
Processes and Practices for Quality Scientific Software
Projects

Veit Hoffmanna, Horst Lichtera, Alexander Nyßenb

aResearch Group Software Construction, RWTH Aachen University, Aachen, Germany
bitemis AG, Lünen, Germany

Abstract

Nowadays modern software development processes are well established and are one of
the mayor success factors for software projects. However, many software projects in sci-
entific organisations have serious quality issues since they lack a feasable development
process. In this paper we discuss a feature based development process for scientific
software projects that addresses the specific characteristics of scientific software. More-
over, we introduce a set of best practices for the infrastructure and management of such
projects.

Keywords: software development process, best practice, scientific software

1. Introduction

Software tools are a vital prerequisite for scientific research. They can be used to
demonstrate the relevance of research results and their applicability in practice. Software
tools enable to conduct case studies in scientific as well as in industrial environments.
Furthermore they extend the addressees of research results and are often the root for
industrial or open source software development projects.

Although the importance of software tools for research is well accepted in the scientific
community the quality of scientific software is seldom adequate. Scientific software is
often error prone, doesn’t implement the intended functionality or is only usable by the
developers since either the documentation is missing or outdated.

In our experience quality problems of scientific software are mostly caused by an in-
adequate software development process and an insufficient development infrastructure.
Many scientific software projects don’t define a dedicated development process or im-
plement a process that doesn’t cope with the specific constraints of scientific software
development. However, this induces various problems in the management of the software
and in the collaboration of the developers. Those problems often lead to severe quality
issues in the software.

The remainder of this paper is structured as follows. In chapter 2 we characterize sci-
entific software projects and delineate them from other development projects. In chapter

Email addresses: vhoff@swc.rwth-aachen.de (Veit Hoffmann), lichter@swc.rwth-aachen.de
(Horst Lichter), alexander.nyssen@itemis.de (Alexander Nyßen)

1



3 we briefly describe ViPER, a scientific software development project that inspired most
of the results presented in this paper. Chapter 4 defines a set of goals for an adequate
scientific software development process for medium to large size, long living projects. In
chapter 5 we introduce a process frame that enables those defined goals. Afterwards we
introduce best practices for our process frame in chapter 6. Finally chapter 7 situates
our best practice approach with some related research before we give some concluding
remarks in chapter 8.

2. Characteristics of Scientific Software Projects

Scientific software projects are very diverse. They vary in size, lifespan, application
domain and used base technology. Therefore it is impossible to define one single fixed de-
velopment process that fits for all those projects. Anyhow, all scientific software projects
can be distinguished by two major characteristics that clearly separate them from other
development projects like open source or commercial development.

1. Scientific software projects are embedded in one or more research projects.
This has various impacts to the software and its underlining process, because re-
search directions may change based on obtained results, research opportunities or
funding. This usually shifts the focus of the software and often induces changes
of the requirements and architecture. Additionally not every research produces
the expected results. Empirical studies may uncover misconceptions and flaws in
earlier research. This often also impacts the software since empirical results may
show that methods or technologies supported by the software are not feasible. Thus
scientific software projects have to deal with dead-ends and rollbacks regularly.

2. Scientific software projects are preformed with heavy student involve-
ment. Main parts of the functionality of many scientific software projects are
developed in students’ theses or with the help of student developers. This causes
two special problems.
First, students are usually inexperienced. Many students have never been in real
world development projects. They often lack software engineering know-how and
have no experience with tools, languages, libraries or frameworks that are used in
the project.
Second, students just take part in the development of the software for a very lim-
ited period of time. Students typically join the development team just for their
thesis and are seldom a part of the development team for more than nine months.
Additionally students often only contribute to a very limited part of the project,
namely the specific feature that is being developed in the context of their thesis.
Thus students often don’t have overview over the project as a whole and have little
interest in the overall project success.

