
Building industry-ready tools: FAMA Framework & ADAI

Pablo Trinidad, Carlos Müller, Jesús Garcı́a-Galán, Antonio Ruiz-Cortés

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingenierı́a Informática - Universidad de Sevilla

41012 Sevilla (Spain – España)
{ptrinidad, cmuller, jegalan, aruiz}@us.es

Abstract

Developing good academic tools has become an art that forces researchers to achieve tasks they
are not supposed to do. These include coding, web and logo designing, testing, etc. It compro-
mises the quality of a product that differs from what the industry expects from it. In this paper
we propose professionalising the tool development to build industry-ready products that are a
middle term between academic and industrial products. We summarise many of the decisions we
have made in the last three years to build two successful products of this kind, and that we think
that may help other researchers their best in tool building.

Keywords: Automated Analysis, Software Product Line, SPL, Variability Models, Feature
Models, Service Level Agreement, SLA

1. Context

1.1. Introduction

One of the main objectives academic research must pursue is to turn ideas into industry-ready
products. One of the most common ways software engineering researchers do this is by building
software tools. However, many times academia only has resources to build just proof-of-concepts
tools or prototypes that are not ready to be used by enterprises, but manage to demonstrate that
the driving ideas are feasible and realisable into a product. When this is the case, prototypes
are used to capture the interest of industry in academic research results. Alas, the time needed
to transform a prototype into an industrial product is usually long enough to make businesses
reconsider the real utility of this kind of prototypes. The industry expects mature products that
can be incorporated into production as fast as possible. The academy’s mind is on dissemination;
the industry’s mind is on return on investment (ROI).

In the spanish context, where most businesses are small or middle-sized, this distance is se-
vere, since they are not usually prepared to assume the risk of incorporating the ideas behind a
prototype into their products portfolio. It implies an opportunity loss that affects the dissemina-
tion of the research results and obviously the private incomes of our research structure.

IThis work has been partially supported by the European Commission (FEDER) and the Spanish Government under
the CICYT project SETI (TIN2009–07366), and by the Andalusian Government under the project P07–TIC–2533.

1



We have observed that only academic tools are built when there is a lack of funding, and
most of the times at the expense of researchers who invest too much time in tool building. In this
scenario, researchers spend their time carrying out tasks they are not supposed to be assigned
to; such as programming, testing, building a web page to disseminate their work or designing
an interesting logo for the tool. Extra resources are not assigned to build tools because they
increase expenditure, but letting researchers build tools is also an inefficient use of resources. In
this scenario the inherited opportunity costs rocket since money is invested in good researchers
but usually unexperienced tool-builders, rather than letting researchers investigate and allowing
tool-builders develop tools.

The large distance between academic prototypes and industrial tools in quality terms is one of
the main aspects that make companies refuse joint work with academia. We consider it necessary
for academia to assume the costs of building better tools as efficient use of resources. As a
projection of this reflection, for last three years we have been developing what we call industry-
ready products that are a middle-term between academic tools and commercial products whose
objectives are:

• Using tools to reduce the distance between academy and industry.

• Reducing the risk the companies assume when they are interested in research results.

• To allow a fast dissemination of research results in already existing industry-ready prod-
ucts.

In this paper we describe our experience from two points of view:

• Economic point of view: we have professionalised our tool-building activity so we have
defined a business model that is briefly described in Section 2.

• Technological point of view: since we do not know our customers beforehand we have to
build flexible products that could be adapted to the different companies who show some
interest in our results. We show in Section 3 the main technologies that have helped to
provide this flexibility and the methodologies that have been applied to lead our products
to safe harbour.

1.2. Research Context
Applied Software Engineering (ISA) Group is a research group composed of 22 researchers.

Our research focuses on three main lines: Software Product lines (SPL) [1], software methodolo-
gies and services oriented architectures (SOA). Each line is independent of the others and there
are only sporadic collaborations among researchers in different lines. For each line, several tool
prototypes are built to demonstrate the realisation of the different advances and contributions.
Within the wide set of prototypes we have built, there is a subset whose objective is analysing
models of any kind: Feature Models (FMs)[2] in SPL, Service-Level Agreements (SLAs)[3, 4]
in SOA, BPMN models in methodologies, etc.

