of their class, and delegate to the class object, which holds a method dictionary. Recall from
Sec. 2 that all objects are represented as a combination of a proxy and the actual object. Hence,
all information regarding a high-level object is captured by four machine-level objects: An object
representing the instance, an object representing the class and a proxy for each of these. Class
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class Person {
String name; Employer emp;
String toString() {return name;}
void main() {

Employer e=new Employer("Cosmo Spacely",
"Sprocketlane 23, Orbit city");

Person p=new Person("George Jetson", e);
with(Verbose) {

System.out.println(p.toString());
}

}
}

class Employer {
String name; String addr;
void toString() {return name;}

}

layer Verbose {
void Person.toString() {

return proceed() + "Employer:" + emp.toString();
}
void Employer.toString() {

return proceed() + "Address:" + addr.toString();
}

}

Listing 1: Example context-oriented program

objects can be reused, which is why p1 and p2, which are both instances of Person, partially
share the same delegation chain in Fig. 10. Apart from p1 and p2, there is also an Employer
instance e1. The Verbose layer is represented by the objects Verbose, Verbose_Person
and Verbose_Employer. The first implements the logic of layer activation and deactivation;
the other two contain the layer’s redefined toString methods. Because we are not dealing
with a concurrent program, only one actor node is present, which contains all objects (by design,
only objects that can receive messages need to be connected by a contains edge). The actor’s
mail queue holds a message main, which will be processed by removing it from the mail queue
and pushing it onto the process stack, looking up a corresponding method body in the delegation
chain of the receiver p1, and executing it.

Applying the graph rewrite rules relevant for this lookup process (cf. Sec. 3.2) will result in
the following definition of main being found in the Person class object:

...
Verbose.activate
PRINT(p2.toString)
Verbose.deactivate

Essentially, the with construct from Listing 1 was translated into two message sends to the
Verbose object: An activate message upon entrance of the scope, and deactivate upon
exit. A definition for these two messages is indeed provided in Verbose’s method dictionary,
where activate is defined as:

DEPLOY(Verbose_Person,Person)
DEPLOY(Verbose_Employer,Employer)
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Figure 11: Program state after activation

The instructions will cause the graph rewrite rule for deployment (cf. Sec. 3.4) to be applied,
resulting in the two objects being inserted in the delegation chains immediately after the object
provided as the second parameter. The definition of deactivate simply reverses this effect:

UNDEPLOY(Verbose_Person)
UNDEPLOY(Verbose_Employer)

Fig. 11 shows the situation where the layer has already been activated, the message toString
has been looked up in the delegation chain of p1 and a definition was found in Verbose_Person,
as can be inferred from the lookupResult edge between the message and Verbose_Person.
The latter, just like Verbose_Employer, has been inserted in the delegation chain of the ap-
propriate class object, as a consequence of the layer’s activation. After executing the toString
message, the Verbose layer is deactivated again and the delegation chains are restored to the
state in Fig. 10.

As the graph rewrite rules defining the operational semantics of delMDSOC have been spec-
ified using the AGG tool [2], the example outlined above can be simulated automatically. This
effectively visualizes the operational semantics of a context-oriented program in terms of ob-
jects, messages and delegation. From the above example we derive that classes are mapped onto
normal low-level objects, as are their instances, layers are represented by a set of objects for
each method they override and an object that implements the layer’s activation and deactivation,
respectively upon entrance and exit of the corresponding dynamic scope.

For language developers, being able to break down program execution in basic simulation
steps while visualizing object relations and program state is a useful tool in order to verify
whether a new language construct behaves according to desirable semantics.

For the language user, it may help in truly understanding the impact of a particular language
construct or in fact a whole programming paradigm.

4.2. The concurrent cflow pointcut construct
Consider the sample code in Listing 2, written in an imaginary aspect-oriented language

with support for actor-based concurrency. In this example, two actors are present, an Admin
and a Client, both of which can manipulate a database, independent from each other. At
any point however, the administrator may initiate a backup of the database. This can cause
a synchronization issue, in the sense that updating the database while the backup is created
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Figure 12: Initial object configuration

could render this backup file corrupt. A simple strategy to prevent this from happening is to
block any attempts to update the database during the backup operation. This is expressed by the
BackupLock aspect, which makes use of a special “concurrent cflow” construct, or ccflow,
in its pointcut. This construct is a concurrent variant of the aspect-oriented cflow pointcut
construct as present in AspectJ [3]. The intuition behind this aspect is that, for the duration of the
backup call in the Admin actor, all calls to the updatemethod in the Client actor should be
intercepted and result in an error message. The expressiveness of the existing cflow construct
is insufficient in this scenario, since it can only be applied within a single thread of control. Any
update call will be in another control flow than the one of backup, as they are executed by
different actors. In Sec. 4, we will show how delMDSOC can help in establishing the semantics
of this new ccflow construct.

actor Admin { actor Client {
DbConnection conn; DbConnection conn;
void backup() { List read(...) {

conn.backup(); return conn.query(...);
} }

} void update(...) {
conn.query(...);

}
}

aspect BackupLock {
around():ccflow(execution(Admin.backup))
&& execution(Client.update) {

print("ERROR: access denied");
}

}

Listing 2: Example usage of the ccflow construct

The initial object configuration of the example in its delMDSOC representation is shown
in Fig. 12. The figure shows three composite objects representing the database’s administrator,
admin, and two instances of client users, client_1 and client_2. The database itself and
any class objects5 are not shown here, as they do not play a significant role in this example.

The pointcut needed to capture all database updates across all clients during a backup opera-
tion is as follows, in an AspectJ-like syntax:

5Classes can be simulated in a prototype-based environment by letting objects representing instances delegate to an
object that represents the class.
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Figure 13: After deploying the backupLock objects

ccflow(execution(Admin.backup)) && execution(Client.update)

The ccflow pointcut construct is an extension of the regular cflow construct. It captures all
join points across all actors in the duration of the specified control flow, whereas regular cflow
can only capture the join points within a particular control flow.

To be able to capture the control flow of a backup operation, the object backupCapture
has already been deployed in the admin composite object. The example scenario will be
initiated once a backup message is sent to admin. This message will be intercepted by
backupCapture before it can reach adminObj, which implements the backup operation
itself. The implementation of the backup message in the backupCapture object can be
expressed as follows:

SYNC(client_1.deployLock) // Deploy backupLock at client_1
SYNC(client_2.deployLock) // Deploy backupLock at client_2
RESEND // Do the backup operation
client_2.undeployLock
client_1.undeployLock

The first two instructions will deploy a clone of the backupLock object in each client’s del-
egation chain. The backupLock objects will intercept any update message; its implemen-
tation of update contains our aspect’s advice; it simply prints an error message stating that
the database may currently not be updated. Also notice the use of the SYNC construct, first
mentioned in Sec. 3.4.2. It indicates that the enclosed inter-actor message send should be syn-
chronous. This ensures that our aspect is deployed before the backup operation is started. The
program’s current state after the two backupLock objects have been deployed is shown in
Fig. 13. At this point, the actual backup operation can safely proceed. This is done with the
RESEND statement; it resends the backup message starting at backupCapture’s delegate,
adminObj. Once finished, we have left the control flow of the backup operation, so we can
revert back to the original object configuration by undeploying the backupLock clones. All
users are now free to modify the database once again.

A few remarks should be made regarding this example: Firstly, the solution presented here
assumes that the backup operation does not contain any recursive calls. If a recursive backup
call were made, it would be intercepted by the backupCapture object again, which is not
desired. This can be solved by letting the backupCapture object undeploy itself before the
backup operation is started and then redeploying itself once the operation has finished. A second
remark about this solution is that our aspects, being the backupLock objects, are deployed
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per instance. This allows the backupLocks to keep their own separate state, which could be
used, for example, to maintain a separate log of attempted database updates per client. However,
this comes at the price of added complexity: The fact that clients can be added and removed at
runtime should also be taken into account. While not shown in this example, this is handled by
intercepting the instantiation of new clients, i.e., intercepting the new message that is sent to the
client class object. For every new client that is created, a copy of the backupLock is deployed
into the client’s delegation chain. Additionally, the backupCapture object is notified of ev-
ery client that is added, who will maintain a list of all available clients. Whenever the backup
operation finishes, backupCapture will use its list of clients to undeploy all backupLock
instances.

5. Related work

In the field of MDSOC languages, several different semantics are available, especially for
aspect-oriented languages. Typically, such semantics are expressed as a structural operational
semantics [14, 15, 16, 17]. However, there are a few instances in which graph rewriting is
used: In [18], a graph-based operational semantics is provided for an aspect-oriented extension
of Featherweight Java, where it is used for verification purposes. The idea of a machine model
as a target for a multitude of MDSOC paradigms is not present however. This is apparent, for
example, in the fact that an explicit proceed stack is modelled, in order to accommodate for the
corresponding high-level language construct.

There are also a few instances of intermediate languages taking a high-level approach: The
SUIF [19] infrastructure provides a high-level object-oriented intermediate representation and a
toolkit for mapping programming languages onto this intermediate representation. This infras-
tructure is used as a vehicle to experiment with compiler optimization techniques for languages
such as C and Fortran. While not the primary focus of our model, this suggests that delMDSOC
may be a useful platform to experiment with MDSOC-specific optimization techniques.

More recent work includes the C Intermediate Language (CIL) [20], which provides a high-
level representation of C programs. Similar to the delMDSOC model, CIL aims to rely on a
minimal amount of concepts, making it easier to reason about C programs. Rather than using
CIL for experimentation purposes, it is used for analyzing program properties such as memory
safety and for performing source-to-source program transformations.

6. Conclusion and Future Work

This paper has introduced the delMDSOC virtual machine model as a platform to experiment
with language constructs. The model’s graph-based semantics in combination with the AGG tool
allow the language developer to simulate programs making use of the model. This simulation is
well-suited for experimentation in the sense that a program’s entire state is visible; any aspect of
it can be freely modified whilst the simulation is paused; the program’s state can also be copied
and stored, such that simulation can always resume from that point. However, a scalability prob-
lem does arise due to the fact that the entire state is visible. Therefore, our current approach
is only applicable to small toy examples, which may not be sufficient for experimenting with
more complex language constructs. Improved graph rewriting tool support should help signif-
icantly though: There is a need for better ways of navigating large graphs, improved layouting
algorithms and better means to filter out the information that currently is irrelevant to the user.
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Figure 14: Constructing a new language with delMDSOC

The delMDSOC model itself is not yet considered to be in a finalized state. For example,
the fact that the concurrency model is currently actor-based, is not a dogma. In fact, graph
rewriting has been used before to model different approaches to concurrency, including process
algebra [21] and Petri nets [22].

Regarding the experimentation platform itself, there also are several areas of future work that
can be explored: Currently, the translation of programs into an AGG representation is a manual
process. Ideally, this would be an automated process for each language. One approach would
be to write a parser that uses the AGG API as a backend in order to generate an appropriate
delMDSOC input graph. Another approach would be to have the parser only generate an AST in
AGG format, and apply graph rewriting within AGG once more in order to transform the AST
into an appropriate delMDSOC input graph. Fig. 14 illustrates the latter approach.

Another area of future work deals with the use of delMDSOC as a common framework in
which MDSOC languages can be compared and integrated. The model may also be used for
verification purposes, e.g., one can investigate the effects of the ordering of objects within a
delegation chain or the condition under which it is safe to deploy or undeploy objects in remote
actors.
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Abstract

Software visual analytics (SVA) tools combine static program analysis and repository mining with information visualization
to support program comprehension. However, building efficient and effective SVA tools is highly challenging, as it involves
software development in program analysis, graphics, information visualization, and interaction. We present a SVA toolset for
software maintenance, and detail two of its components which target software structure, metrics and code duplication.We
illustrate the toolkit’s application with several use cases, discuss the design evolution of our toolset from a set of research
prototypes to an integrated, scalable, and easy-to-use product, and argue how these can serve as guidelines for the development
of future software visual analytics solutions.

Keywords: Software visualization, static analysis, visual tool design

1. Introduction

Software maintenance covers 80% of the cost of modern software systems, of which over 40% represent software under-
standing [1, 2]. Although many visual tools for software understanding exist, most know very limited acceptance in the IT
industry. Key reasons for this are limited scalability of visualizations and/or size of datasets, long learning curves, and poor
integration with established software analysis or development toolchains [3, 4, 5].

Visual analytics(VA) integrates graphics, visualization, interaction, data analysis, and data mining to support reasoning and
sensemaking for complex problem solving in engineering, finances, security, and geosciences [6, 7]. These fields share many
similarities with software maintenance in terms ofdata(large databases, highly structured text, and graphs),tasks(sensemaking
by hypothesis creation, refinement, and validation), andtools (combined analysis and visualization). VA explicitly addresses
tool scalability and integration, as opposed to pure data mining (whose main focus is scalability) or information visualization
(InfoVis, mainly focusing on presentation). As such, VA is apromising model for building effective and efficient software visual
analysis (SVA) tools. However, building VA solutions for software comprehension is particularly challenging, as developers
have to master technologies as varied as static analysis, data mining, graphics, information visualization, and user interaction
design.

In this paper, we present our experience in building SVA tools for software maintenance. We outline the evolution path
from a set of research prototypes to a commercial toolset which is used by many end-users in the IT industry. Our toolset
supports static analysis, quality metrics computation, clone detection, and research-grade InfoVis techniques suchas table
lenses, bundled graph layouts, cushion treemaps, and densepixel charts. The toolset contains several end-user applications, of
which we focus here on two: visual analysis of program structure and code duplication. These applications share elements at
both design and implementation level, and can be used separately or combined to support tasks such as detecting correlations
of structure, dependencies, and quality metrics; assessing system modularity; and planning refactoring.
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The contributions of this paper are as follows:

• present the design decisions and evolution path of a SVA toolset for program comprehension from research prototypes
into an actual product;

• present the lessons learned in developing our toolset in both research and industrial contexts, with a focus on efficiency,
effectiveness, and acceptance;

• present supporting evidence for our design decisions basedon actual usage in practice.

Section 2 introduces software visual analytics. Section 3 details the general architecture of our toolset. Section 4 details the
toolset’s components for data mining and visualization of software structure, metrics, and code duplicates. Section 5illustrates
the usage of our toolset in a real-world industrial softwareassessment case. Section 6 discusses the challenges of developing
efficient, effective, and accepted SVA tools from our toolset’s experience. Finally, section 7 concludes the paper.