Any development process aiming to support and guide scientific software projects has to
consider these special characteristics. In the following however we concentrate on medium
to large size, long lining development projects, like SESAM [20], Fujaba [7] or MontiCore
[11]. I.e., we primariliy consider scientific development projects with a livespan of at least
several years and at least 5-10 developers. Those projects typically create software, that
should be used in multiple contexts, by several different kinds of stakeholders, especially
those who are not directly involved in the development process. Although several of

2



the described best practices are also useful in smaller projects the development process
described here is not adequate for small prototype projects that don’t have to address
documentation or architectural quality because it enforces different quality assurance
measures that are unnecessary in those situations.

3. Viper - A Scientific Software Development Case Study

In the following we briefly describe the ViPER project that we run for several years.
The essence and the lessons learned of this project are the central experience basis to
propose a process frame for scientific software projects.

ViPER (Visual Tooling Platform for Model-Based Engineering) [21] is a tooling plat-
form to leverage model-based engineering. It is based on Eclipse [6] technology and offers
support for UML-based visual modeling, UML-based ANSI-C code generation, extended
support for editing and simulating of detailed narrative use case descriptions, as well as
built-in dedicated methodical support for the MeDUSA-Method [12].

Having started in July 2004 as a mere experiment to evaluate Eclipse related EMF
and GEF technologies in the form of a simple UML state machine diagram editor, which
was bundled into a single plug-in and accounted for about 3800 lines of source code,
ViPER has grown into a rich and extensive tooling environment in the following years.
It up to now bundles round 50 plug-ins and subsumes more than 200,000 lines of code,
incorporating the contributions of 18 developers (scientific staff as well as students) over
the years. In the recent years some parts of ViPER have been promoted to the Eclipse
frameworks or to separate open source projects.
As ViPER grew the development infrastructure and the process management measures

had to be adopted several times and nowadays ViPER is developed with a defined de-
velopment process that relies on independent features, build on a common platform and
a common development infrastructure.

The development infrastructure of ViPER consists of a CVS-Version-Management
Repository [5] and a Bugzilla-Issue-Tracker [4], that are connected by a SCM-Bug [19]
integration. Additionally ViPER maintains a dedicated build server for release engineer-
ing and quality assurance. This build server runs an ANT based Eclipse product build
that creates releases on a nightly basis. Apart from the assembly of the ViPER-Product
each build includes the validation of the source artifacts with checkstyle rules and the
creation and execution of a regression test suite to assure functionality and conformance.

Inspired by Scrum [18] the ViPER project defines a lightweight sprint oriented plan-
ning process and uses Bugzilla as planning tool. Every sprint is connected to a target
milestone in the Bugzilla system and all intended functionality is filed as enhancement
requests against this milestone.

Since the ViPER development team is quite small the ViPER process relies on direct
communication and the coordination of different features is done in weekly management
meetings. Those management meetings are the core activity of the ViPER process and
must therefore be attended by all project members. They are used for planning, the
coordination of feature projects and the maintenance of the platform. They regularly last
for about 1,5 hours. Every team meeting is started with a short status report from every
project member. Afterwards team meetings include a management part, where sprints
and scoping sessions are planned or development tasks are assigned. The meetings often
end with an open discussion session where specific problems are discussed.

3



Figure 1: ViPER Screenshot

Currently ViPER is managed in a well established process that supports its efficient
development. Although it is lightweight enough to enable an easy setup of new feature
projects it includes measures to assure integration and quality. Moreover parts of the
ViPER process have been successfully transferred to several other scientific development
projects. In the next sections we present the essence of the ViPER process in the form of
an extensible process frame and a set of best practices for scientific development projects.

4. Objectives of a Scientific Software Development Process

As stated before we primarily target long living scientific software projects that should
be used by several different kinds of stakeholders. The primary objective of a development
process for this kind of scientific software projects is to enable the development of software
in sufficient quality. For most scientific software projects a beta-quality level is sufficient,
since it is neither possible nor necessary to develop the software to full commercial quality.
Anyhow, since scientific software must be usable in case studies and field research they
have to provide a minimal level of usability and robustness. Apart from implementing the
intended features correctly the software must be documented and robust against simple
misuses like invalid input data.