In 2007, we decided to transform SPLReasoner, a promising prototype to analyse FMs, to
FAMA Framework (FAMA FW), an industry-ready product. In 2009, we could say that this
model worked for FAMA FW so we decided to replicate the process to transform SLAxplainer [5,
6] into ADA [7], both tools to analyse SLAs. In ADA, we have applied not only the economical
aspects that led FAMA FW to be a success story, but also most of the technological issues since
their context is close enough to reuse technologies and methodologies. Next we describe what
we expect from an analysis tool in general and in FAMA FW and ADA in particular.

2



1.3. The products: Analysis Tools
Generally speaking, an analysis tool is used to extract relevant information from a model.

To achieve it, the tool transforms a model into different artificial intelligence paradigms such as
constraint programming, satisfaction problems or genetic algorithms. Users can query for infor-
mation by means of different analysis operations and the tool selects the most suitable technique
to solve the analysis problem, having the best possible time-to-response.

In 2007, SPLReasoner had become an ongoing prototype in which the SPL community had
shown much interest. We decided to take it to the next level building FAMA FW, an industry-
ready tool that should fulfil two requirements:

• We will develop it as if it were an industrial product rather than an academic product.
The main difference arises in how seriously we will take the development process and the
support to users and third-party developers. There is an economic investment need, so
business and dissemination models are defined to justify each cent that is invested in the
project.

• The product must be customisable since there are many potential customers. This means
that we will have a product per customer, thus transforming the product into an SPL. The
methodologies and technologies must be adapted to support an SPL.

There were no new functional requirements added to FAMA FW, only non-functional or
quality requirements that increase the flexibility of the product. These features did not depend
on FAMA FW particularities so, ADA was built to fulfil the same requirements. The architecture
of the product would be completely different so both products were built from scratch and only
some isolated pieces of code could be reused from the original prototype. Human resources
were assigned to the project and development methodologies were established to manage the
development team.

1.4. Objectives
At date, the practises that we describe in this paper are part of our internal procedures to build

and maintain software products of near-industry quality; so the distance between research results
and the industry is lessened. Our main objective is for the reader to see our story as a reflex
in their context and to consider applying some of the ideas described in this paper to transform
prototypes into industry-ready products.

We have divided our experience in two parts: a first part in Section 2 that explores the eco-
nomic aspects that have been considered during FAMA FW and ADA’s lifetime. These are the
interaction with the industry, human resources hiring, how to improve product dissemination and
which are the risks to be taken into account. A second part in Section 3 focuses in describing the
development methodology and how the architecture and the chosen technologies have helped to
manage the evolution of the product. To conclude we have built a post-mortem report in Section
4 that summarises the best and worst practises that we have detected during the development of
the tools under study.

2. Business Model

In this section we describe some organisational aspects that caused a reorganisation of our
structures and intense decision processes that took up a large amount of time and have to be taken
into account whenever an industry-ready tool is built.

3



2.1. An iterative process to build industry-ready products

Why do we build tools?. When we look to define a better way to build tools, it is mandatory to
analyse the reasons why academia builds tools. We build tools to transform research ideas into a
tangible product. If a company shows interest in the product, the product generates income. This
income allows academia to keep on researching and the research continues to produce ideas that
are incorporated to existing products, or in itself leads to the development of new products.

And why does a company pay for a product or finance a research topic? Because they foresee
its transformation into a commercial product and they expect to obtain ROI from it.

There is also another scenario that must be considered; the creation of spin-off companies
originating from these products. Mature products can become important assets in this kind of
companies which are created to industrially exploit research results.

Why does academia builds prototypes instead of building commercial products?. A prototype
is the less expensive and risky procedure to validate clipboard results. It reduces the time-to-
validation by a proof of concept. Although they work for researchers, this is not the appropriate
form to present the product to the industry. The industry expects a better quality product so
researchers usually invest time in improving the quality of a prototype.

How is a research prototype built?. Usually a researcher is the only developer. The tool is gen-
erally created as part of the ideas maturing process. Since transmitting vague ideas to developers
foreign to the problem may delay the project or even make it fail, the researcher is the one in
charge of developing the prototype. Although this way of working is valid when first creating a
prototype, extending the development in time may lead to a misuse of researchers time.

Where are the limits with prototyping?. This is one of the most important questions to be an-
swered by each researcher that develops a prototype. In our case, we have found that the correct
answer for us is ’When you can estimate the time and cost to build an industry-ready product,
the core requirements and the target market’. The point of this is that a researcher does not
spend more time in development tasks than what is necessary to confirm ideas. What a research
group needs is to collect all the available information to evaluate if it is worthy or not to assign
resources to build an industrial-strength tool from a prototype.