2. Related Work

Software visual analytics can be roughly divided into data mining and visualization, as follows.
Data miningcovers the extraction of raw data from source code, binaries, and source control management (SCM) systems

such as CVS, Subversion, Git, CM/Synergy, or ClearCase. Rawdata delivered by static syntax and semantic analysis is refined
into structures such as call graphs, control flow graphs, program slices, code duplicates (clones), software quality metrics such
as complexity, cohesion, and coupling, and change patterns. Static analyzers can be divided intolightweight ones, which
use a subset of the target language grammar and semantics andtypically trade fact completeness and accuracy for speed and
memory; andheavyweightones, which do full syntactic and semantic analysis at higher cost. Well-known static analyzers
include LLVM, Cppx, Columbus, Eclipse CDT, and Elsa (for C/C++), Recoder (for Java), and ASF+SDF (a meta-framework
usable with different language-specific front-ends) [8]. Metric tools include CodeCrawler [9], Understand, and Visual Studio
Test Suite (VSTS). An overview of static analysis tools witha focus on C/C++ is given in [10]. Practical insights in software
evolution and software quality metrics are given in [11, 12,13].

Software visualization(SoftVis) uses information visualization (InfoVis) techniques to create interactive displays of soft-
ware structure, behavior, and evolution. Recent trends in SoftVis include scalable InfoVis techniques such as treemaps, icicle
plots, bundled graph layouts, table lenses, parallel coordinates, multidimensional scaling, and dense pixel charts to increase the
amount of data shown to the user at a single time. An excellentoverview of software visualization is given in [14]. Well-known
software visualization systems include Rigi, VCG, aiSee, and sv3D (for structure and metrics); and CodeCity and SeeSoft (for
software evolution).

Although tens of new software analysis and visualization tools emerge every year from research, as shown by the proceed-
ings of e.g. ACM SOFTVIS, IEEE VISSOFT, MSR, ICPC, WCRE, and CSMR, building usefulandusedtools is difficult.
Reasons cited for this include the small return-on-investment and recognition of tools in academia (as opposed to papers), high
maintenance cost, and high ratio of infrastructure-to-novelty (truly usable tools need fine-tuned implementations, help modules,
and platform-independence, while research prototypes canfocus on novelty) [5, 15]. Combining analysis and visualization in
the same tool makes development only more complex, so good design patterns and guidelines are essential.

Given all these, how to bridge the gap between SVA tool prototypes and actual efficient and effective products? And how
to combine analysis and visualization software in maintainable tool designs?

3. Toolset Architecture

In the past decade, we have built over 20 SVA tools for software requirements, architecture, behavior, source code, structure,
dependencies, and evolution. We used these tools in academic classes, research, and industry, in groups from a few to tens of
users. Latest versions of our tools have formed the basis of SolidSource, a company specialized in software visual analytics [16].
Table 1 outlines our most important tools (for a full list andthe actual tools, see [17]). We next present the latest version of our
toolset, discuss the design decisions and lessons learned during the several years of its evolution, and illustrate itsworking with
two of its most recent tools.
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Tool Targeted data types Visual techniques Analysis techniques
SoftVision software architecture node-link layouts none (visualization tool only)
(2002) [18] (2D and 3D)
CSV source code syntax pixel text, cushions C++ static analysis
(2004) [19] and metrics (gcc based parser)
CVSscan [20] file-level evolution dense pixel charts CVS data mining
(2005) annotated text (authors and line-level changes)
CVSgrab project-level evolution dense pixel charts, CVS/SVN data mining
(2006) [21] cushions (project-level changes)
MetricView UML diagrams and node-link layouts (2D), C++ lightweight static analysis
(2006) [22] quality metrics table lenses (class diagram extraction)
MemoView software dynamic logs table lenses, timelines, C runtime instrumentation
(2007) [23] (memory allocations) cushions (libc malloc/free interception)
SolidBA build dependencies table lenses, C/C++ build dependency mining
(2007) [24] and build cost metrics node-link layouts (2D) and automated refactoring
SolidFX reverse engineering pixel text, table lenses, C/C++ heavyweight error-tolerant
(2008) [25] annotated text static static analysis
SolidSTA file and project-level dense pixel charts, CVS/SVN/Git data mining
(2008) [16] evolution cushions, timelines and source code metrics
SolidSX structure, associations, HEB layouts, treemaps, .NET, C++, Java
(2009) [16] metrics table lenses, cushions lightweight static analysis
SolidSDD code duplicates, HEB layouts, treemaps, C, C++, Java, C# parameterizable
(2010) [16] code structure, metrics table lenses, pixel text syntax-aware clone detection

Table 1: Software visual analytics tools - evolution history. Tools discussed in this paper are in bold (Sec. 4)

Our toolset uses a simple dataflow architecture (Fig. 1). Rawinput data comes in two forms: non-versioned source code
or binaries, and versioned files stored software repositories. From raw data, we extract severalfacts: syntactic and semantic
structure, static dependency graphs, and source code duplication. Relational data is stored into a SQLite database whose entries
point to flat text files (for actual source code content) and binary files (for complete syntax trees, see 4.1.1). Fact extraction
is implemented by specific tools: parsers and semantic analyzers for source code, binary analyzers for binary code, and clone
detectors for code duplication (see Sec. 4).

Besides facts, our database stores two other key elements: selections and metrics.Selectionsare sets of facts (or other
selections) and support the iterative data refinement in theso-called visual sensemaking cycle of VA [6, 7]. They are created
either by tools,e.g. extraction of class hierarchies or call graphs from annotated syntax graphs (ASGs), or by users during
interactive data analysis. Selections have unique names bywhich they are referred by their clients (tools) and also persistently
saved.Metricsare numerical, ordinal, or categorical attributes which can be associated to facts or selections, and are computed
either by tools (e.g. complexity, fan-in, fan-out, cohesion, and coupling) or added as annotations by users. Each selection is
stored as a separate SQL table, whose rows are its facts, and columns are the fact attributes (unique ID, type, location incode
or binary, and metrics). This model is simple and scales wellto fact databases of hundreds of thousands of facts with tens
of metrics. Trees and graphs can also be stored as SQL tables in terms of adjacency matrices. Simple queries and filters can
directly be implemented in SQL. More complex queries have the same interface as the other components: they read one or
more selections and create an output selection.

Selections are the glue that allows composing multiple analysis and visualization tools. All analysis and visualization
components in our toolkit are weakly typed: They all read selections, and optionally create selections (see Fig. 1). In this way,
existing or new tools can be flexibly composed, either statically or at run-time, with virtually no configuration costs. To ensure
consistency, each component decides internally whether (and how) it can execute its function on a given input selection.

Visualizationsdisplay selections and allow users to interactively navigate, pick elements, and customize the visual aspect.
Since they only receive selections as inputs, they ’pull’ their required data on demand as needed,e.g. a source code viewer
opens the files referred by its input selection to get the textto render. Hence, data can be efficiently handled by reference
(selections referred to by name), but tools can also decide to cache data internally to minimize traffic with the fact database, if
so desired. However, this decision is completely transparent at the toolkit level.

After lengthy experimentation with many types of visualizations, we limited ourselves to a small subset hereof, as follows.
Table lensesshow large tables by zooming out the table layout and displaying cells as pixel bars scaled and colored by data
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Figure 1: Toolset architecture (see Section 3)

values [26]. Subpixel sampling techniques enhance this idea allowing to visualize tables up to hundreds of thousands of
rows on a single screen [27].Hierarchically bundled edges(HEBs) compactly show compound (structure and association)
software graphs,e.g. contaninment and call relations, by bundling association edges with structure data [28].Squarified
cushion treemapsshow software structure and metrics scalably for up to tens of thousands of elements on a single screen [29].

A single treemap, HEB, or table lens can show the correlationof just a few metrics and/or relations. To augment this, we
use the well-knownmultiple correlated viewsInfoVis concept. Each view can have its own user-specified input selection and
visual look-and-feel. Mouse-based picking is synchronized between all views: selecting items in one view updates a ’user
selection’ which is monitored by other views, using an Observer pattern. Besides the above, our toolset also provides classical
visualizations: metric-annotated source code text, tree browsers, customizable color maps, legends, annotations, timelines,
details-on-demand at the mouse cursor, and text and metric-based search facilities.

4. Toolset Components

Our toolset consists of several end-user applications which share analysis and visualization components. We next describe
two of these applications: the SolidSX structure analyzer (Sec. 4.1) and the SolidSDD duplication detector (Sec. 4.1).The fully
operational tools, including Windows-based installers, manuals, videos, and sample datasets are freely available for researchers
from [16].

4.1. SolidSX: Structural Analysis

The SolidSX (Software eXplorer) supports the task of analyzing software structure, dependencies, and metrics. Several
built-in parsers are provided: Recoder for Java source and bytecode files [30], Reflector for .NET/C# assemblies [31], and
Microsoft’s free parser for Visual C++.bscsymbol files. Built-in filters refine parsed data into a compound attributed graph
consisting of one or several hierarchies,e/g. folder-file-class-method containment and namespace-class-method containment;
dependencies,e.g.calls, symbol usage, inheritance, and package or header inclusion; and basic metrics,e.g.code and comment
size, cyclomatic complexity, fan-in, fan-out, and symbol source code location.
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4.1.1. Static Analysis: Ease of Use
Setting up static code analysis is notoriously complex, error-prone, and time consuming. For .NET/VB/C#, Java, and

Visual C++, we succeeded incompletelyautomating this process. The user is only required to input aroot directory for code
and, for Java, optional class paths. C/C++ static analysis beyond Visual Studio proves highly challenging. SolidSX canread
static information created by our separate SolidFX C/C++ static analyzer [25]. Although SolidFX is scalable to millions of
lines of code, covers several dialects beyond Visual C++ (gcc, C89/99, ANSI C++), robustly handles incorrect and incomplete
code, integrates a preprocessor, provides a Visual C++ project file parser, and uses so-called compiler wrapping to emulate the
gcc and Visual C++ compilers [32], users still typically need tomanually supply many per-project defines and include paths.
Moreover, compiler wrapping requires the availability of aworking build system on the target machine. The same is true for
other heavyweight parsers such as Columbus [32] or Clang [33].

A second design choice regards performance. For Java, Recoder is close to ideal, as it delivers heavyweight information
with 100 KLOC/second parse speed on a typical PC computer. Strictly speaking, visual structure-and-metric analysis only
needs lightweight analysis (which is fast) as the information graininess typically does not go below function level. For .NET,
the Reflector lightweight analyzer is fast, robust, and simple to use. The same holds for Microsoft’s.bscsymbol file parser.

For C/C++ beyond Visual Studio, a lightweight, robust, easy-to-use analyzer is still not available. After experimenting with
many such tools,e.g.CPPX [34], gccxml, and MC++, we found that these often deliver massively incorrect information, mainly
due to simplified preprocessing and name lookup implementations. The built-in C/C++ parsers of Eclipse CDT, KDevelop,
QtCreator, and Cscope [35] are somehow better in correctness, and can also work incrementally upon code changes. However,
these parsers depend in complex ways on their host IDEs and donot have well-documented APIs. Extended discussions with
Roberto Raggi, the creator of the KDevelop and QtCreator parsers, confirmed this difficulty.

4.1.2. Structure Visualization
SolidSX offers four views (Fig. 2 top): classical tree browsers, table lenses of node and edge metrics, treemaps, and a

HEB layout for compound graphs [28]. All visualizations have carefully designedpresetswhich allow one to use them with
no additional customization. They all depict selections from the fact database created by the code analysis step. Userscan
also create selections in any view by either direct interaction or custom queries. These two mechanisms realize the linked view
concept, which enables users to easily create complex analyses of correlations of structure, dependencies, and metrics along
different viewpoints. Figure 2 top) illustrates this on a C#system of around 45000 LOC (provided with the tool distribution).
The HEB view shows function calls over system structure: caller edge ends are blue, callee edge ends are gray. Node colors
show McCabe’s code complexity metric on a green-to-red colormap, thereby enabling complexity correlation with the system
structure. We see that the most complex functions (warm colors) are in the module and classes located top-left in the HEB
layout. The table lens view shows several function-level code metrics, and is sorted on decreasing complexity. This allows one
to see how different metrics correlate with each other. Alternatively, one can selecte.g. the most complex or largest functions
and see them highlighted in the other views. The treemap viewshows a flattened system hierarchy (modules and functions
only), with functions ordered top-down and left-to-right in their parent modules on code size, and colored on complexity. The
visible ’hot spot’ indicates that complexity correlates well with size. Constructing theentire scenario, including the static
analysis, takes about 2 minutes and under 20 mouse clicks.

4.1.3. Toolchain Integration
Similarly to Koschke [5], we discovered thatintegration in accepted toolchains is a key acceptance factor. To ease this

process, we added alistenermechanism to SolidSX. The tool listens for command events sent asynchronously on a specified
TCP/IP port,e.g. load a dataset, zoom on some data subset, change view parameters, and also sends user interaction command
events to a second port (e.g.user has selected some data). This allows integrating SolidSX in any third-party tool or toolchain
by building thin wrappers which read, write, and process desired events. No access to the tool’s source code is required.
For example, we integrated SolidSX in the Visual Studio IDE by writing a thin plug-in of around 200 LOC which translates
between the IDE and SolidSX events (Fig. 2 bottom). Selecting and browsing code in the two tools is now in sync. The open
SQLite database format further simplifies integration at data level. Integrating SolidSX in Eclipse, KDevelop, and QtCreator is
under way and is relatively easy, once we finalize the data importers from these IDEs’ proprietary fact databases into ourSQL
database.
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Figure 2: Top: SolidSX views (tree browser, treemap, table lens, radial HEB); Bottom: Visual Studio integration of SolidSX using a socket-baset mechanism
(see Section 4.1.3) 6
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4.2. SolidSDD: Clone Detection

Code duplication detection, or clone detection, is an important step in maintenance tasks such as refactoring, redocumen-
tation, architecture extraction, and test case management. Although hundreds of papers on this topic exist, only few clone
detectiontoolsoffer the clone information in effective ways for assistingrefactoring activities.

We addressed the above by developing SolidSDD (Software Duplication Detector). SolidSDD implements an extended
version of the CCfinder tool [36] which combines lightweightsyntax analysis and token-based detection. The detection is
user-configurable by clone length (in statements), identifier renaming (allowed or not), size of gaps (inserted or deleted code
fragments in a clone), and whitespace and comment filtering.However, the main novelty in SolidSDD is in how clones are
visualized.