Additionally the architecture is a core concern for many scientific software projects,
since the software is often enhanced by new features or restructured due to new require-
ments. Thus the maintenance of sustainable software architecture is a vital task for a
scientific software development process.

4



To achieve those objectives the process must especially address the specific charac-
teristics of scientific software projects presented in chapter 2. This implies that a feasible
development process must provide support for agile, evolutionary development, which is
induced by the volatile development. Changes caused by shifted tool usage and the im-
pact of requirement changes to the architecture must be manageable, too. Furthermore
the software has to be rolled back to defined baselines after reaching a dead-end in the
project.

Additionally a development process must address the specific human factors in sci-
entific software projects, which means it must enable students to produce high quality
results and to contribute to the project. Thus a development process must define clear
rules and provide measures to transfer existing and new know-how. Producing high qual-
ity results however demands a lot of discipline especially from inexperienced developers
like students. Therefore the development process has to provide team measures to raise
the involvement of the participating students and to raise their interest in the project
success.

5. A Process Frame for Scientific Software Projects

As denoted before scientific software projects have two specific characteristics that
affect their lifecycle and development processes. First, they undergo continuous changes
since they evolve alongside the theoretical research. Second, most of the functionality is
developed in different thesis works performed by students.

In this section we describe an iterative, incremental and evolutionary process frame
for scientific development projects that explicitly addresses those specific characteristics.
This process frame should be enhanced with best practices described in the later sections
of this paper.

Scientific software projects resemble open source projects in many ways. They are
evolutionary, open, focused on an extensible infrastructure to react on usage shifts, suffer
from quick changes in the development team and mainly develop functionality in dedi-
cated subprojects. Therefore we have adopted many ideas from open source development
projects for the proposed process frame and the best practices.

Our process frame reflects the overall project organization approach of incremental
development projects based on feature development. A feature may be defined as a set of
related functions that are implemented together to realize a specific goal. Furthermore
it explicitly considers the systematic development of reusable features, which we call
platform.

To maintain a stable feasible architecture and manage the development of the various
features, the process frame consists of three separate but interconnected sub-processes:
a platform-process, a set of feature-processes and an underlying coordination and collab-
oration process (see Figure 2). We will explain these processes in the following.

5.1. Platform Process

The objective of the platform process (similar to project line development) is to
ensure that a reusable platform (called the platform feature) is developed and maintained
continuously. The platform process is initialized by the platform team at the start of
a scientific development project and is performed until project end. It manages the

5



Figure 2: Dependencies between the sub-processes

platform feature, a single feature that contains two different kinds of information. First,
it contains the software’s common code platform (e.g. reusable functionality that is used
as a basis for feature development). Second, it manages the software architecture. It
defines an architectural pattern for the entire software and a common scheme for the
definition of interfaces between features. Additionally it introduces a set of tasks for the
maintenance and quality assurance of the software architecture, e.g. scoping, revalidation
or measurement tasks. Because the platform-feature is the core of the development and
the platform process is performed continuously, the platform team should consist of
experienced developers that are responsible for the project and accompany the project
for a longer time. Thus, in most cases the platform team is formed by PhD students,
post-docs or assistant professors.

5.2. Feature-Process

As the main functionality of the software is developed in feature projects, a new fea-
ture process is initialized for each feature development. Because every feature process
is performed by an autonomous feature team, several feature processes can be run in
parallel. The single feature processes may vary broadly, since the feasibility of a devel-
opment process for a feature is dependent on the type of the feature, the abilities of the
team, the schedule and the workload. But it has to be ensured that each feature process
includes an internal planning for the feature, a requirements engineering session, the def-
inition of the feature’s architecture as well as the feature’s implementation, integration
and documentation.

6



5.3. Coordination and Collaboration-Process

Finally, the coordination and collaboration process manages and coordinates the evo-
lutionary feature based development of the software. It defines all process standards, i.e.,
process rules and documentation standards and templates for the platform and all feature
processes. Furthermore, it defines and establishes the development infrastructure, consti-
tuting of e.g., configuration and change management, release engineering infrastructure
and development environment. Moreover, the coordination and collaboration process
determines the project’s global time schedule, i.e., it defines synchronization points for
the platform and all feature projects. Finally, it nails down global management tasks
for the coordination of development teams. The coordination and collaboration process
is typically managed by a coordination board that is created out of developers from the
feature and platform teams.