May a research prototype become a commercial product?. The general answer is no. A pro-
totype easily becomes a legacy system. Usability, extensibility and adaptability are quality at-
tributes that are barely considered as initial requirements when a researcher decides to build a
prototype. This transforms a prototype into a hard-to-maintain product. We need flexible archi-
tectures that can adapt a product to customer needs and incorporate new research results, and a
prototype is not usually built following these two objectives.

How do we build an industry-ready tool?. We have defined a process to manage the develop-
ment of tools that goes from the generation of research results to the dissemination of results to
companies. The process is divided in four main phases:

1. Prototype initiation: a prototype is initiated under the researcher’s consideration without
constraints of any kind. It is important that the researcher does not try to build the definitive
product; otherwise he will spend time on work that will be quickly discarded. Once a
prototype is mature enough, it passes to the next phase.

4



2. Prototype evaluation: a research group committee evaluates how promising a prototype
is based on the reports submitted by researchers, which have to analyse the development
costs, product features and target market among other issues. If a prototype passes this
phase, resources are assigned and the researcher is appointed leader of the product devel-
opment.

3. Prototype design: a reference architecture is defined. It must be as flexible as possible so
it supports any further extension or change in products requirements. Product leader and
hired developers are involved in this phase.

4. Product lifecycle: whilst sufficient resources are assigned, products are developed follow-
ing an iterative process. The lifecycle is carried out in three sub-phases:

• Transfer: ideas are incorporated to the reference architecture as a new feature. The
hired human resources are expected to get involved mainly in this phase. This phase
ends when the feature is implemented, tested and correctly documented.

• Tracking: the committee evaluates the product by means of the feedback received
from companies that have shown interest in the product. Based on this feedback,
future ideas to be investigated are chosen. The resources assignment is supervised
and changed if needed.

• Research: researchers produce new ideas. They are normally validated by the com-
munity in workshops, conferences or journals. When an idea is mature enough, trans-
fer phase starts.

Each of these sub-phases are executed by different human profiles: researchers, committee
members and developers. This work distribution allows the sub-phases to overlap.

Figure 1: Our Business process model

5



How many iterations are needed to produce an industry-ready product?. We have to take into
account that this form of building products is like creating a product whose market is unknown.
When we have a customer, requirements are clearer. However, when there exist many potential
customers but none of them acts as real customer, there is a tendency to be involved in a never-
ending project. If a company shows interest in a product, the iterative process may be repeated
indefinitely. If after given several iterations, no interest is shown, it is better to freeze the project
until new opportunities arise so that resources are not wasted. In spite of this, the more iterations
are fulfilled, the clearer the companies vision of the product. It is the commitee’s responsibility
to envision future interests and decide which risks are worth taking and which are not.

2.2. Human Resources

With the above approach, we try to manage the product development as if we were a software
development company. Thus, we have defined several roles that are played by our researchers
and the hired human resources such as project leaders, developers, testers, etc. We have stated
that researchers act as project leaders but, who plays the remaining roles?. It is not a secret
that researchers commonly play roles they must not play such as developer, tester, designer,
web-master, etc. We consider this is a waste of resources since researchers salary is usually
(and hopefully) higher than developers. We attempt to hire different workers whose professional
profile fits into the job they are assigned.

When hiring people, a new problem arises: carrying out a selection process. We have dele-
gated this task to the project leaders, however several factors make us wonder if this decision is
the best choice:

• On the one hand, the University has plenty of motivated and well-prepared candidates.
In our case, most of the researchers are lecturers in the University so they have proba-
bly taught some matters to the candidates, making it easier to evaluate their personal and
technical abilities. This information is very valuable in the selection process.

• On the other hand, selecting people is not one of the responsibilities a researcher must
assume. Furthermore, it is interesting to differentiate candidates who want to be part of a
big software company from candidates expecting a professional career in academia. We
want to avoid a developer leaving an ongoing project since it would imply a new selection
process and probably the loss of knowledge. This makes the selection process harder and
it usually takes longer than expected.

After 3 years following this procedure, we have had good and bad experiences. We have
organised selection processes lead by the project leaders. Although the project leader is who best
knows the technical profile a developer or a tester has to satisfy, there are other psychological and
emotional factors involved in selecting the right candidate. Technical skills are as important as
personal abilities. This is one of the reasons that makes us wonder if selection processes should
be outsourced so there is more confidence in selecting the most decisive candidate.