Given a source code tree (C, C++, Java, or C#), SolidSDD constructs a SQL database containing a duplication graph, in
which nodes are cloned code fragments (in the same or different files) and edges indicate clone relations. Hierarchy information
is added to this graph either automatically (from the code directory structure) or from a user-supplied dataset (e.g. from static
analysis). The result is a compound graph. Nodes and edges can have metrics,e.g. percentage of cloned code, number of
distinct clones, and whether a clone includes identifier renaming or not. Metrics are automatically aggregated bottom-up using
the hierarchy information.

Figure 3 shows SolidSDD in use to find code clones in the well-known Visualization Toolkit (VTK) library [37]. On VTK
version 5.4 (2420 C++ files, 668 C files, and 2660 headers, 2.1 MLOC in total), SolidSDD found 946 clones in 280 seconds on
a 3 GHz PC with 4 GB RAM. For replication ease, we simply used the default clone detection settings of the tool. Figure 3 a
shows the code clones atop of the system structure with SolidSX. Hierarchy shows the VTK directory structure, with files as
leaves. Edges show aggregated clone relations between files: file a is connected to fileb whena andb share at least one clone.
Node colors show the total percentage of cloned code in the respective subsystem with a green-to-red (0..100%) colormap.
Edge colors show percentage of cloned code in the clone relations aggregated in an edge. Figure 3 a already shows that VTK
has quite many intra-system clones (short edges that start and end atop of the same rectangle) but also several inter-system
clones (longer edges that connect rectangles located in different parts of the radial plot). Inter-system clones are arguably less
desirable.

Three subsystems have high clone percentages:examples(S1), bin (S2) andFiltering (S3). Browsing the actual files, we
saw that almost all clones inexamplesandbin are in sample code files and test drivers which contain large amounts of copy-
and-paste. Clones inFiltering, a core subsystem of VTK, are arguably more worth removing. In Fig. 3 b, we use SolidSX’s
zoom and filter functions to focus on this subsystem and select one of its high-clone-percentage filesf (marked in black) which
has over 50% cloned code. When we selectf , only its clone relations are shown. We call the set of filesfc with which f shares
clones theclone partnersof f . We see that all clone partners off are located in the sameFiltering subsystem, except one (g)
which is in theRenderingsubsystem.

Figure 3 c shows additional functions offered by SolidSDD. The top light-blue table shows all system files with several
metrics: percentage of cloned code, number of clones, and presence of identifier renaming in clones. SolidSDD’s views are
linked with SolidSX’s views via the socket mechanism outlined in Sec. 4.1.3, so the selected filef in Fig. 3 c is also highlighted
in this table in red. The table below shows the clone partner files fc of f . In this table, we can identify the fileg which shares
clones withf but is in another subsystem. We also see here thatg contains about 50% of code cloned fromf . We selectg and
use the two text views (at the bottom of Fig. 3 b) to examine in detail all clones betweenf andg. The left view shows the first
selected file (f ) and the right view the selected clone partner (g). Scrolling of these views is automatically synchronized so one
can easily follow corresponding code fragments. Text is color-coded as follows: non-cloned code (white), code fromf which
is cloned ing (light blue), renamed identifier pairs (green in left view, yellow in right view), and code fromf which is cloned
but whose clones are located in some other file thang (light brown). The last color allows us to navigate fromf to other clone
partners: Clicking on the light brown code in the left text view (f ) in Fig. 3 c replaces the fileg in the right view by that clone
partner off (let us call ith) with which f shares the brown code, and also selectsh in the clone partner list view. Fig. 3 d shows
this perspective. We now notice that the code inf which is part of the clonef − g (light blue in Fig. 3 c) isincludedin the
clone f − h (light blue Fig. 3 c).

The SolidSDD-SolidSX combination offers many other perspectives and analyses, as detailed by its manual. Fig. 3 e shows
a final example. We use SolidSX’s table lens to sort all files bypercentage of cloned code and zoom out to see a distribution
of this metric (sixth column from right). We see that around 30% of all files contain some amount of cloning. Interactively
selecting the top 20% files in the table lens highlights all files having>80% cloned code in the radial system view in black - we

7

- 152 -



a) Overview b) Select file f

c) Examine clones f-g

e) Highly-cloned files

node

colormap

edge

colormap

S3

S1 S2

clone partner files f
c

file f

clone partners f
c

file g

file g

file f file g

clone clone

file f file h

file h

file f

files having >80%

cloned code

Color legend for views a-d

non-cloned code

clone shown in both windows
clone partner not shown

identifier renamed 

(shown as      in right window)

abc cloned code under mouse

selection inspector

table lens controls

d) Examine clones f-h

Figure 3: SolidSDD clone detector visual analysis of the VTKcode base (see Sec. 4.2)
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see that every single subsystem in VTK contains such files. Details on the selected files are shown in the selection inspector at
the right. This type of visualization supports refactoringplanning by giving insight on where recoding activities would need to
take place in order toe.g.remove the largest clones.

5. Toolset Assessment in Practice

We have used our SVA toolset in many applications, both in research [19, 38] and the industry [24, 39, 25]. We next
briefly describe one application which outlines the added value of strong interplay between the two tools discussed so far.
To further outline the extensibility of our toolset, this application briefly introduces one additional tool: SolidSTA, a visual
analytics application for software evolution data mining.SolidSTA uses the same dataflow architecture (Sec. 3) and followed
the same development path from a research prototype [21] to ascalable, easy-to-use tool as SolidSX and SolidSDD. A detailed
description of SolidSTA is provided in [21]. The tool is freely available for researchers from [16].

A major automotive company developed an embedded software stack of 3.5 million lines of C code in 15 releases over 6
years with three developer teams in Western Europe, EasternEurope, and Asia. Towards the end, it was seen that the project
could not be finished on schedule and that new features were hard to introduce. The management was not sure what went
wrong. The main questions were: was the failure caused by badarchitecture, coding, or management; and how to follow up
- start from scratch or redesign the existing code. An external consultant team performed a post-mortem analysis using our
toolset (SolidSDD, SolidSTA, SolidSX). The team had onlyone weekto deliver its findings and only the code repository as
information source. For full details, see [40].

The approach involved the classical VA steps: data acquisition, hypothesis creation, refinement, (in)validation, andresult
aggregation and presentation (Fig. 4). First, we mined change requests (CRs), commit authors, static quality metrics,and call
and dependency graphs from the CM/Synergy repository into our toolset’s SQL fact database using SolidSTA (1). Next, we
examined the distribution of CRs over project structure. Several folders with many open CRs emerged (red treemap cells in
Fig. 4 (2)). These correlate quite well with the team structure: the ’red’ team owns most CRs (3). To further see if this is a
problem, we looked at the CR distribution over files over time. In Fig. 4 (4), files are shown as gray lines vertically stacked
on age (oldest at bottom), and CRs are red dots (the same layout is usede.g. in [21]). The gray area’s shape shows almost no
project size increase in the second project half, but many red dots overall files in this phase. These are CRs involving old files
that were never closed. When seeing these images, the managers instantly recalled that the ’red’ team (located in Asia) had
lasting communication problems with the European teams, and acknowledged that it was a mistake to assign so many CRs to
this team.

We next analyzed the evolution of various quality metrics: fan-in, fan-out, number of functions and function calls, and
average and total McCabe complexity. Static analysis is done using our heavyweight analyzer SolidFX [25]. Since this isa
one-time analysis rather than an incremental change-and-reanalyze path, speed and configuration cost are not essential, so most
of the analyzers listed in Sec. 4.1.1 could be used equally well. The graphs in (5) show that these metrics have a slow or no
increase in the second project half. Hence, the missed deadlines were not caused by code size or complexity explosion. Yet,
the average complexity per function is high, which implies difficult testing. This was further confirmed by the project leader.

Finally, to identify possible refactoring problems, we analyzed the project structure using SolidSX. Fig. 4 (6) shows disal-
lowed dependencies,i.e. modules that interact bypassing interfaces. Fig. 4 (7) shows modules related by mutual calls, which
violate the product’s desired strict architectural layering. These two views suggest difficult step-by-step refactoring and also
difficult unit testing. Again, these findings were confirmed by the project leaders.

6. Discussion

Based on our SVA tool building experience, we next try to answer several questions of interest for our audience1. To clarify
the standpoints taken, we first introduce the concept of a tool value model, along the lines of the well-known lean development
cost model [41]: We state that a SVA tool is useful if it delivers highvaluewith minimalwasteto its stakeholder user. Different
users (or stakeholders) will thus assess the same tool differently as they have different value and waste models [42]. Hence, rhe
answers to our questions of interest are strongly dependenton the stakeholder perspective chosen, as follows.

1as taken from the WASDeTT 2010 call for papers (www.info.fundp.ac.be/wasdett2010)
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Figure 4: Data collection, hypothesis forming, and result interpretation for product and process assessment (Sec. 5). Arrows and numbers indicate the order of
the performed steps

6.1. Should academic tools be of commercial quality?

We see two main situations here. If tools are used by researchers purely to test new algorithms or ideas,e.g. a new
visualization layout atop of the HEB implemented in SolidSX[38], then large investments in tool infrastructure (Sec. 2) is seen
as waste. If tools are needed in case studies with external users or, even stronger, in real-life projects, then their usability is key
to acceptance and success [5, 43, 39]. For example, valuableinsight obtained from user-testing our toolset on large software
projects with more than 70 students, 15 researchers, and 30 IT developers could never have been reached if our tools had not
been mature enough for users to accept working with them in the first place. Hence, we believe that academic tools intendedfor
other users than their immediate researcher creators should not compromise oncritical usability (e.g. interactivity, scalability,
robustness). However, effort required foradoptability(e.g.manuals, installers, how-to’s, support of many input/output formats,
rich GUIs), which is critical only in later deployment phases, can be limited.

6.2. How to integrate and combine independently developed tools?

This is an extremely challenging question as both the integration degree required and the tool heterogeneity vary widely in
practice. For SVA tools, we have noticed the following practical patterns to provide good returns on investment, in increasing
order of difficulty:
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• dataflow: Tools communicate by reading and writing several data files in standardized formats,e.g. SQL for tables,
GXL and XML (for attributed graphs) [44], and FAMIX and XMI (for design and architecture models) [45]. This easily
allows creating dataflow-like tool pipelines, like the excellent Cpp2Xmi UML diagram extractor involving Columbus
and Graphviz [46].

• shared databases:Tools communicate by reading and writing a single shared fact database which stores code, metrics,
and relations, typically as a combination of text files (for code), XML (for lightweight structured data), and proprietary
binary formats (for large datasets such as ASGs or executiontraces). This is essentially the model used by Eclipse’s
CDT, Visual Studio’s Intellisense, and SolidSX. As opposedto dataflows, shared databases support the much finer-
grained data access required by interactive visualizationtoolse.g. for real-time browsing of dependencies (SolidSX) or
symbol queries (Eclipse, Visual Studio, SolidFX). However, adding third-party tools to such a database requires writing
potentially complex data converters.

• common API:Tools communicate by using a centralized APIe.g. for accessing shared databases but also executing
operations on-demand. This allows functionality reuse andcustomization at a finer-grained level of ’components’ rather
than monolithic tools. Although a common API does not necessarily enforce a shared tool implementation (code base),
the former typically implies the latter in practice. API examples for SVA tools are the Eclipse, Visual Studio, and
CodeCrawler [9] SDKs and, at a lower level, the Prefuse and Mondrian toolkits for constructing InfoVis applications [47,
48]. Our own toolset also offers a common C++ API for the tablelens, treemap, and HEB visualizations which allowed
us to easily embed these in a wide range of applications, seee.g. [27, 39, 40]. Common APIs are more flexible than
shared databases, as they allow controlanddata flow composition. However, they are much harder to use inpractice, as
they impose coding restrictions and high learning costs (for tool builders) and costly maintenance (for API providers).

In practice, most SVA toolsets use the dataflow or shared database model which nicely balances costs with benefits. This
is the case of our toolset (see Sec. 3) and also the conceptually similar SQuAVisiT toolset [49]. The main difference between
SQuAVisiT and our toolset is the integration level: in our case, analysis and visualization are tighter integrated,e.g.the built-in
static analysis in SolidSX, clone detection in SolidSDD, SolidSX integration in Visual Studio, and clone visualization (SolidSX
used by SolidSDD), realized by a single fact database, the event-based mechanism described in Sec. 4.1.3, and the sharedC++
visualization components API.

6.3. What are the lessons learned and pitfalls in building tools?

SVA tool building is mainly a design activity. Probably the most important element for success is striving to create visual
and interaction models which optimally fit the ’mental map’ of the targeted users. Within space limitations, we outline the
following points:

• 2D vs 3D:software engineers are used to 2D visualizations, so they will accept these much easier than 3D ones [50]. We
found no single case when a 3D visualization was better accepted than a 2D one in our work. As such, we abandoned
earlier work in 3D visualizations [18] and focused on 2D visualizations only.

• interaction: too much interaction and user interface options confuse even the most patient users. A good solution is to
offer problem-specific minimalist interaction paths or wizards, and hide the complex options under an ’advanced’ tab.
This design is visible in the user interfaces of both SolidSXand SolidSDD.

• scalable integrationof analysis with visualization is absolutely crucial for the acceptance of the latter [5, 42]. However,
providing this is very costly. We estimate that over 50% of the entire code base of our toolset (over 700 KLOC) is
dedicated to efficient data representation for smooth integration. For datasets up to a few hundred thousand items, a
SQLite fact database performs very well (Sec. 3). However, heavyweight parsing, such as performed by SolidFX, creates
much larger datasets (full ASGs of tens of millions of elements, roughly 10..15 elements per line of code). To efficiently
store and query this, we opted to store such data in a custom binary format which minimizes space and maximizes search
speed [25]. The same is true for plain source code, which is best stored as separate text files. The SQL database is still
used as a ’master’ component which points to such special storage schemes for particular datasets. Finally, we use XML
mainly as a data interchange format for lightweight datasets, e.g. SolidSX accepts all its input either as SQL or XML.
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However, our experience is that XML does not lend itself wellfor storing arbitrary relational data for large datasets and
efficiently implementing complex queries.

6.4. What are effective techniques to improve the quality ofacademic tools?

For VA tools, quality strongly depends on usability. Research tools aimed at quickly testing new visual algorithms should
maximize API simplicity; here, Prefuse and Mondrian are good examples. Tools aimed at real-world software engineering
problems should maximize end-user effectiveness. For SVA tools, this is further reflected into uncluttered, scalable,and
responsive displays, and tight integration for short analysis-visualization sensemaking loops. Recent InfoVis advances have
significantly improved the first points. However, integration remains hard, especially given that the academic ’value model’
give tool-related studies relatively lesser credit than technical papers.