Figure 3: Project snapshot showing sub processes on the timeline

Although each feature process may define its own specific development lifecycle, all
feature processes as well as the platform process must adhere to the coordination and
collaboration process. They must apply the defined development infrastructure and the
documentation must conform to the templates. Additionally the coordination and col-
laboration process defines the project pulse, i.e., it defines the releases and corresponding
milestones that are obligatory for all feature processes.

The presented process frame on the one hand enables to efficiently develop features in
dedicated feature processes, since feature processes are lightweight an rely on a common
infrastructure. On the other hand a global, sustainable platform can be developed and
maintained. Thus a set of management practices must be established to coordinate the
decentralized sub processes of the presented process frame. A set of best practices ad-
dressing especially the most pressing management challenges is presented in the following
section.

6. Best Practices

In the following we present a couple of best practices that we recommend for scientific
software projects. These best practices are often adaptations of agile or open source

7



techniques and are mostly associated to the platform-process or to the coordination and
collaboration process.

6.1. Release and Version Management

Apply a sprint based Release Management

Industrial strength release planning is typically inadequate for scientific software
projects where features can quickly emerge and disappear again, because it is too heavy-
weight and inflexible. However, the delivery of the features and their integration in the
platform needs to be managed. We therefore recommend a lightweight release planning
similar to sprint planning in Scrum [18]. We recommend sprints of about three months.
Although this is longer that typical Scrum sprints we have very positive experiences.
First, the development speed is often slower compared to commercial projects because
often developers (students) are inexperienced and the feature-teams are very small. Sec-
ond, we recommend that each milestone should include contributions from every active
feature-project. This positively raises the acceptance of milestones as the most important
delivery target. But this can only be achieved if the sprints are not too short. At the
end of each sprint a release is build which should contain all completed features as well
as those features under development that have reached a stable state.

Use an integrated Change Management and Version Control System

Scientific projects are performed in a decentralized way and evolve evolutionary.
Therefore the management of changes and their impact to existing project artifacts is
a crucial task. This demands a close integration of the version and change manage-
ment system. Every bug or enhancement request should be handled by a ticket of the
change management system and every change to a project artifact must be associated
to a respective ticket. This enables to keep track of changes and to trace changes back
to project artifacts. Moreover all artifacts (including source code, documentation, test
cases and examples) should be under version control. This has three mayor benefits.
First, storing all kinds of documents in a version control system reduces loss of impor-
tant information since even less important information is stored. Second, the actuality
of non-code artifacts, like requirements or architecture definitions, is raised significantly.
Third, monitoring the impact of changes to all affected artifacts is supported. Addition-
ally we recommend to version all artifacts of a single feature project together.

Implement all new features against the head revision

Each new feature should be developed against the head revision of adjacent feature
projects and the platform project. This demands some discipline from the developers,
since changes to the interface of one feature may directly affect others. Thus a stable
interface design and continuous communication are needed. We experienced only little
communication overhead if the interfaces are defined upfront and described explicitly.
Besides, the integration effort of components developed in parallel is reduced. Addition-
ally an immediate integration of features under development has positive effects on the
team spirit, since developers get a quick feedback about their results.

8



Use an automated build and test system

An automated build system should be used to assure the integration of all features
including those that are under development. We recommend a dedicated build process
performing nightly integration builds to assure the compilability and integration of the
components. Additionally the build system should create release builds on a regular
basis. We recommend one release alongside each sprint. A release should always be
preceded by several release candidates used for manual testing.

Furthermore we recommend enriching the build system with automated regression
tests and static analyses performed after each successful build. This is especially im-
portant since many developers only work on fragments of the system functionality and
don’t test the integration with other fragments or features. Although the integration of a
dedicated quality assurance infrastructure in the build system needs quite a lot of setup
effort, it is worthwhile since deficiencies and problems in the source code are detected
very early.