2.3. Dissemination

Tools dissemination is a task that should be carefully performed while the project takes place.
We explain as follows the most important issues of our marketing and communication plans in
order to define the different actions related to the dissemination of our analysis tools.

6



2.3.1. Marketing Plan
A marketing plan defines the products we aim to build, the policies to regulate its consump-

tion, and its target market.
The basic policies needed to regulate the consumption of our developed analysis tools are the

price and usage policies.

• Price policies: our goal is to capture investment; that means to obtain as much users as
possible for our products. Users are not asked for a fee to use our tools. We decided to offer
them as open-source tools, yet some kind of tool supporting such as tool customisation or
integration would require an economic compensation.

• Usage policies: We set LGPLv3 licence [8] to our products. We decided to use this licence
since it allows everyone to use our tools, even in commercial products, but a citation to the
owners is mandatory.

We established as target market for our products companies and research institutions that
have shown some interest in analysing models of any kind, specifically FMs and SLAs. We
would offer our analysis tools and customising services to them. At this point we had to set a
communication plan that considers how to reach the target market.

2.3.2. Communication Plan
Our communication plan’s objective is two-fold; we want to be equally appealing to the two

entities of our target market: private companies and research institutions.
To achieve such purpose we had to ask ourselves: What do private companies and research

institutions expect from us?. While the former usually have the goal of getting a commercial
product in order to obtain ROI; the latter commonly want to work together to obtain results in
terms of research and tools integration. Therefore, we have to consider the kind of entity in the
definition of our communication plan as follows:

• Dissemination releases for companies and research institutions:

– Advertising: we have created web portals as direct communication channels1. Before
releasing any versions of our products we designed logos and corporate images that
identify the products in any publication relating them. Another kind of advertising is
with posters and tool demonstrations sessions of conferences and commercial events.

– Technical documentation: customers need to know how to use and extend our tools
by means of: (1) technical reports published in the respective web portals. Such
technical reports reduce the time to learn to develop an extension of our tools or to
integrate our tool into third–party tools. Usually, the technical reports are published
on–demand when an entity shows interest so our effort is not wasted. (2) source
documentation by means of Javadoc [9] or Doxygen [10] tools. Doxygen allows
introducing LATEX pieces of text/images and producing a final documentation richer
than the one produced by Javadoc. We also include source code documentation.

1FAMA portal is available at http://www.isa.us.es/fama and ADA portal is available at http://www.isa.
us.es/ada

7



– Scheduling: periodically, private companies go to commercial events and research
institutions go to conferences. Once these forums are identified, we attend in order
to show our products.

– Predefined forms: some legal documents such as agreements and compliance forms
and usage certificates are defined. These documents are necessary to validate the use
of our tools by other entities and to guarantee the LGPLv3 compliance. Therefore,
when an entity starts using a product of ours, they will be asked to request a signed
copy of such documents.

– Periodical affiliation: to keep the affiliation of research institutes and companies they
are periodically sent quality assurance forms, satisfaction forms, etc.

• Dissemination releases only for research institutions:

– Research-oriented dissemination: usually the communication of research tools is not
mass marketing, so a much more selective marketing activity is needed. Neither
leaflets, nor mailings are needed. Conferences and workshops are the most suitable
events for tool demonstrations. In this case, scientific papers and journals are a first–
term documentation, but they do not usually describe the internals of tools. Specially,
when the research contribution is the structure and design of the tool instead of a new
algorithm. Technical reports cover this gap so the insides of tools are described
without constraints of any kind.

• Dissemination releases only for companies:

– Company-oriented dissemination: Any research group grows surrounded by local,
national and worldwide companies who are potential consumers of our products.
Research projects usually include some technology partners that are interested in
knowing at first hand the results of the projects. This contact usually produce constant
meetings between researchers and companies that may lead to projects where our
products play a key role.

2.4. Risk Analysis

A risk is any event that implies a delay in time or a deviation in expenditure. We have
identified the following risks during industry-ready product development:

1. a developer leaves. It is a well-known risk in any development process. Avoiding it is com-
plex, but we attempt to reduce its probability trying to offer our technical staff obtainable
goals to prepare professional careers accordingly. If it cannot be avoided, it is important
to minimise the impact of a developer leaving. It implies a constant focus on source code
documentation and reporting.