6.5. Are there any useful tool building patterns for software engineering tools?

For SVA tools, we see the following elements as present in most such tools we are aware of:

• architecture:the dataflow and shared database models are probably the widest used composition patterns.

• visualizations:2D visualizations using dense pixel layouts like the table lens, HEBs, treemaps, and annotated text offer
high scalability and ease of use, so are suitable for large datasets created from static analysis; node-link layouts generate
too much clutter for graphs over about 1000 nodes and/or edges, but are better when position and shape encode specific
meaning, like for (UML) diagrams (see further 6.6). Shaded cushions, originally promoted by treemaps [29], are a simple
to implement, fast, visually scalable, and effective instrument of conveying structure atop of complex layouts.

• integration: tightly integrating independently developed analysis andvisualization tools is still an open challenge. Al-
though the socket-based mechanism outlined in Sec. 4.1.3 has its limitations,e.g. it cannot communicate shared state, it
strikes a good balance between simplicity and keeping the software stacks of the several tools to integrate independent.

• heavyweight vs lightweight analysis:Lightweight static analyzers are considerably simpler to implement, deploy, and
use, deliver faster performance, and may produce sufficientinformation for visualization (see Sec. 4.1.1). However, once
visualization requirements increase, as it typically happens with a successful tool, so do the requirements on its input
analyzer. Extending static analyzers is, however, not a simple process, and typically requires switching to a completely
new analyzer tool. As such, keeping the fact database model simple and weakly typed offers more flexibility in switching
analysis (and visualization) tool combinations.

6.6. How to compare or benchmark such tools?

Benchmarking SVA tools can be done by lab, class, or field userstudies, or using the tool in actual IT projects, either by
comparing several tools against each other [40] or by comparing a tool with a predefined set of desirable requirements [15, 43].
Measuringtechnicalaspectse.g. speed, visual scalability, or analysis accuracy can be doneusing de facto standard datasets
in the SoftVis community,e.g. the Mozilla Firefox, Azureus, or JHotDraw source code bases, which have been used in the
ACM SoftVis, IEEE Vissoft, and IEEE MSR conference ’challenges’. Measuring a SVA tool’s end-to-endusefulnessis harder
as it depends on task and context specific details; ’insight’and ’comprehension’ are hard to quantify. Still, side-by-side tool
comparison can be used. For example, Figure 5 shows four SVA tools (Ispace, CodePro Analytix, SonarJ, and SolidSX)
whose effectiveness in supporting an industrial corrective maintenance task we compared [51, 42]. This, and similar, studies
confirmed our supposition that node-link layouts are effective in program comprehension only for relatively small graphs (up
to a few hundred nodes), which is the main reason why our current toolset focuses on the more scalable HEB layout. Other
useful instruments in gathering qualitative feedback are ’piggybacking’ the tool atop of an accepted toolchain (e.g. Eclipse or
Visual Studio) and using established community blogs for getting user sentiment and success (or failure) stories. Fromour
experience, we noticed that this technique works for both academic and commercial tools.
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b) Ispacea) CodePro Analytix c) SonarJ d) SolidSX

Figure 5: Four structure-and-dependency SVA tools comparedfor solving a corrective maintenance problem

6.7. What particular languages and paradigms are suited to build tools?

For SVA tools, our experience strongly converges to a minimal set of technologies, as follows:

• graphics: OpenGL, possibly augmented with simple pixel shader extensions, is by far the best solution in terms of porta-
bility, ease of coding, deployment, and performance; the same experience is shared by other researchers,e.g.Holten [28].

• core: scalability to millions of data items, relations, and attributes can only be achieved in programming languages like
C, C++, or Delphi. Over 80% of all our analysis and application code is C++; Although Java is a good candidate, its
performance and memory footprint are, from our experience,still not on par with compiled languages.

• scripting: Flexible configuration can be achieved in lightweight interpreted languages. The best candidate we found in
terms of robustness, speed, portability, and ease of use wasPython. Tcl/Tk (which we used earlier in [18] or Smalltalk
(used by [9]) are also possible, but in our view require more effort for learning, deploying, and optimization.

7. Conclusions

In this paper, we have presented our experience in developing software visual analysis (SVA) tools, starting from research
prototypes and ending with a commercial toolset. During this evolution and iterative design process, our toolset has converged
from a wide variety of techniques to a relatively small set ofproven concepts: the usage of a single shared weakly-typed fact
database, implemented in SQL, which allows tool composition by means of shared fact selections; the usage of a small number
of scalable InfoVis techniques such as table lenses, hierarchically bundled edge layouts, annotated text, timelines,and dense
pixel charts; control flow composition by means of lightweight socket-based adapters as multiple linked-views in one orseveral
independently developed tools; tool customization by means of Python scripts; and efficient core tool implementation using
C/C++ and OpenGL.

We illustrated our toolset by means of two of its most recent applications: SolidSX for visualization of program structure,
dependencies, and metrics, and SolidSDD for extraction andvisualization of code clones. We outlined the added value of
combining several tools in typical visual analysis scenarios by means of simple examples and a more complex industrial post-
mortem software assessment case. Finally, from the experience gained in this development process, we addressed several
questions relevant to the wider audience of academic tool builders.

Ongoing work targets the extension of our toolset at severallevels: New static analyzers to supportgcc binary analysis
and lightweight zero-configuration C/C++ parsing; dynamicanalysis for code coverage and execution metrics; and integration
with the Eclipse IDE. Finally, we consider extending our visualizations with new metaphors which allow an easier navigation
from source code to structural level by combining HEB layouts and annotated code text in a single scalable view.
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Abstract

Developing good academic tools has become an art that forces researchers to achieve tasks they
are not supposed to do. These include coding, web and logo designing, testing, etc. It compro-
mises the quality of a product that differs from what the industry expects from it. In this paper
we propose professionalising the tool development to build industry-ready products that are a
middle term between academic and industrial products. We summarise many of the decisions we
have made in the last three years to build two successful products of this kind, and that we think
that may help other researchers their best in tool building.

Keywords: Automated Analysis, Software Product Line, SPL, Variability Models, Feature
Models, Service Level Agreement, SLA

1. Context

1.1. Introduction

One of the main objectives academic research must pursue is to turn ideas into industry-ready
products. One of the most common ways software engineering researchers do this is by building
software tools. However, many times academia only has resources to build just proof-of-concepts
tools or prototypes that are not ready to be used by enterprises, but manage to demonstrate that
the driving ideas are feasible and realisable into a product. When this is the case, prototypes
are used to capture the interest of industry in academic research results. Alas, the time needed
to transform a prototype into an industrial product is usually long enough to make businesses
reconsider the real utility of this kind of prototypes. The industry expects mature products that
can be incorporated into production as fast as possible. The academy’s mind is on dissemination;
the industry’s mind is on return on investment (ROI).

In the spanish context, where most businesses are small or middle-sized, this distance is se-
vere, since they are not usually prepared to assume the risk of incorporating the ideas behind a
prototype into their products portfolio. It implies an opportunity loss that affects the dissemina-
tion of the research results and obviously the private incomes of our research structure.

IThis work has been partially supported by the European Commission (FEDER) and the Spanish Government under
the CICYT project SETI (TIN2009–07366), and by the Andalusian Government under the project P07–TIC–2533.
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We have observed that only academic tools are built when there is a lack of funding, and
most of the times at the expense of researchers who invest too much time in tool building. In this
scenario, researchers spend their time carrying out tasks they are not supposed to be assigned
to; such as programming, testing, building a web page to disseminate their work or designing
an interesting logo for the tool. Extra resources are not assigned to build tools because they
increase expenditure, but letting researchers build tools is also an inefficient use of resources. In
this scenario the inherited opportunity costs rocket since money is invested in good researchers
but usually unexperienced tool-builders, rather than letting researchers investigate and allowing
tool-builders develop tools.

The large distance between academic prototypes and industrial tools in quality terms is one of
the main aspects that make companies refuse joint work with academia. We consider it necessary
for academia to assume the costs of building better tools as efficient use of resources. As a
projection of this reflection, for last three years we have been developing what we call industry-
ready products that are a middle-term between academic tools and commercial products whose
objectives are:

• Using tools to reduce the distance between academy and industry.

• Reducing the risk the companies assume when they are interested in research results.

• To allow a fast dissemination of research results in already existing industry-ready prod-
ucts.

In this paper we describe our experience from two points of view:

• Economic point of view: we have professionalised our tool-building activity so we have
defined a business model that is briefly described in Section 2.

• Technological point of view: since we do not know our customers beforehand we have to
build flexible products that could be adapted to the different companies who show some
interest in our results. We show in Section 3 the main technologies that have helped to
provide this flexibility and the methodologies that have been applied to lead our products
to safe harbour.

1.2. Research Context
Applied Software Engineering (ISA) Group is a research group composed of 22 researchers.

Our research focuses on three main lines: Software Product lines (SPL) [1], software methodolo-
gies and services oriented architectures (SOA). Each line is independent of the others and there
are only sporadic collaborations among researchers in different lines. For each line, several tool
prototypes are built to demonstrate the realisation of the different advances and contributions.
Within the wide set of prototypes we have built, there is a subset whose objective is analysing
models of any kind: Feature Models (FMs)[2] in SPL, Service-Level Agreements (SLAs)[3, 4]
in SOA, BPMN models in methodologies, etc.

In 2007, we decided to transform SPLReasoner, a promising prototype to analyse FMs, to
FAMA Framework (FAMA FW), an industry-ready product. In 2009, we could say that this
model worked for FAMA FW so we decided to replicate the process to transform SLAxplainer [5,
6] into ADA [7], both tools to analyse SLAs. In ADA, we have applied not only the economical
aspects that led FAMA FW to be a success story, but also most of the technological issues since
their context is close enough to reuse technologies and methodologies. Next we describe what
we expect from an analysis tool in general and in FAMA FW and ADA in particular.
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1.3. The products: Analysis Tools
Generally speaking, an analysis tool is used to extract relevant information from a model.

To achieve it, the tool transforms a model into different artificial intelligence paradigms such as
constraint programming, satisfaction problems or genetic algorithms. Users can query for infor-
mation by means of different analysis operations and the tool selects the most suitable technique
to solve the analysis problem, having the best possible time-to-response.

In 2007, SPLReasoner had become an ongoing prototype in which the SPL community had
shown much interest. We decided to take it to the next level building FAMA FW, an industry-
ready tool that should fulfil two requirements:

• We will develop it as if it were an industrial product rather than an academic product.
The main difference arises in how seriously we will take the development process and the
support to users and third-party developers. There is an economic investment need, so
business and dissemination models are defined to justify each cent that is invested in the
project.

• The product must be customisable since there are many potential customers. This means
that we will have a product per customer, thus transforming the product into an SPL. The
methodologies and technologies must be adapted to support an SPL.

There were no new functional requirements added to FAMA FW, only non-functional or
quality requirements that increase the flexibility of the product. These features did not depend
on FAMA FW particularities so, ADA was built to fulfil the same requirements. The architecture
of the product would be completely different so both products were built from scratch and only
some isolated pieces of code could be reused from the original prototype. Human resources
were assigned to the project and development methodologies were established to manage the
development team.

1.4. Objectives
At date, the practises that we describe in this paper are part of our internal procedures to build

and maintain software products of near-industry quality; so the distance between research results
and the industry is lessened. Our main objective is for the reader to see our story as a reflex
in their context and to consider applying some of the ideas described in this paper to transform
prototypes into industry-ready products.

We have divided our experience in two parts: a first part in Section 2 that explores the eco-
nomic aspects that have been considered during FAMA FW and ADA’s lifetime. These are the
interaction with the industry, human resources hiring, how to improve product dissemination and
which are the risks to be taken into account. A second part in Section 3 focuses in describing the
development methodology and how the architecture and the chosen technologies have helped to
manage the evolution of the product. To conclude we have built a post-mortem report in Section
4 that summarises the best and worst practises that we have detected during the development of
the tools under study.

2. Business Model

In this section we describe some organisational aspects that caused a reorganisation of our
structures and intense decision processes that took up a large amount of time and have to be taken
into account whenever an industry-ready tool is built.
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2.1. An iterative process to build industry-ready products

Why do we build tools?. When we look to define a better way to build tools, it is mandatory to
analyse the reasons why academia builds tools. We build tools to transform research ideas into a
tangible product. If a company shows interest in the product, the product generates income. This
income allows academia to keep on researching and the research continues to produce ideas that
are incorporated to existing products, or in itself leads to the development of new products.

And why does a company pay for a product or finance a research topic? Because they foresee
its transformation into a commercial product and they expect to obtain ROI from it.

There is also another scenario that must be considered; the creation of spin-off companies
originating from these products. Mature products can become important assets in this kind of
companies which are created to industrially exploit research results.

Why does academia builds prototypes instead of building commercial products?. A prototype
is the less expensive and risky procedure to validate clipboard results. It reduces the time-to-
validation by a proof of concept. Although they work for researchers, this is not the appropriate
form to present the product to the industry. The industry expects a better quality product so
researchers usually invest time in improving the quality of a prototype.

How is a research prototype built?. Usually a researcher is the only developer. The tool is gen-
erally created as part of the ideas maturing process. Since transmitting vague ideas to developers
foreign to the problem may delay the project or even make it fail, the researcher is the one in
charge of developing the prototype. Although this way of working is valid when first creating a
prototype, extending the development in time may lead to a misuse of researchers time.

Where are the limits with prototyping?. This is one of the most important questions to be an-
swered by each researcher that develops a prototype. In our case, we have found that the correct
answer for us is ’When you can estimate the time and cost to build an industry-ready product,
the core requirements and the target market’. The point of this is that a researcher does not
spend more time in development tasks than what is necessary to confirm ideas. What a research
group needs is to collect all the available information to evaluate if it is worthy or not to assign
resources to build an industrial-strength tool from a prototype.

May a research prototype become a commercial product?. The general answer is no. A pro-
totype easily becomes a legacy system. Usability, extensibility and adaptability are quality at-
tributes that are barely considered as initial requirements when a researcher decides to build a
prototype. This transforms a prototype into a hard-to-maintain product. We need flexible archi-
tectures that can adapt a product to customer needs and incorporate new research results, and a
prototype is not usually built following these two objectives.