Provide an update infrastructure

Scientific software often changes and evolves quickly. Therefore an update infrastruc-
ture should be provided once the software is released, e.g., for field studies. An operative
update infrastructure improves the user’s acceptance to use the respective software, since
they can experience the evolution of the software and keep up to date with only little
effort. Therefore a single available source for updates and software releases should be
established and users should be informed about new updates.

6.2. Quality assurance

Create regression tests

The platform project and its feature projects change rapidly because requirements
are changed or new requirements emerge. Moreover functionality is moved from feature
projects to the platform or vice versa as a result of scoping sessions or performed refac-
torings. This demands to run regression tests as often as possible to assure the stability
of the software. We recommend implementing black box regression tests for the plat-
form and every feature. Moreover the coverage of those tests should be measured and
additional tests should be added if the coverage is insufficient.

Perform a quality assurance phase for each feature project

Feature projects should plan a feature freeze and a quality assurance phase at the end
of their development (often called endgame). The endgame should assure three important
quality aspects. First, it must assure that the required functionality is implemented and
that the feature is correctly integrated in the platform. Second, it should assure that
the feature’s architecture conforms to the platform’s architectural rules. Third, the
endgame should assure that sufficient documentation is available. Since feature projects
are typically performed in the context of students’ thesis works and students are often
unavailable after the end of the thesis a rigorous endgame is vital for the overall project
success. Thus any information that is not handed over is lost and can only be recovered
with very high effort. Additionally we recommend that the platform team performs a
platform scoping session as part of the endgame together with the feature team (see best
practices of platform management).

9



Measure the architectural quality on a regular basis

The architecture is a core concern for most scientific software projects. To maintain
a sustainable architecture in the dynamic environment of scientific software projects the
conformance of feature implementations to the architecture definition in the platform
must be measured and checked regularly. Nowadays, there are several tools to mea-
sure and assess software architectures [9] [10] that can be used. The results of those
measurements should be discussed in team sessions to sensitize the developers for the
architectural demands of the platform and thus to get less violations in upcoming sprints
or feature projects.

Explicitly define the interfaces of each feature

The interfaces of every feature should be explicitly defined and access to any feature
should only be allowed through those interfaces. Thus the impact of changes of a feature
to other features is reduced and manageable. The adherence to this rule should be
checked automatically alongside the quality measures performed by the build system.

Define templates and rules for project artifacts

A template and a respective set of rules for all kinds of project artifacts (code and
non-code) should be defined. Templates increase the readability of documents and ease
identification of changes if a version management system is used. We recommend to use
style rules defining formatting and encoding for all code artifacts and to check those rules
by an automatic checker.

6.3. Platform Management

Perform platform scoping sessions on a regular basis

The platform contains reusable code that should be used by all feature projects. Its
main purpose is to prevent feature projects from developing the same functionality several
times. However, most of the functionality is developed in feature projects including
reusable functionality that should be part of the platform. Therefore special platform
scoping sessions should be performed regularly to transfer reusable parts from feature
projects to the platform. A scoping session is a joint session of a feature team and the
platform team and has two purposes. First, potential platform candidates useful for
other features should be identified. Second, each candidate should undergo a detailed
scoping analysis. This analysis has to define a migration strategy for the candidate, i.e.,
a set of refactoring and generalization steps that are necessary to integrate the candidate
with the platform. Every migration strategy should afterwards be planned as a normal
task in a sprint.

Perform refactoring analysis before developing a new feature

Whenever a new feature should be developed the first step is to evaluate the cur-
rent platform architecture to ensure that the platform architecture is still adequate to
implement the new feature. If this is not the case, a set of refactoring steps have to be
identified to improve the architecture and to enable the integration of the new feature.
These refactorings are performed (typically by the platform team) before the new feature
project is started. This results in a stable and maintainable architecture and minimizes
the integration effort of new features.