2. a product is not interesting for the community. When this happens, it affects the cost
assumed to date. Therefore, we establish the iterations of process depicted in Section 2.1
to determine as early as possible if the target market is interested in a product or not.

3. A researcher has to play other roles. It usually happens when the project has been as-
signed insufficient human resources. A thorough project scheduling helps to avoid these
situations, anticipating the needed human resources.

8



3. Development model

In this section we describe the software development methodology followed in the develop-
ment of our analysis tools. We also detail the technology incorporated in our products and the
reference architectures.

3.1. Methodologies

Due to the particular characteristics of our products, a methodology to develop our industry-
ready products should support: (1) changing requirements, because requirements become clearer
when the results can be observed, and (2) a straightforward and continuous communication be-
tween researchers and developers to ease the incorporation of research results into the existing
products.

To cover these needs, we chose agile methodologies [11] which are a set of methodologies
based on teamwork and adaptation to changes to provide a rapid high quality software product.
These methodologies requires small teams, frequent and straightforward communication as pe-
riodic meetings to monitor the progress of the tool, a short time planning and the know-how
developers reuse from similar projects to take advantage of their experience. The opposite of
heavyweight methodologies, agile methodologies are more incremental, iterative, present short
iterations, and requires less documentation; only the essentials, so third-party developers can un-
derstand how to extend the tool, users know how to use the product and the know-how remains
inside the organisation.

We have specifically used the following agile methodologies to develop our products:

• Feature-Driven Development (FDD). Firstly, groups of features, which represent user vis-
ible characteristics, are identified. Later, such features are classified in core and satellite
features for a priority assignment. A core feature is mandatory for any potential customer;
a satellite feature is only relevant for a subset of customers. In an iteration, a subset of
features is selected, designed, developed and tested starting with the core features and fol-
lowing the priority order. FDD allows the separation of different satellite projects, each
considered with satellite features.

• Test-Driven Development (TDD). Before developing or upgrading a feature, one or more
test-cases are designed, implemented and executed. Whenever new source code is pro-
duced or existing one changes, code is tested. Finally we refactor the source code to grant
its quality. In addition, before building a distribution for a product, test-cases are executed
to detect possible errors introduced by changes. It increases the quality, reduces the time-
to-failure, and accelerate the development since time to repair errors is reduced. TDD is
used in our projects in conjunction with FDD to increase the confidence in the feature
development correctness.

The experience on using these methodologies has been very satisfactory. On FAMA FW,
several versions of the tool have been released with significant functionality upgradings and the
amount of detected errors has been drastically reduced. On ADA, the experience on developing
and managing FAMA FW helped us to improve the development process. Thus, we built the
first version of ADA which covered a complete iteration in all the development phases in three
months.

9



3.2. Software Architecture
Before defining an architecture we need to discuss the common aspects of analysis tools in

general. Basically, an analysis tool works with a model to be analysed, several analysis oper-
ations, and one or more reasoners that are able to solve those operations. The main goal is
extracting information from the models using the analysis operations. Using this approach we
may characterise a flexible analysis tool as the one that is able to support:

• Different kinds of models (a.k.a. metamodels) and file formats to store and retrieve them.

• Different analysis operations.

• Several alternatives to solve an analysis operation.

FAMA FW and ADA have a SPL-based design. This means that instead of building a product,
we pretend to build a flexible production platform that is able to produce different kinds of
products depending on the customer needs. It is very valuable for our purposes since we are
unable to determine the companies that are going to use our products.

SPL is a building concept rather than a bunch of methodologies, so specific procedures have
to be defined for each kind of project. One of the ways to implement a SPL is by a component-
based architecture [12, 13]. A component-based architecture emphasises on developing func-
tionality in independent components, integrating them later to provide a complete functionality.
It allows dividing the tool in many small-sized projects and reducing the coupling among them. It
permits parallelising the development of these components so development time can be reduced.
Among the advantages of using a component-based architecture we remark the following:

1. Modularity: coupling among components is reduced to minimum since each of them is
specific enough to perform a feature without needing a direct coupling with other compo-
nents. It can only be achieved when the nature of the problem allows this kind of division,
as is the case for our products.

2. Extensibility: new functionalities are easily added registering a new component in the
reference architecture.

3. Integrability: due to the reduced coupling, communication lines between components is
minimum which eases the integration process and the substitution of components.