How do we build an industry-ready tool?. We have defined a process to manage the develop-
ment of tools that goes from the generation of research results to the dissemination of results to
companies. The process is divided in four main phases:

1. Prototype initiation: a prototype is initiated under the researcher’s consideration without
constraints of any kind. It is important that the researcher does not try to build the definitive
product; otherwise he will spend time on work that will be quickly discarded. Once a
prototype is mature enough, it passes to the next phase.
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2. Prototype evaluation: a research group committee evaluates how promising a prototype
is based on the reports submitted by researchers, which have to analyse the development
costs, product features and target market among other issues. If a prototype passes this
phase, resources are assigned and the researcher is appointed leader of the product devel-
opment.

3. Prototype design: a reference architecture is defined. It must be as flexible as possible so
it supports any further extension or change in products requirements. Product leader and
hired developers are involved in this phase.

4. Product lifecycle: whilst sufficient resources are assigned, products are developed follow-
ing an iterative process. The lifecycle is carried out in three sub-phases:

• Transfer: ideas are incorporated to the reference architecture as a new feature. The
hired human resources are expected to get involved mainly in this phase. This phase
ends when the feature is implemented, tested and correctly documented.

• Tracking: the committee evaluates the product by means of the feedback received
from companies that have shown interest in the product. Based on this feedback,
future ideas to be investigated are chosen. The resources assignment is supervised
and changed if needed.

• Research: researchers produce new ideas. They are normally validated by the com-
munity in workshops, conferences or journals. When an idea is mature enough, trans-
fer phase starts.

Each of these sub-phases are executed by different human profiles: researchers, committee
members and developers. This work distribution allows the sub-phases to overlap.

Figure 1: Our Business process model
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How many iterations are needed to produce an industry-ready product?. We have to take into
account that this form of building products is like creating a product whose market is unknown.
When we have a customer, requirements are clearer. However, when there exist many potential
customers but none of them acts as real customer, there is a tendency to be involved in a never-
ending project. If a company shows interest in a product, the iterative process may be repeated
indefinitely. If after given several iterations, no interest is shown, it is better to freeze the project
until new opportunities arise so that resources are not wasted. In spite of this, the more iterations
are fulfilled, the clearer the companies vision of the product. It is the commitee’s responsibility
to envision future interests and decide which risks are worth taking and which are not.

2.2. Human Resources

With the above approach, we try to manage the product development as if we were a software
development company. Thus, we have defined several roles that are played by our researchers
and the hired human resources such as project leaders, developers, testers, etc. We have stated
that researchers act as project leaders but, who plays the remaining roles?. It is not a secret
that researchers commonly play roles they must not play such as developer, tester, designer,
web-master, etc. We consider this is a waste of resources since researchers salary is usually
(and hopefully) higher than developers. We attempt to hire different workers whose professional
profile fits into the job they are assigned.

When hiring people, a new problem arises: carrying out a selection process. We have dele-
gated this task to the project leaders, however several factors make us wonder if this decision is
the best choice:

• On the one hand, the University has plenty of motivated and well-prepared candidates.
In our case, most of the researchers are lecturers in the University so they have proba-
bly taught some matters to the candidates, making it easier to evaluate their personal and
technical abilities. This information is very valuable in the selection process.

• On the other hand, selecting people is not one of the responsibilities a researcher must
assume. Furthermore, it is interesting to differentiate candidates who want to be part of a
big software company from candidates expecting a professional career in academia. We
want to avoid a developer leaving an ongoing project since it would imply a new selection
process and probably the loss of knowledge. This makes the selection process harder and
it usually takes longer than expected.

After 3 years following this procedure, we have had good and bad experiences. We have
organised selection processes lead by the project leaders. Although the project leader is who best
knows the technical profile a developer or a tester has to satisfy, there are other psychological and
emotional factors involved in selecting the right candidate. Technical skills are as important as
personal abilities. This is one of the reasons that makes us wonder if selection processes should
be outsourced so there is more confidence in selecting the most decisive candidate.

2.3. Dissemination

Tools dissemination is a task that should be carefully performed while the project takes place.
We explain as follows the most important issues of our marketing and communication plans in
order to define the different actions related to the dissemination of our analysis tools.
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2.3.1. Marketing Plan
A marketing plan defines the products we aim to build, the policies to regulate its consump-

tion, and its target market.
The basic policies needed to regulate the consumption of our developed analysis tools are the

price and usage policies.

• Price policies: our goal is to capture investment; that means to obtain as much users as
possible for our products. Users are not asked for a fee to use our tools. We decided to offer
them as open-source tools, yet some kind of tool supporting such as tool customisation or
integration would require an economic compensation.

• Usage policies: We set LGPLv3 licence [8] to our products. We decided to use this licence
since it allows everyone to use our tools, even in commercial products, but a citation to the
owners is mandatory.

We established as target market for our products companies and research institutions that
have shown some interest in analysing models of any kind, specifically FMs and SLAs. We
would offer our analysis tools and customising services to them. At this point we had to set a
communication plan that considers how to reach the target market.

2.3.2. Communication Plan
Our communication plan’s objective is two-fold; we want to be equally appealing to the two

entities of our target market: private companies and research institutions.
To achieve such purpose we had to ask ourselves: What do private companies and research

institutions expect from us?. While the former usually have the goal of getting a commercial
product in order to obtain ROI; the latter commonly want to work together to obtain results in
terms of research and tools integration. Therefore, we have to consider the kind of entity in the
definition of our communication plan as follows:

• Dissemination releases for companies and research institutions:

– Advertising: we have created web portals as direct communication channels1. Before
releasing any versions of our products we designed logos and corporate images that
identify the products in any publication relating them. Another kind of advertising is
with posters and tool demonstrations sessions of conferences and commercial events.

– Technical documentation: customers need to know how to use and extend our tools
by means of: (1) technical reports published in the respective web portals. Such
technical reports reduce the time to learn to develop an extension of our tools or to
integrate our tool into third–party tools. Usually, the technical reports are published
on–demand when an entity shows interest so our effort is not wasted. (2) source
documentation by means of Javadoc [9] or Doxygen [10] tools. Doxygen allows
introducing LATEX pieces of text/images and producing a final documentation richer
than the one produced by Javadoc. We also include source code documentation.

1FAMA portal is available at http://www.isa.us.es/fama and ADA portal is available at http://www.isa.
us.es/ada
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– Scheduling: periodically, private companies go to commercial events and research
institutions go to conferences. Once these forums are identified, we attend in order
to show our products.

– Predefined forms: some legal documents such as agreements and compliance forms
and usage certificates are defined. These documents are necessary to validate the use
of our tools by other entities and to guarantee the LGPLv3 compliance. Therefore,
when an entity starts using a product of ours, they will be asked to request a signed
copy of such documents.

– Periodical affiliation: to keep the affiliation of research institutes and companies they
are periodically sent quality assurance forms, satisfaction forms, etc.

• Dissemination releases only for research institutions:

– Research-oriented dissemination: usually the communication of research tools is not
mass marketing, so a much more selective marketing activity is needed. Neither
leaflets, nor mailings are needed. Conferences and workshops are the most suitable
events for tool demonstrations. In this case, scientific papers and journals are a first–
term documentation, but they do not usually describe the internals of tools. Specially,
when the research contribution is the structure and design of the tool instead of a new
algorithm. Technical reports cover this gap so the insides of tools are described
without constraints of any kind.

• Dissemination releases only for companies:

– Company-oriented dissemination: Any research group grows surrounded by local,
national and worldwide companies who are potential consumers of our products.
Research projects usually include some technology partners that are interested in
knowing at first hand the results of the projects. This contact usually produce constant
meetings between researchers and companies that may lead to projects where our
products play a key role.

2.4. Risk Analysis

A risk is any event that implies a delay in time or a deviation in expenditure. We have
identified the following risks during industry-ready product development:

1. a developer leaves. It is a well-known risk in any development process. Avoiding it is com-
plex, but we attempt to reduce its probability trying to offer our technical staff obtainable
goals to prepare professional careers accordingly. If it cannot be avoided, it is important
to minimise the impact of a developer leaving. It implies a constant focus on source code
documentation and reporting.

2. a product is not interesting for the community. When this happens, it affects the cost
assumed to date. Therefore, we establish the iterations of process depicted in Section 2.1
to determine as early as possible if the target market is interested in a product or not.

3. A researcher has to play other roles. It usually happens when the project has been as-
signed insufficient human resources. A thorough project scheduling helps to avoid these
situations, anticipating the needed human resources.
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3. Development model

In this section we describe the software development methodology followed in the develop-
ment of our analysis tools. We also detail the technology incorporated in our products and the
reference architectures.

3.1. Methodologies

Due to the particular characteristics of our products, a methodology to develop our industry-
ready products should support: (1) changing requirements, because requirements become clearer
when the results can be observed, and (2) a straightforward and continuous communication be-
tween researchers and developers to ease the incorporation of research results into the existing
products.

To cover these needs, we chose agile methodologies [11] which are a set of methodologies
based on teamwork and adaptation to changes to provide a rapid high quality software product.
These methodologies requires small teams, frequent and straightforward communication as pe-
riodic meetings to monitor the progress of the tool, a short time planning and the know-how
developers reuse from similar projects to take advantage of their experience. The opposite of
heavyweight methodologies, agile methodologies are more incremental, iterative, present short
iterations, and requires less documentation; only the essentials, so third-party developers can un-
derstand how to extend the tool, users know how to use the product and the know-how remains
inside the organisation.

We have specifically used the following agile methodologies to develop our products:

• Feature-Driven Development (FDD). Firstly, groups of features, which represent user vis-
ible characteristics, are identified. Later, such features are classified in core and satellite
features for a priority assignment. A core feature is mandatory for any potential customer;
a satellite feature is only relevant for a subset of customers. In an iteration, a subset of
features is selected, designed, developed and tested starting with the core features and fol-
lowing the priority order. FDD allows the separation of different satellite projects, each
considered with satellite features.

• Test-Driven Development (TDD). Before developing or upgrading a feature, one or more
test-cases are designed, implemented and executed. Whenever new source code is pro-
duced or existing one changes, code is tested. Finally we refactor the source code to grant
its quality. In addition, before building a distribution for a product, test-cases are executed
to detect possible errors introduced by changes. It increases the quality, reduces the time-
to-failure, and accelerate the development since time to repair errors is reduced. TDD is
used in our projects in conjunction with FDD to increase the confidence in the feature
development correctness.

The experience on using these methodologies has been very satisfactory. On FAMA FW,
several versions of the tool have been released with significant functionality upgradings and the
amount of detected errors has been drastically reduced. On ADA, the experience on developing
and managing FAMA FW helped us to improve the development process. Thus, we built the
first version of ADA which covered a complete iteration in all the development phases in three
months.
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3.2. Software Architecture
Before defining an architecture we need to discuss the common aspects of analysis tools in

general. Basically, an analysis tool works with a model to be analysed, several analysis oper-
ations, and one or more reasoners that are able to solve those operations. The main goal is
extracting information from the models using the analysis operations. Using this approach we
may characterise a flexible analysis tool as the one that is able to support:

• Different kinds of models (a.k.a. metamodels) and file formats to store and retrieve them.

• Different analysis operations.

• Several alternatives to solve an analysis operation.

FAMA FW and ADA have a SPL-based design. This means that instead of building a product,
we pretend to build a flexible production platform that is able to produce different kinds of
products depending on the customer needs. It is very valuable for our purposes since we are
unable to determine the companies that are going to use our products.

SPL is a building concept rather than a bunch of methodologies, so specific procedures have
to be defined for each kind of project. One of the ways to implement a SPL is by a component-
based architecture [12, 13]. A component-based architecture emphasises on developing func-
tionality in independent components, integrating them later to provide a complete functionality.
It allows dividing the tool in many small-sized projects and reducing the coupling among them. It
permits parallelising the development of these components so development time can be reduced.
Among the advantages of using a component-based architecture we remark the following:

1. Modularity: coupling among components is reduced to minimum since each of them is
specific enough to perform a feature without needing a direct coupling with other compo-
nents. It can only be achieved when the nature of the problem allows this kind of division,
as is the case for our products.

2. Extensibility: new functionalities are easily added registering a new component in the
reference architecture.

3. Integrability: due to the reduced coupling, communication lines between components is
minimum which eases the integration process and the substitution of components.

In our component-based architecture, we have identified three component layers as depicted
in Figures 2 and 3:

1. Core: a core is a subset of components that must be in any product. They are the first pieces
to be defined in any tool. Core components define basic functionalities, public interface
for the final users, and load and use extensions.

2. Extensions: an extension is an implementation of one or more features that are pre-defined
by core. Several extensions can be available offering the same feature so the core is in
charge of selecting the most suitable extension to carry out the job. The extensions we
have identified for FAMA and ADA are:

• Metamodels to be analysed.

• Analysis operations.

• Reasoners to solve the analysis operations.

• Selection criteria to choose the better reasoner to solve an analysis operation.
10
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Figure 2: Architecture of FaMa framework

• Transformations between models.

3. Interfaces: they are the facade that allows third-party entities to use our products. They are
defined as independent satellite projects that use the API of the analysis tool, considering
tool API the core and extensions, and give us new functionality. A typical example can be a
GUI, that consumes the API of the tool and makes the human use of the tool easier than the
programmatic use. An example of this kind of interface is available for ADA, specifically
a rich internet application called ADA-FrontEnd that is accessible at try it online! section
of ADA portal (http://www.isa.us.es/ada).

In both tools, FAMA FW and ADA, a three-layer architecture (see Figures 2 and 3) is de-
signed to support several variation points. In our context, a variation point is any extension
component.

From a developer’s point of view, the tool becomes a framework, since any new extension
that is developed by third-parties can be integrated in the architecture and the core is in charge of
consuming the extension. From an end-user’s point of view, those variation points are transparent
to the user since it is the core that is in charge of choosing the extensions needed without any
kind of user interaction.

The architecture permits dividing the product development into several sub-projects each
of them involving an extension. It eases the community collaboration and the hiring of new
developers for our development team who can start developing satellite projects without affecting
core functionality.

However, the adoption of this architecture involves a double challenge: (1) the integration be-
tween independent components requires a technological solution, such as a tool or framework to
support it; and (2) the management of dependencies between core and extensions. The following
Section 3.3 tackles these challenges with some technology decisions.
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Figure 3: Architecture of ADA framework

3.3. Technologies

Making the right decisions regarding technology is key to support product evolution. Any
wrong decision may lead to an important economic loss.