10



Check for obsolete features on a regular basis

Since resources in scientific software projects are short no effort should be wasted to
develop or maintain features that are no longer needed. Thus it is necessary to check for
features that are no longer needed regularly. A feature may become obsolete for three
reasons. Either because the usage of the tool has changed or it was replaced by a new
feature or it can be replaced by functionality imported from e.g., open source projects.
We recommend to check for obsolete features at least every time a sprint is planned. For
each obsolete feature the platform team has to define a decommission strategy. It defines
necessary steps how to migrate those features depending on an obsolete feature to the
replacing one. The implementation of the decommission strategy should be planned as
a normal task in the upcoming sprint, similar to a migration strategy.

6.4. Team Management

Perform pair programming sessions with new developers

Inexperienced developers should at first do some pair programming session together
with an experienced developer (often a member of the platform team). This is highly
accepted and has three mayor benefits. First, it enables the new developer to bridge
the technological gap. Second, the experienced developer can transfer knowledge about
rules and standards to the new team member easily. Third, the integration of new team
members to the development team is facilitated, since they get to know other team
members better.

Provide an infrastructure for knowledge documentation

Every project should provide an infrastructure to document and transfer knowledge,
e.g., an open wiki or a blog. This is extremely useful if the project is using a lot of open
source technologies and frameworks where the documentation is scattered in the Web.
Those systems serve as a starting point for developers to search for documentation, tips
and advices.

Perform regular team sessions

The project team should meet on a regular basis. Those meetings are a central
practice in our experience and have four mayor purposes. First, they are a management
and planning instrument. In the team meetings every developer should present the status
of the current work and the next upcoming development steps, to keep track of the overall
project status. Additionally new sprints should be planned in the meetings. This raises
the developers’ commitment to deliver in time, because they are involved in the planning.
Second, team meetings are a discussion platform for specific problems of the developers
which has the following benefits. First, whenever a developer is stuck with a problem the
team may help him to find a feasible solution and second the discussions can be used to
spread technical as well as process knowledge. The third purpose of team meetings is to
maintain the platform architecture. Therefore the results of architectural measurements
should be discussed, architectural decisions should be made and scoping sessions should
be planed. The last and maybe the most important purpose of the team meetings is to
create a team spirit and raise the developers’ involvement in the project. Therefore team
meetings should have a casual ambience and encourage open discussions.

11



6.5. Best Practices in Context

Obviously some of the presented best practices have different relations to each other.
Some are prerequisites for others or the implementation of one practice positively influ-
ences others. Figure 4 shows a sketch of those dependencies.

Figure 4: Best practices in context

These dependencies obviously influence the sequence to establish practices in a project,
typically practices should be introduced in related groups.

7. Related Work

Feature oriented development processes have been discussed in several publications.
According to the feature driven development approach proposed by [13] all features are
defined upfront. Afterwards all features are developed in an iterative fashion, where in
each iteration one feature is realized. Several agile development processes like Scrum [18]
or XP [2] use features for the planning of iterations but during devlopment all features
of the iteration are developed together by one development team.

12



The product-line engineering community [14] introduced the idea of a common plat-
form and scoping techniques for its maintenance. However, those approaches mainly
focus the management of variability of multiple products. Thus they are not specific
enough for scientific software development projects with only one single product, which
consists of a platform and several features.

Best practices for development processes have be discussed by several authors. [3]
e.g., focusses mainly human aspects in development projects whereas [1] describes a
quite elaborated set of process patterns for large-scale object-oriented systems. In resent
years several open-source projects like Gnome [8] or Eclipse [6] have evolved to software
ecosystems where one project builds the platform for the development of several others.
Most of those define a development process with a milestone oriented release planning and
best practices. [16] discusses different management aspects of those projects. However,
those projects don’t aim for one integrated solution. Thus no exlipicit scoping and
revalidation of the platform is planned.

Today none of the current development approaches explicitely concerns the specific
characteristics of scientific development projects. Although many of the discussed ap-
proaches and techniques can be usable in scientific development projects most of them
need to be adopted to those projects specific needs.