In our component-based architecture, we have identified three component layers as depicted
in Figures 2 and 3:

1. Core: a core is a subset of components that must be in any product. They are the first pieces
to be defined in any tool. Core components define basic functionalities, public interface
for the final users, and load and use extensions.

2. Extensions: an extension is an implementation of one or more features that are pre-defined
by core. Several extensions can be available offering the same feature so the core is in
charge of selecting the most suitable extension to carry out the job. The extensions we
have identified for FAMA and ADA are:

• Metamodels to be analysed.

• Analysis operations.

• Reasoners to solve the analysis operations.

• Selection criteria to choose the better reasoner to solve an analysis operation.
10



Figure 2: Architecture of FaMa framework

• Transformations between models.

3. Interfaces: they are the facade that allows third-party entities to use our products. They are
defined as independent satellite projects that use the API of the analysis tool, considering
tool API the core and extensions, and give us new functionality. A typical example can be a
GUI, that consumes the API of the tool and makes the human use of the tool easier than the
programmatic use. An example of this kind of interface is available for ADA, specifically
a rich internet application called ADA-FrontEnd that is accessible at try it online! section
of ADA portal (http://www.isa.us.es/ada).

In both tools, FAMA FW and ADA, a three-layer architecture (see Figures 2 and 3) is de-
signed to support several variation points. In our context, a variation point is any extension
component.

From a developer’s point of view, the tool becomes a framework, since any new extension
that is developed by third-parties can be integrated in the architecture and the core is in charge of
consuming the extension. From an end-user’s point of view, those variation points are transparent
to the user since it is the core that is in charge of choosing the extensions needed without any
kind of user interaction.

The architecture permits dividing the product development into several sub-projects each
of them involving an extension. It eases the community collaboration and the hiring of new
developers for our development team who can start developing satellite projects without affecting
core functionality.

However, the adoption of this architecture involves a double challenge: (1) the integration be-
tween independent components requires a technological solution, such as a tool or framework to
support it; and (2) the management of dependencies between core and extensions. The following
Section 3.3 tackles these challenges with some technology decisions.

11



Figure 3: Architecture of ADA framework

3.3. Technologies

Making the right decisions regarding technology is key to support product evolution. Any
wrong decision may lead to an important economic loss.

One of the most important choices to develop software is the programming language to use.
A stable and mature language, with the right paradigm is needed to minimise risks. If we want
to involve a community behind a product, we should choose a general purpose programming
language with many open source projects. These projects implies to have several free tools
available that can be incorporated into our products. We have chosen Java [14] because it is
widely used and has a large open source community behind, and many high-quality tools.

In previous Section 3.2, we mentioned two challenges in architecture designing: integration
between components and dependencies management. OSGi [15], Maven [16] and Subversion
[17] have been the chosen tools that help us with these problems as detailed in the following:

1. OSGi is a framework specification that provides a container to deploy, run and integrate
components (a.k.a. bundles) for this framework. It has several implementations, such as
Equinox [18], Felix [19] or Knoplerfish [20]. OSGi allows the integration between OSGi
compliant tools, and it offers some interesting plug-in tools. One of them is Distributed
OSGi (DOSGi) [21] which publishes OSGi bundles as web services providing a WSDL
specification [22]2.
ADA and FAMA FW are OSGi-compliant. FAMA FW is currently being used by Moskitt
Feature Modeller [23] thanks to OSGi framework, and ADA public interface can be used
as a web service through its WSDL specification.

2DOSGi was used to generate the WSDL facade of commented ADA interface ADA-FrontEnd

12



2. Maven is a software tool for the project management and for automating tasks on java
projects. For FAMA FW and ADA, Maven manages the dependencies between core, ex-
tensions and satellite projects, OSGi metadata, binaries, and tests execution before pack-
aging.

3. Subversion is a popular version control system to manage changes on source code, re-
sources and documentation. Our subversion repositories comprise three folders: (1) trunk
for the current development, (2) branches for separated lines of development, and (3) tags
to keep snapshots of the repository at a concrete date or milestone.

4. Conclusions and Postmortem Report

With this experience we have learned that we, the researchers in academia have to put our-
selves in industry’s shoes so our prototypes are closer to what the industry expects. As of today,
more than 20 companies and research institutions are using, adapting or are interested in using
FAMA FW and we expect ADA achieves the same goal in the next months. During this process
there have been right and wrong choices. To analyse them we have realised a post-mortem report
which summarises those practices that we will keep in the future and that we recommend others
to do. Besides, we have committed errors that we will try not to repeat in the future and are also
part of this report.