One of the most important choices to develop software is the programming language to use.
A stable and mature language, with the right paradigm is needed to minimise risks. If we want
to involve a community behind a product, we should choose a general purpose programming
language with many open source projects. These projects implies to have several free tools
available that can be incorporated into our products. We have chosen Java [14] because it is
widely used and has a large open source community behind, and many high-quality tools.

In previous Section 3.2, we mentioned two challenges in architecture designing: integration
between components and dependencies management. OSGi [15], Maven [16] and Subversion
[17] have been the chosen tools that help us with these problems as detailed in the following:

1. OSGi is a framework specification that provides a container to deploy, run and integrate
components (a.k.a. bundles) for this framework. It has several implementations, such as
Equinox [18], Felix [19] or Knoplerfish [20]. OSGi allows the integration between OSGi
compliant tools, and it offers some interesting plug-in tools. One of them is Distributed
OSGi (DOSGi) [21] which publishes OSGi bundles as web services providing a WSDL
specification [22]2.
ADA and FAMA FW are OSGi-compliant. FAMA FW is currently being used by Moskitt
Feature Modeller [23] thanks to OSGi framework, and ADA public interface can be used
as a web service through its WSDL specification.

2DOSGi was used to generate the WSDL facade of commented ADA interface ADA-FrontEnd
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2. Maven is a software tool for the project management and for automating tasks on java
projects. For FAMA FW and ADA, Maven manages the dependencies between core, ex-
tensions and satellite projects, OSGi metadata, binaries, and tests execution before pack-
aging.

3. Subversion is a popular version control system to manage changes on source code, re-
sources and documentation. Our subversion repositories comprise three folders: (1) trunk
for the current development, (2) branches for separated lines of development, and (3) tags
to keep snapshots of the repository at a concrete date or milestone.

4. Conclusions and Postmortem Report

With this experience we have learned that we, the researchers in academia have to put our-
selves in industry’s shoes so our prototypes are closer to what the industry expects. As of today,
more than 20 companies and research institutions are using, adapting or are interested in using
FAMA FW and we expect ADA achieves the same goal in the next months. During this process
there have been right and wrong choices. To analyse them we have realised a post-mortem report
which summarises those practices that we will keep in the future and that we recommend others
to do. Besides, we have committed errors that we will try not to repeat in the future and are also
part of this report.

4.1. How to continue doing what was done Right

1. LGPLv3 license is the best option.
2. The components architecture has reduced the bugs in the products, moreover in those that

have been affected by many iterations.
3. The business model used in FAMA FW has been validated in the ADA project. The human

resources reuse between the two projects has been especially interesting.
4. The dissemination model is effective enough as shown by the high number of companies

and research institutions interested in FAMA and ADA.

4.2. How to correct what Needs Improvement

1. We have not focused our efforts in providing much documentation to end-users and third-
party developers. We have had to invest much time in documenting after several iterations
since we have been asked for more and better documentation. We have solved it by adding
a new procedure to FDD that requires documenting before ending the development of a
feature or extension.

2. Some times our selection processes were massive and they took longer than expected. We
will find a solution for this in the future.

3. At the beginning we prepared a detailed planning for the whole project and we used a tasks
tracker to monitor if tasks were on schedule. However, we had to redo the planning due
to the changing requirements. Therefore, the detailed planning should define short-term
goals within a month. The long-terms goals should be defined in a more relaxed planning.
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Abstract

Programming-language research has introduced a considerable number of advanced-dispatching
mechanisms in order to improve modularity. Advanced-dispatching mechanisms allow changing
the behavior of a function without modifying their call sites and thus make the local behavior
of code less comprehensible. Debuggers are tools, thus needed, which can help a developer to
comprehend program behavior but current debuggers do not provide inspection of advanced-
dispatching-related language constructs. In this paper, we present a debugger which extends a
traditional Java debugger with the ability of debugging an advanced-dispatching language con-
structs and a user interface for inspecting this.
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1. Introduction

To improve the modularity of source code, a considerable number of new programming-
language mechanisms has been developed that are based on manipulating dispatch, e.g., of
method calls. Examples are multiple [1] and predicate dispatching [2], pointcut-advice [3]—a
particular flavor of aspect-oriented programming (AOP)—, or context-oriented programming [4].
Because they are beyond the traditional receiver-type polymorphism dispatch mechanism, we call
these new mechanisms advanced-dispatching (AD).

The majority of newly developed languages adds advanced-dispatching concepts to an al-
ready existing, mainstream language like Java or the .NET languages, which is generally called
the base language. The new mechanisms have the potential to increase the modularity of pro-
gram code compared to code written in the base language. However, using the new language
mechanisms is not well-supported by tools. Thus their usage may hamper software development
even in spite of their potential of improving the code quality.

IThis work is partly funded by a CSC Scholarship (No.2008613009).
Email addresses: h.yin@student.utwente.nl (Haihan Yin), c.m.bockisch@cs.utwente.nl (Christoph

Bockisch)
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The term dispatching refers to binding functionality to the execution of certain instructions,
so-called dispatch sites, at runtime, thereby choosing from different alternatives that are appli-
cable in different states of the program execution. An example of conventional dispatch is the
invocation of a virtual method in object-oriented languages: The invocation is the dispatch site
and the alternative functionalities are the different implementations of the method in the type
hierarchy; the runtime state on which the dispatch depends is the dynamic type of the receiver
object. A detailed discussion of the approach can be found in [5]1.

With advanced-dispatching we refer to language mechanisms that go beyond this traditional
receiver-type polymorphism. What makes the dispatching advanced in these cases is that a dis-
patch can consider additional and more complex runtime states, and that functionality can be
composed in various ways.

In our work, we have especially investigated the advanced-dispatching languages JPred [6],
MultiJava [7], AspectJ [8], Compose* [9], CaesarJ [10], JAsCo [11], and ConSpec [12]. While
high-quality tools, such as the AspectJ Development Tools [13], exist to visualize the static struc-
ture of programs written in these languages, little to no support is provided related to dynamic
language features. Lack of supporting tools significantly hampers the popularity of otherwise
valuable new programming languages, thus dedicated tool support is required. In a previous po-
sition paper [14] we have already outlined this claim as well as a an implementation of language
independent tools for advanced-dispatching languages based on the ALIA4J architecture.

This paper specifically focuses on a generic debugger tool which is aware of advanced-
dispatching concepts and allows to inspect such program elements at runtime. This debugger
is realized based on a language-independent intermediate representation and execution envi-
ronment of advanced dispatching and can therefore support developers using all the above-
mentioned languages. Instead of implementing it from scratch, we chose to extend the Java
debugger of Eclipse with AD-specific features. Figure 1 shows how our debugger graphically
represents a dispatch at which the execution is currently suspended. The provided views are
discussed in detail in section 5.

Figure 1: A snapshot of the debugger for advanced-dispatching programs

1Some details presented in [5] are outdated, but it may nevertheless act as an introduction to the basic concepts.
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The remainder of this paper is structured as follows. In section 2, we present a deeper analysis
of the problems when debugging advanced-dispatching programs as well as features we claim are
required from a good debugger for such programs. Section 3 outlines the approach of our work,
followed by a section presenting the required technical background (section 4). Next we discuss
the three corner stones of our debugger, namely the user interface (section 5), the extension to
the execution environment (section 6), and the extended debug model (section 7). This paper
closes by presenting an example of debugging an AspectJ program with the developed debugger
in section 9, related work in section 10, and some conclusions and future work in section 11.

2. Problem Analysis and Goals

The lack of tool support for advanced-dispatching languages is based in the technique typi-
cally applied when implementing such languages: in all investigated language implementations,
a compiler translates source code from the new language to code—most frequently an intermedi-
ate representation like Java bytecode [15] or the .NET common intermediate language [16]—of
the base language. After the compilation all source code is mapped to the same intermediate lan-
guage whose abstractions reflect the module concepts of the base language, but not those of the
new language. This compilation strategy is often called weaving and may entail that instructions
are removed, merged, duplicated, reordered, or interleaved. This is discussed, for instance, by
Avgustinov et al. [17] in the context of the AspectBench Compiler for the AspectJ language.

As the new language concepts are compiled to conventional code, the tooling, e.g., the debug-
ger, of the base language can also be used for compiled programs written in the new languages.
However, as it is not aware of the new language concepts, the base tooling may not always be
adequate. Take the Java debugger for example: When the debugged program is intercepted,
the Java debugger offers the possibility to locate the source code that was compiled to the Java
bytecode instruction whose execution was intercepted. This feature is supported by the Java
bytecode format that stores for every bytecode file the name of the source-code file from which
it was compiled, as well as a mapping from instructions to lines in the source file.

When this debugger is used, e.g., for AspectJ programs, problems like the inability of locating
source code are easily encountered because programmers debug the transformed, woven code.
After the weaving phase, the assumption—which is manifested in the Java bytecode format—that
all code of a class is compiled from a single source file may no longer hold.

As a starting point for our investigations, we use Eaddy et al.’s [18] categorization of the
debugging problems for aspect-oriented programs into the code-location problem and the data-
value problem. Since aspect-orientation is one special case of advanced-dispatching, we gener-
alize these problems and conclude that existing debuggers are not sufficient for AD languages
mainly for the following two reasons:

Code-location problem One important purpose of debugging is locating errors in the source
code. As explained previously, the compiled code may undergo a series of transformations
during which the source-location information is not maintained by current compilers. This
lack of traceability causes the debugger to show no or the wrong source code, or to show
compiled and woven intermediate code instead of the original source code.

Data-value problem Dispatch results in the execution of one of multiple alternative function-
alities; which alternative is chosen is evaluated according to the runtime context in which
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dispatch site is executed. While a conventional debugger will eventually show which func-
tionality is executed, it is unable to present to the developer the reasoning behind choosing
this functionality. Take debugging an AspectJ program in Eclipse for example: the de-
bugger does not provide aspect-related information like runtime states accessed during
dispatch, e.g., in terms of dynamic pointcut designators.

Inspired by the work of Eaddy et al. and by our own observations when using advanced-
dispatching languages, we concentrate on solving the data-value problem and formulate the fol-
lowing debugger capabilities that are desirable for an advanced-dispatching debugger:

1. Inspection of runtime state of the executing AD program.

2. Inspection of program composition and control flow.

3. Inspection of the evaluation result of functions over the runtime state to select alternative
meanings.

4. Description the relationship between AD entities.

5. Deployment and undeployment AD features at runtime.

3. A Debugger for Advanced-Dispatching Languages

To enable debugging, the debugger front-end must communicate with execution of the de-
bugged program. Furthermore, the source code must be traceable, i.e., it must be possible to
deduce the source code that has lead to a certain execution. Therefore, we base the debugger
presented here on our previous work [19, 5], the ALIA4J approach for implementing advanced-
dispatching languages. It provides a uniform representation of programs written in different
advanced-dispatching languages in order to enable the reuse of implementations between these
languages, and it embodies the execution semantics for advanced-dispatching in a language-
independent way. Furthermore, its representation of advanced-dispatching stays first-class dur-
ing the execution. Therefore, we present a debugger for advanced-dispatching languages, which
is based on the ALIA4J approach, in order to improve the tooling landscape for multiple existing
and future advanced-dispatching languages at once. Basically, our work will allow the devel-
oper to debug the ALIA4J representation of advanced-dispatching instead of woven bytecode
as in traditional approaches. The ALIA4J representation is much closer to the original source
code than the woven bytecode, and preserves AD-related debug information, thus increasing the
traceability.
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Figure 2: Structure of the AD language Debugger Architecture

We have developed the AD language Debugger Architecture (ADDA) as an extension to
the Java Platform Debugger Architecture (JPDA) [20] based on ALIA4J’s representation of
advanced-dispatching. Figure 2 shows the overall structure of the ADDA. The Execution Envi-
ronment component is extended with functionalities supporting debugging. The AD Information
Helpers (ADIH) extend an ALIA4J-based execution environment with functionality that allows
to inspect the AD-related context of the running program and to interact with the execution of
advanced dispatch. The communication is channeled through the standard JPDA and the AD-
related data is represented by the AD Debug Interface (ADDI) Model. A debugger front-end for
advanced-dispatching can connect to the ADDI and the JDI in order to debug the execution of
advanced-dispatching and of standard Java in a program.

The front-end of our debugger is integrated into the Eclipse IDE, although any IDE with a
comparable infrastructure would also be applicable. Our debugger extends the Eclipse Java de-
bugger, which is used for the program parts that do not use advanced-dispatching, with additional
user interfaces. These are Eclipse views specific to visualizing and interacting with ALIA4J’s
representation of advanced dispatch in order to satisfy the requirements motivated in section 2.
In some cases, we have also changed the behavior of existing debugger views to adapt to AD
features.

After presenting some background on ALIA4J, the JPDA and the Eclipse debugger in the
following section, we will present our AD language debugger. In particular, we will present
the user interface extensions in section 5. In section 6 we will shortly present the required
extensions to an ALIA4J-based execution environment for communicating with the debugger.
And in section 7 we will discuss our extensions to Java debugger architecture that reflect the
advanced-dispatching extensions to languages and the user interface.
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Figure 3: Entities of the Language-Independent Advanced-dispatching Meta-Model (LIAM) as UML class diagram.

4. Background

4.1. ALIA4J

ALIA4J [19] has two main components: The first component is the Language-Independent
Advanced-dispatching Meta-model (LIAM) for expressing advanced-dispatching declarations.
LIAM acts as the format of the intermediate representation for advanced dispatching in programs.
The meta-model itself defines categories of concepts and how these concepts can interact, e.g.,
a dispatch may be ruled by atomic predicates which depend on values in the dynamic context of
the dispatch. LIAM has to be refined with the concrete advanced-dispatching concepts of actual
programming languages that are supposed to be mapped to LIAM.

Figure 3 shows the eight meta-entities of LIAM, discussed in detail in [19, Chapter 3.2],
which capture the core concepts underlying the various dispatching mechanisms. The meta-
entities Action, AtomicPredicate and Context can be refined to concrete concepts.

In short, an attachment corresponds to a unit of dispatch declaration, roughly corresponding
to a pointcut-advice pair or to a predicate method. Action specifies functionality that may be ex-
ecuted as the result of dispatch (e.g., the body of an advice or predicate method). Specialization
defines static and dynamic properties of state on which dispatch depends. Pattern specifies syn-
tactic and lexical properties of the dispatch site; predicate and atomic predicate entities model
conditions on the dynamic state a dispatch depends on. Context entities model access to values
in the context of a dispatch, like the called object or argument values when the dispatch site is a
call to a instance method. Finally, the schedule information models partial ordering of the action
contributed to a dispatch result in relation to actions contributed by other attachments.