8. Conclusion and Outlook

In this paper we discussed the importance of a feasible development process as basis
for the creation of high quality software in long living scientific development projects
and we depicted the specific aspects of scientific software projects that impact a feasible
development process. We outlined a generic process frame, that addresses the specifics of
scientific software projects and sketched a set of best practices for the presented process
frame. Furthermore we presented the ViPER project as one case study for a success-
ful scientific development project, that was managed according to the presented best
pratices.

We have sucessfully performed the QMetrics project [17, 15] with the described best
practices and we are currently running several other scientific projects we perform at the
faculty and with different industrial cooperation partners, with the presented process
frame and the described best practices. Our experience in all these projects are also
very positive. Additionally we plan to do a systematic analysis of the process and its
respective best practices. Therefore we intend to perform a series of questionnaire ori-
ented qualitative analyses in several scientific projects that may or may not implement
our process frame.

Until now the described process frame only considers generic basic best practices. In
the future we plan to enrich the best practice section with a set of optional measures for
specific project settings. Moreover we plan to provide strategies for the introduction of a
best practice based process frame in a new project or the migration of a running project
to such a process.

References

[1] Ambler, S. W., 1998. Process patterns: building large-scale systems using object technology. Cam-
bridge University Press, New York, NY, USA.

13



[2] Beck, K., Andres, C., 2004. Extreme Programming Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional.

[3] Brooks, F. P., August 1995. The Mythical Man-Month: Essays on Software Engineering, Anniver-
sary Edition (2nd Edition), 2nd Edition. Addison-Wesley Professional.

[4] Bugzilla Project, Jun. 2010. Bugzilla - project website.
URL http://www.bugzilla.org/

[5] CVS Project, Jun. 2010. Concurrent version system - project website.
URL http://www.cvshome.org/

[6] Eclipse Project, Jun. 2010. Eclipse - project website.
URL http://www.eclipse.org/

[7] Fujaba Project, Jun. 2010. Fujaba - project website.
URL http://www.fujaba.de/

[8] Gnome Project, Jun. 2010. Gnome - project website.
URL http://www.gnome.org/

[9] Hello2Morrow, Jun. 2010. Sotoarc - project website.
URL http://www.hello2morrow.com/products/sotoarc

[10] Metrics Project, Jun. 2010. Metrics - project website.
URL http://metrics.sourceforge.net/

[11] MontiCore Project, Jun. 2010. Monticore - project website.
URL http://www.monticore.de/

[12] Nyßen, A., Lichter, H., Streitferdt, D., Nenninger, P., 2008. Medusa - a model-based construc-
tion method for embedded and real-time software. In: COMPSAC ’08: Proceedings of the 2008
32nd Annual IEEE International Computer Software and Applications Conference. IEEE Computer
Society, Washington, DC, USA, pp. 1376–1382.

[13] Palmer, S. R., Felsing, J. M., February 2002. A Practical Guide to Feature-Driven Development
(The Coad Series). Prentice Hall PTR.

[14] Pohl, K., Böckle, G., Linden, F. J. v. d., 2005. Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[15] QMetric Project, Jun. 2010. Qmetric - project website.
URL http://www.qmetric.org/

[16] Sandred, J., 2001. Managing Open Source Projects: A Wiley Tech Brief. John Wiley & Sons, New
York, NY, USA.

[17] Schackmann, H., Jansen, M., Lischkowitz, C., Lichter, H., 2009. Qmetric - a metric tool suite for
the evaluation of software process data. In: ICSE Companion. IEEE, pp. 415–416.

[18] Schwaber, K., Beedle, M., February 2002. Agile Software Development with SCRUM, illustrated
edition Edition. Prentice Hall.

[19] Scmbug Project, Jun. 2010. Scmbug - project website.
URL http://freshmeat.net/projects/scmbug/

[20] SESAM Project, Jun. 2010. Sesam - project website.
URL http://www.iste.uni-stuttgart.de/se/research/sesam/

[21] ViPER Project, Jun. 2010. Viper - project website.
URL http://www.viper.sc/

14