4.1. How to continue doing what was done Right

1. LGPLv3 license is the best option.
2. The components architecture has reduced the bugs in the products, moreover in those that

have been affected by many iterations.
3. The business model used in FAMA FW has been validated in the ADA project. The human

resources reuse between the two projects has been especially interesting.
4. The dissemination model is effective enough as shown by the high number of companies

and research institutions interested in FAMA and ADA.

4.2. How to correct what Needs Improvement

1. We have not focused our efforts in providing much documentation to end-users and third-
party developers. We have had to invest much time in documenting after several iterations
since we have been asked for more and better documentation. We have solved it by adding
a new procedure to FDD that requires documenting before ending the development of a
feature or extension.

2. Some times our selection processes were massive and they took longer than expected. We
will find a solution for this in the future.

3. At the beginning we prepared a detailed planning for the whole project and we used a tasks
tracker to monitor if tasks were on schedule. However, we had to redo the planning due
to the changing requirements. Therefore, the detailed planning should define short-term
goals within a month. The long-terms goals should be defined in a more relaxed planning.

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns, SEI Series in Software Engineering,
Addison–Wesley, 2001.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature–Oriented Domain Analysis (FODA) Feasibility Study,
Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon University (Nov. 1990).

[3] L. Lewis, Managing Business and Service Networks, Kluwer Academic Publishers, Norwell, MA, USA, 2001.

13



[4] D. Verma, Supporting Service Level Agreements on IP Networks, Macmillan Technical Publishing, 1999.
[5] C. Müller, A. Ruiz-Cortés, M. Resinas, An Initial Approach to Explaining SLA Inconsistencies, in: Proc. of the

6th Int. Conf. on Service-Oriented Computing (ICSOC), Vol. 5364 of LNCS, Springer Verlag, Sydney, Australia,
2008, pp. 394–406.

[6] C. Müller, M. Resinas, A. Ruiz-Cortés, Explaining the Non-Compliance between Templates and Agreement Offers
in WS-Agreement*, in: Proc. of the 7th International Conference on Service Oriented Computing (ICSOC), Vol.
5900 of LNCS, Springer Verlag, Sweden, Stockholm, 2009, pp. 237–252.

[7] C. Müller, A. Durán, M. Resinas, A. Ruiz-Cortés, O. Martı́n-Dı́az, Experiences from building a ws–agreement doc-
ument analyzer tool (including use cases in ws–agreement and wsag4people), Tech. Rep. ISA-10-TR-03, ISA Re-
search Group, http://www.isa.us.es/modules/publications/getPdf.php?idPublication=322 (Jul
2010).

[8] Free Software Foundation (FSF) Inc., Gnu lesser general public licence version 3,
http://www.gnu.org/copyleft/lesser.html.

[9] Oracle–Sun Developer Network (SDN)., Javadoc tool, http://java.sun.com/j2se/javadoc/.
[10] Dimitri van Heesch et al., Doxygen -Dox(Document) Gen(Generator)-, http://www.doxygen.org.
[11] M. Fowler, J. Highsmith, The agile manifesto, In Software Development, Issue on Agile Methodologies (August

2001).
[12] D. Coppit, K. Sullivan, Multiple mass-market applications as components, in: Proc. of the 2000 International

Conference on Software Engineering, 2000, pp. 273–282.
[13] H. Kienle, Component-based tool development, in: Frontiers of Software Maintenance, 2008. FoSM 2008., 2008,

pp. 87–98.
[14] Sun Microsystems, Java, http://java.sun.com.
[15] OSGi Alliance, Osgi, www.osgi.org.
[16] Apache Software Foundation, Apache maven, http://maven.apache.org.
[17] Apache Software Foundation, Subversion, http://subversion.apache.org.
[18] Eclipse, Equinox, www.eclipse.org/equinox.
[19] Apache Software Foundation, Apache felix, http://felix.apache.org.
[20] Makewave, Knopflerfish, www.knopflerfish.org.
[21] Apache Software Foundation, Distributed osgi, http://cxf.apache.org/distributed-osgi.html.
[22] World Wide Web Consortium, Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

(2001).
[23] Conselleria de Infraestructuras y transportes, Moskitt, http://www.moskitt.org/cas/moskitt0.

14