The actual intermediate representation of a concrete program, in turn, is a model conform-
ing to the meta-model refinement for that language—we simplifyingly call these models LIAM
models. Code of the program not using advanced dispatching mechanisms is represented in its
conventional Java bytecode form.

We have validated the expressiveness of LIAM by refining it with the concrete concepts of
different existing programming languages [19], namely AspectJ [8], Compose* [9], CaesarJ [10],
and JAsCo [11]; refinements for MultiJava [21], JPred [6], and ConSpec [12] also exist and can
be downloaded from our website2 but are not otherwise published. For the languages AspectJ,
ConSpec, and rudimentarily for Compose* we have implemented an automatic translator from
source to a model according to refined LIAM.

2http://www.alia4j.org
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Figure 4: A dispatch function’s evaluation strategy.

The second component of ALIA4J is the Framework for Implementing Advanced-dispatching
Languages (FIAL), a framework for execution environments that allow to deploy and undeploy
LIAM dispatch declarations. FIAL implements common components and work flows required to
implement execution environments based on a Java Virtual Machine (JVM) for executing LIAM
models. Most importantly for the purpose of this paper, it defines how to derive an execution
strategy per dispatch site that considers all LIAM-based dispatch declarations present in the
program.

The execution strategy consists of the so-called dispatch function that characterizes which
actions should be executed as the result of the dispatch in a given program state. This function
is represented as a binary decision diagram (BDD) [22], where the inner nodes are the atomic
predicates used in the predicate definitions and the leaf nodes are labeled with the actions to
be executed. For each possible result of dispatch, the BDD has one leaf node, representing an
alternative result of the dispatch, i.e., which actions are to execute and in which order3. Figure 4
shows an example of such a BDD with the atomic predicates x1 and x2 and the actions y1 and y2.
For a detailed explanation of this model, we refer the reader to [23].

Importantly for the present paper, the dispatch models and all LIAM models stay first-class
during the execution of a program and can therefore easily support dynamic features of an IDE,
like debugging, profiling, or testing. We have implemented several execution environments based
on FIAL which apply optimizations to a different degree. All extensions to the execution envi-
ronment that have been made in the course of developing the debugger presented in this paper,
are made to our portable but non-optimizing execution environment called NOIRIn. It is future
work, to enable similar support also in the optimizing execution environments.

4.2. The Java Platform Debugger Architecture
The Java Platform Debugger Architecture (JPDA) [20] is presented in the striped box of

figure 2. It defines a system consisting of 2 layers and the communication between them. From
the bottom up, this are the Java Virtual Machine Tool Interface (JVMTI) layer, the Java Debug
Wire Protocol (JDWP) for communication and the Java Debug Interface (JDI) layer. On top
of the JDI, the debugger user interface layer is implemented. JVMTI is a native interface of
the JVM. It allows to check runtime states of a program, set call-back functions for events like
reaching a breakpoint, and control some environment variables. JDWP is the protocol used for
the communication between the debugger—which is written in Java thus executed by a JVM—
and the debuggee JVM. JDI is a mirror-based, reflective interface. The mirror mechanism maps

3Nested execution of, e.g., around advice in AspectJ that use the proceed keyword, is also supported by the execution
strategy.
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all data including values, types, fields, methods, events, states and resources on the debuggee
JVM into mirror objects. For instance, loaded classes are mapped to ReferenceType mirrors,
objects are mapped to ObjectReference mirrors, etc. Accessing fields or invoking methods of an
object existing in the debuggee JVM can be performed by the debugger in the reflective way,
using the mirrors.

4.3. The Eclipse Debugger
Eclipse provides a language-independent debug model (called the platform debug model)

which defines generic debugging interfaces that are intended to be implemented and extended by
language-specific implementations. The Eclipse debugger has a mirror of each relevant runtime
value in the execution of the debugged program. The hierarchy of debugged artifacts is shown
in figure 5. The DebugTarget is a debuggable execution context, in the case of Java a virtual
machine, and it contains several Threads which again contain StackFrames. The StackFrame is
an execution context in a suspended thread and contains Variables. Variable has a Value; values
can be objects with fields, which are also modeled as Variable. The model also defines interfaces
for sending requests, like “Resume” to the debug model elements, and interfaces for handling
events, like reaching a breakpoint.

Figure 5: Eclipse platform debug model

In a typical debugging workflow the developer first locates a line in the source code where
he/she assumes an error, e.g., because an exception is thrown at this line, and sets a breakpoint
on that source code line. When the program is started the next time, the debugger connects to
the DebugTarget representing its execution and sends a request to activate the breakpoint. When
the execution reaches the code corresponding to the breakpoint’s line, the execution thread is
suspended, and an event is sent to the debugger virtual machine, notifying it that the Thread
is intercepted at a certain StackFrame. The debugger can now present this information to the
developer, e.g., by highlighting the source code line that corresponds to the StackFrame and
by presenting which Variables are present at the stack frame. The programmer can inspect the
runtime values of these variables which requires some more interaction between the debugger
and the debuggee. The developer also has different options to control the further execution of
the suspended program. He/she can, for example, instruct the debugger to “Step Into” or “Step
Over” the computation that is currently suspended, to “Resume” the execution or to “Terminate”
the debugged process.

The Java Development Tools (JDT) of Eclipse implement the platform debug model for Java
based on the JDI standard.

5. User-Interface for the AD debugger

The application layer presented in figure 2 consists of several views like the Variables and
Expressions views which are provided by the default Java debugger in Eclipse. The AD debugger
adds three views, namely the Advanced Dispatch view, the Advanced-Dispatching Structure view
and the Deployed Attachments view. Since the local behavior in AD programs can depend on
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complex dynamic context, the Advanced Dispatch view shows which context is accessed during
dispatch and in which way. This is necessary for the developer to understand which actions
are/are not executed at a dispatch and why this is the case.

In order to make our debugger better understood, we give a code example written in AspectJ
in listing 1. For simplicity, we omit the base program with the call to Base.foo(). Listing 1
declares an aspect with a before advice which is executed when Base.foo() is called and the callee
is an instance of class Base. Suppose the program is currently suspended at the point where
the next instruction calls Base.foo(), we introduce each view in this scenario in the following
paragraphs.

1 public aspect Aspt {
2 before() : call(* Base.foo()) && target(Base) {
3 System.out.println(”advice()”);
4 }

5 }

Listing 1: A code example of an aspect

The Advanced Dispatch view is the central view of the debugger showing runtime informa-
tion about the dispatch at with the debuggee is currently suspended. It lets the developer inspect
the runtime values of AD entities in the current frame, foresee the program composition flows of
the next generic function invocation, directly step to any action which is going to be executed,
etc. All values are presented textually in a tree viewer. The execution strategy with the dispatch
function, which is represented as a BDD in ALIA4J, is additionally presented graphically. It is a
special form of a branching program, for which a graphical representation should be intuitive to
the developer.

Figure 6: A snapshot of the Advanced Dispatch view showing the graphical representation for a dispatch strategy

A snapshot of the Advanced Dispatch view is given in figure 6. The left window frame gives
a graphical representation of the execution strategy for the next dispatch which is Base.foo() in
this example. The root node represents an AtomicPredicate which requires that the type of the
callee should be Base or a subtype. Two leaf nodes show different program composition flows
according to the evaluation result of the AtomicPredicate. The bold lines indicate the actual
evaluation result and actions which are going to be performed. From this view, the developer can
clearly see why and when the advice Aspt.before() is executed. At the top right of the view, a
“StepTo” button is provided for suspension the program at any performing action. For instance,
the entrance of the method Base.foo() can be chosen to be the next suspending point so that
details of aspect activities are ignored.
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Considering the complexity and importance of Attachments, the Advanced Dispatch view
also provides a graphical representation for Attachments. As shown in figure 7, the user can right
click an Attachment in the view’s tree and select “Show graph”.

Figure 7: A snapshot of the Advanced Dispatch view showing the graphical representation for an attachment

The Advanced-Dispatching Structure view assists the developer to explore static AD infor-
mation within the project scope, i.e., all dispatching declarations in the program as well as all
the generic functions in the program. This view also allows the developer to navigate from a
dispatching declaration to the affected generic functions and vice versa. In this example, the
method Base.foo() may be matched by multiple Attachments. However, this information can not
be shown in the Advanced Dispatch view in an explicit way. Figure 8 shows how the Advanced-
Dispatching Structure view explores the affection of an AD entity. In this figure, the Attachment
matches the method Base.foo() which is matched by only one Attachment.

Figure 8: A snapshot of the Advanced-Dispatching Structure view

In order to dynamically deploy and undeploy attachments during runtime, the Deployed At-
tachments view is provided. It shows a textual representation of all attachments that are defined in
the executing program together with a check box indicating whether the attachment is currently
deployed or not. Unchecking or checking one of the items manually will lead to undeployment
or deployment of the corresponding Attachment in the debugged program. A snapshot of the
Deployed Attachments view is given in figure 9.
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Figure 9: A snapshot of the Deployed Attachments view

6. Extensions to the execution environment

As mentioned in section 4.1, different implementations of execution environments exist in
ALIA4J but in this paper we focus on the interpreting one called NOIRIn. The following 2
subsections describe the work flow of executing dispatch in NOIRIn. Furthermore, we will show
how we have extended this work flow and added new services to enable debugging.

6.1. Debugging-Enabled Work Flow of Executing Advanced-Dispatching

Figure 10 presents the work flow of deploying an advanced-dispatching declaration and of
executing advanced dispatch in NOIRIn. The figure also shows the additional steps in the work
flow for supporting debugging in NOIRIn. The following list describes each step in the grey box
which represents the original work flow.

1. A dedicated component adapts the complied source code of an advanced-dispatching pro-
gram, like an AspectJ program, to a set of attachment models conforming LIAM and sends
these attachments into NOIRIn.

2. After an attachment is sent to NOIRIn, it does not take effect until it is deployed. During
the process of deployment, NOIRIn extracts the pattern from the attachment in order to
find out all matched dispatch sites. Then the new attachment is combined with existing
dispatch logic of each dispatch site. After the preparation of the previous two steps, the
actual application program starts.

3. When a dispatch site is encountered, e.g., a method call is invoked in the scope of user
written code, NOIRIn intercepts this call and performs the following steps to execute the
dispatch.

4. The context relating to that call, like the line number in which this call happens, the declar-
ing class of the callee, etc., is collected by NOIRIn. According to the call context, NOIRIn
finds the dispatch’s execution strategy.

5. Based on the context values, the dispatch function is evaluated to decide which actions to
execute.

6. For the applicable actions, an order is determined by resolving the constraints of the as-
sociated Schedule Information. Finally, NOIRIn executes all applicable actions in the
determined order. After all actions have been executed, NOIRIn reads the next dispatch,
starting over at step 3.
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Figure 10: The work flow of intercepting a method call extended with ability supporting debugging in NOIRIn

Additional to the steps presented in figure 10 we have extend NOIRIn to support debugging.
First, all needed debugging data, like the call context, the dispatch site, etc., are stored in a sin-
gleton store from which all needed data can be retrieved. Every time when the applicable actions
are determined at step 5, NOIRIn writes new data into the store (5.1). Second, a conditionally
executed statement is added right after the store is updated. We refer to this instruction as the
breakpoint shadow. The debugger can set a breakpoint here to suspend the execution of NOIRIn
just before the execution of the dispatch. The statement is executed conditionally and the condi-
tion is set at the time when the method is called at step 3 and the specific condition is configured
according to the call context (3.1). When the program runs to the breakpoint shadow, it sends
a breakpoint event to the debugger (5.2). Then, the program is suspended and the debugger
accesses the store (5.3) until it asks the debuggee VM to resume.

6.2. Services for Enabling Debugging

On the debugger side, the debugged entities are mirrors, code using mirrors needs to access
fields and invoke methods reflectively and handle exceptions that may occur during reflection.
Therefore we implemented the Advanced-Dispatching Information Helpers (ADIH) in NOIRIn
such that each task can be performed just by one reflective method invocations where actually a
series of methods from the standard NOIRIn API must be called. As the remote and reflective
invocation of methods requires marshalling arguments and handling exceptions in a special way,
the ADIH simplifies the implementation of the debugger front-end.

Besides, NOIRIn does not always provide interfaces for accessing AD declaration entities in
a way suitable for debugging. Sometimes, further tasks need to be performed to adapt provided
data to a required form. For instance, the debugger needs to find all matched class members ac-
cording to a pattern of an attachment. NOIRIn only provides an interface for reading the pattern,
the function retrieving class members was added for usage by the ADIH. Another example is
that the debuggee side puts AttachedAction objects in the dispatch strategy. However, the dis-
patch strategy on the debugger side is designed to store Attachment. Therefore, a helper function
finding the related Attachment according to an AttachedAction has been implemented.
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To summarise, information helpers simplify the process of performing tasks at the debugger
side and add functionalities supporting debugging which have not been available in the original
NOIRIn.

7. Advanced-dispatching debug interface

The Advanced-dispatching Debug Interface (ADDI) extends the Java Debug Interface (JDI)
by adding advanced-dispatching-related features to some existing entities and introducing new
advanced-dispatching related entities. The structure of ADDI is presented in figure 11. The light
grey parts are entities defined in JDI. The dark grey parts are entities defined in JDI but extended
with advanced-dispatching related features. The white parts are new entities introduced in ADDI.
The rest of this section describes each entity which is relevant to advanced-dispatching.

TypeComponent reifies a class member, i.e., a Field or a Method. A dispatch site, e.g. a field
access, or a method invocation, may be matched by a pattern of an attachment. So the
TypeComponent is extended with a function providing a list of matching attachments.

Field reifies a field. It extends TypeComponent and further distinguishes the related dispatch
sites into field reading and field writing. Therefore, it is extended with functions providing
a list of attachments matching its reading and writing respectively.

ClassType reifies a class. It is extended with a function providing a list of matching attachments
of its members.

ADMirror reifies an advanced-dispatching related entity. It wraps an ObjectReference which
is the mirror of an actual object in the debuggee program. Mostly, the “mirror-wrapper”
ADMirror provides advanced-dispatching related information and functionalities by ac-
cessing fields or invoking methods of the wrapped ObjectReference. If the required data
cannot be provided by the wrapped ObjectReference alone, then the request needs to use
the information helpers.
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Figure 11: Simplified UML class diagram of ADDI

Attachment reifies an attachment. It provides interfaces for accessing components of Attach-
ment. If the Specialization is matched, the Action will be invoked at the time that the
ScheduleInfo specifies. Besides, it can provide a list of TypeComponents which match a
pattern of the attachment and a mirror of the actual method that its Action implies.

BaseFrame and DispatchFrame reify different stack frames according to where they resides.
BaseFrame denotes a frame which is not in the infrastructural code of ALIA4J. Dispatch-
Frame is a specific frame which resides at the breakpoint shadow introduced in section 6.1
where the dispatch strategy has been computed but not yet performed. According to the
execution flow in the execution environment, the BaseFrame is always accompanied with
a DispatchFrame.

GenericFunction reifies a dispatch. The generic function is a unique identification, e.g., signa-
ture, which may be shared by multiple methods. A generic function has a list of attached
actions. Besides, it has a dispatch strategy which describes which of them are executed in
which order at a site performing this dispatch.

8. Lessons Learnt

8.1. Learning About the Internal Functionality of Eclipse Plug-Ins

Though a tutorial about building an Eclipse plug-in is easy to obtain in the Internet, lacking
of documentation makes realizing a desired functionality from scratch troublesome. This is also
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discussed in [24]. Fortunately, there are a lot of open-source plug-ins with high code quality
available which can act as examples. To implement a functionality for a plug-in, our experiences
may helps.

1. First, decide which functionality is needed and think of a similar functionality provided by
other plug-ins.

2. Second, you need to find the implementation of the functionality which you have located
in the user interface. Eclipse provides a handy tool to support you in finding relevant code.
After selecting the UI element, like view, editor, etc., press “Shift+Alt+F1” to invoke the
Plug-in Spy in order to open the related source file.

8.2. Extending Existing Plug-Ins

We developed our debugger based on the default Java debugger in Eclipse because the func-
tionalities for debugging base programs are the same. The core part of the Java debugger is the
plug-in org.eclipse.jdt.debug which gives a JDI implementation. Our debugger not only uses the
JDI implementation but also extends its behavior and structure. For example, when the debugger
requires to disconnect, it calls MirrorImpl.disconnectVM() and carries out a list of disconnecting
tasks. Our debugger needs to add another task into this list in order to release some resources
before disconnection. Simply importing this plug-in into the library of our project does not help.
Thus, we import this plug-in into a source folder.

Because the imported Java debugger plug-in code is a standard and we want to plug, unplug
and maintain the extended source code easily in the future, we put all extended code in another
source folders and leave the imported code intact. We modify the behavior and structure with-
out touching the source code using AspectJ. In order to organize extended files well, they are
in packages whose names are similar to the names of the packages where they are extended.
For example, the imported class StackFrameImpl is put in the package “org.eclipse.jdi.internal”.
We put the extended class BaseFrameImpl which inherits StackFrameImpl in the package “ex-
tended.jdi.internal”. With this naming convention, the developer can easily find out the corre-
spondence between the imported and the extended files.

9. A debugging example

To demonstrate the usefulness of the presented debugger, we present a walkthrough of one
debugging session. Supermarkets offer special prices for certain items and there are two types of
promotion prices in this example. One type is used when an item is on sale, its price is decreased
by ten percents. Another type is used when a customer has obtained enough credits from previous
shoppings, he/she can get one euro bonus then. If two promotion types are applicable, the price
of the item is first reduced by the constant bonus and then cut down by ten percents. Let us call
it double-cut price. For example, the double-cut price for a 10-euro item is (10 − 1) ∗ 0.9 = 8.1
euro.

In a supermarket system, the aspect in listing 2 is used for handling special prices. The
first advice from line 4 - 6 reduces the price of an item which is on sale according to the first
promotion type. The second advice from line 7 - 9 subtracts the bonus.

1 public aspect SpecialPrice {
2 pointcut itemGetPrice(Item i) :
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3 call(* Item.getPrice()) && target(i) && !within(SpecialPrice);
4 before(Item i) : itemGetPrice(i) && if(i.isOnSale()) {
5 i.setPrice((float) (i.getPrice() * 0.9));
6 }

7 before(Item i) : itemGetPrice(i) && if(i.isBonus()) {
8 i.setPrice((float) (i.getPrice() − 1));
9 }

10 }

Listing 2: A code example of an aspect

Running the program in listing 3, the printed price is 8.0 euro instead of the expected 8.1
euro.

1 public class Main {
2 public static void main(String[] args) {
3 Item item = new Item();
4 item.setPrice(10);
5 item.setBonus();
6 item.setOnSale();
7 System.out.println(item.getPrice()); // unexpected price
8 }

9 }

Listing 3: Main

The following list shows the process how to use the AD debugger to find the bug.

1. Set a breakpoint at line 7 in listing 3 and launch the AD debugger.

2. The line contains multiple dispatch site. First the field System.out is read, next the method
Item.getPrice is called and finally PrintStream.println is called. Thus, when the program is
suspended at line 7, the developer must step over the first dispatch to suspend the JVM at
the dispatch of item.getPrice().

3. Open the Advance Dispatch view and press the “Show dispatch” button.

4. The dispatch function is shown in the view as in figure 12. The bold lines tell the developer
that three actions are going to be executed at this dispatch site. However, the order of the
two advices is wrong according to the requirements. The bug is found and developer can
reverse their literal order to fix this bug.

Following the classification by Eaddy et al. [18], this example introduces an incorrect pro-
gram composition fault which occurs in the activity dispatch function evaluation. Only two ad-
vices from the same aspect are involved, the bug may be easily found by reading code. However,
if more advices match the same call site and they are from different aspects, the conventional
debugger is unable to show the program composition explicitly so that the faults become less
obvious.

10. Related Work

Eaddy et al. [18] implemented Wicca which is a dynamic AOP system for C# applications
that performs source weaving at runtime. The source code used in debugging is the woven source
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Figure 12: The dispatch function when Item.getPrice() is called in listing 3

code and only contains Object-Oriented (OO) concepts. The AD debugger is designed only for
Java based languages. It uses source code written by developer as the source view and defines
debugging constructs in terms of AD abstractions, such as attachment, or action.

The AspectJ Development Tools (AJDT) [13] enable the Eclipse platform to build, edit, and
debug AspectJ programs. It provides a lot of features decreasing the effort in understanding and
coding AspectJ programs. The Aspect Visualiser and Cross References view are most represen-
tative. The Aspect Visualiser is used to visualize how aspects are affecting classes in a project
in a “bars and stripes” style representation. The Cross References view is used in the AJDT to
show AspectJ crosscutting information, such as which advice a Java method is affected by ad-
vice. However, the debugger in the AJDT is problematic because the conventional Java debugger
is used.

De Borger et al. [25] found the pointcut-advice models of Java-based AO-technologies, such
as AspectJ, JBoss AOP, and Spring AOP to be very similar and thus defined a common debug-
ging interface: the Aspect-Java Debugging Interface (AJDI). The AJDI aggregates JDI mirrors
and the information about aspect related structure and behavior. They create events for dy-
namic AOP and events related to join points and advices by transforming AJDI breakpoints into
JDI breakpoints. Based on the AJDI, they built the Aspect Oriented Debugging Architecture
(AODA) which supports runtime visibility and traceability of aspect-oriented software systems.
Compared to their work, the AD debugger is built for more general concepts which are also
applicable for predicate-dispatching languages. However, locating is relatively easier in AODA
because constructs defined in the architecture are language-specific.

AD-specific information provided by tools or systems for AD languages are not only pro-
vided as online debuggers as the work presented in this paper. These other approaches can be
used as auxiliary approaches to understand program behavior or structure during debugging.

Pothier et al. [26] implemented an AO debugger based on an open source omniscient Java
debugger called TOD [27]. The TOD records all events that occur during the execution of a
program and the complete history can be inspected and queried offline after the execution. It is
extended to provide aspect murals that show the activity of an aspect during the execution of the

17

- 190 -



program. They also provide a view showing the execution history of the join point shadows of a
particular pointcut to view which occurrences of join points matched.

The JPred [6] Eclipse plug-in provides a view showing implication relationships between
predicates used for methods sharing the same signature. This is shown in terms of a Binary
Decision Diagram, similar to ALIA4J’s dispatch execution strategy. It indicates that a method
with a more specific predicate has higher priority to be executed. Take the JPred program in
listing 4 for example, the implication relationship is shown in figure 13. Compared to this view,
the graphical representation of dispatch function decomposes each predicate into a set of atomic
predicates and then repeated ones are removed. As shown in figure 14, it shows the evaluation
order of predicates instead of the relationship between them. In contrast to our online debugger,
the JPred plug-in only statically shows the decision process of dispatch.

1 class Test {
2 void m(i) {}
3 void m(i) when i==0 || i==1 {}
4 void m(i) when i==0 {}
5 }

Listing 4: A JPred program example

Figure 13: JPred predicate implication for method m() in
listing 4 Figure 14: Graphical representation of the dispatch func-

tion when m() in listing 4 is called in the AD debugger

CaesarJ [28] is a Java based programming language, which facilitates better modularity and
development of reusable components. The components are collaborations of classes, but they can
modularize crosscutting features or non-functional concerns. The CaesarJ Development Tools
(CJDT) extend the Eclipse’s Java Development Tools (JDT) plug-in with CaesarJ-specific fea-
tures. Like the AJDT, the CJDT also uses the Java debugger because CaesarJ programs can be
compiled into Java bytecode. Therefore, language-specific features cannot be shown and source
locations are lost in some cases.

Also for the ObjectTeams programming language an Eclipse-based IDE exists that enhances
the standard JDT Java debugger [29]. The enhancement filters call frames that belong to in-
frastructural code and adapts the placement of breakpoints respectively the behavior of stepping
through the code. While these enhancements hide the details of generated code from the devel-
oper, it still falls short in providing additional language-specifi functionality.

JAsCo [30] is an advanced AOP language tailored for the component-based field. It makes
aspects reusable and provides a strong aspectual composition mechanism for managing combi-
nations of aspects. Besides, it allows to add, change and remove aspects from the system at
runtime. JAsCo Development Tools (JAsCoDT) is a tool for editing, running and debugging
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JAsCo-enabled applications. JAsCoDT provides an Introspector which displays the connectors
found within the system. It also has a Joinpoint Lookup view which is used for statically explor-
ing matched join points of a hook instantiation. In the AD debugger, the Deployed Attachment
view is similar to the Introspector view, attachments can be activated or deactivated by checking
or unchecking. Compared to the Joinpoint Lookup view, the Advanced-Dispatching Structure
view can find not only matched type components for a given attachment but also the other way
around.

The approaches presented above all target specific general-purpose programming languages
of the aspect-oriented or predicate-dispatching paradigms. There is another field of related work,
namely work that aims to provide language-specific debugging support for domain-specific lan-
guages (DSLs). Since the ALIA4J approach also can be used to implement domain-specific
language [19], we will consider this kind of related work in the future. Here, we only want to
mention those related approaches that we are currently aware of.

The TIDE [31] environment is a generic debugging framework that can be instantiated for
new DSLs. While it simplifies the development of a debugger for a new language, it cannot take
the complete effort from the language developer. In contrast, our work provides a completely
generic solution for any language that is implemented in terms of ALIA4J. Furthermore, TIDE
does not specifically support advanced-dispatching features. Nevertheless, it enables a more
language-specific user interface while the user interface in our work only provides visualizations
of ALIA4J’s abstractions.

The IDE Meta-tooling Platform (IMP) [32] is an Eclipse project aiming at providing meta-
implementations of typical IDE tools. Examples are a re-usable infrastructure for syntax high-
lighting, refactoring support, semantic or static analyses, execution and debugging. Their focus
is on providing an infrastructure for the IDE integration and the graphical user interface, but not
on providing an infrastructure for the runtime part of actual debugger implementations. Never-
theless, we will consider to integrate our work with this project.

Finally, we would like to investigate the Platform-Independent Language (PIL) [33] which is
an intermediate layer between DSL source code and the target platform’s code. We will compare
this language with ALIA4J’s intermediate representation.

11. Conclusions and Future Work

In this paper we have presented the Advanced-dispatching Debugger Architecture (ADDA),
an accordingly implemented debugger for, and our experiences of implementing it. The ADDA
consists of three layers. We have implemented the application layer in terms of three new
Eclipse views which offer inspection of advanced-dispatching specific runtime state, present pro-
gram composition flow, explore affection of advanced-dispatching entities, deploy and undelopy
advanced-dispatching features at runtime, etc. In the model layer, we have defined the Advanced-
dispatching Debug Interface (ADDI) offering inspection of runtime states of advanced-dispatching
entities. And for use in the data layer we adapted the ALIA4J execution environment NOIRIn to
be suitable for supporting debugging.

Our future work includes developing an advance-dispatching event model, extending ADDI
to language-specific debugger interfaces and supporting debugging in ALIA4J’s optimizing exe-
cution environments. Furthermore, we will provide additional ALIA4J-based generic IDE tools.
We will investigate using Equinox Aspects for modifying the behavior of Eclipse plug-ins.

19

- 192 -



References

[1] C. Chambers, Object-oriented multi-methods in cecil, in: Proceedings of ECOOP, Springer Verlag, 1992.
[2] M. Ernst, C. Kaplan, C. Chambers, Predicate dispatching: A unified theory of dispatch, in: Proceedings of ECOOP,

Springer Verlag, 1998.
[3] H. Masuhara, G. Kiczales, Modeling crosscutting in aspect-oriented mechanisms, in: Proceedings of ECOOP,

Springer Verlag, 2003.
[4] R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming, Journal of Object Technology, March-

April 2008, ETH Zurich 7 (2008) 125–151.
[5] C. Bockisch, M. Mezini, A flexible architecture for pointcut-advice language implementations, in: Proceedings of

VMIL, ACM, New York, NY, USA, 2007.
[6] T. Millstein, C. Frost, J. Ryder, A. Warth, Expressive and modular predicate dispatch for Java, ACM Transactions

on Programming Languages and Systems 31 (2009).
[7] C. Clifton, T. Millstein, G. T. Leavens, C. Chambers, MultiJava: Design rationale, compiler implementation, and

applications, ACM Transactions on Programming Languages and Systems 28 (2006).
[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An overview of AspectJ, in: Proceed-

ings of the European Conference on Object-Oriented Programming, Springer Verlag, Berlin/Heidelberg, Germany,
2001, pp. 327–353.
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