
SyLaGen: From Academic Tool Engineering Requirements to a
new Model-based Development Approach

Moritz Balza, Michael Striewea, Michael Goedickea

aPaluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen, Campus Essen, Germany

Abstract

In this contribution we reflect on the development of SyLaGen, an academic load generation tool
for performance tests. It is able to generate a defined amountof requests to a system under test
and measure the response times. The development of this toolhas been influenced by two facts
over the last ten years: First, its variety in functionalityand the high number of platforms and
frameworks in use; and second, the desire to specify the mainfunctionality for measurements
as precise as possible with respect to appropriate models. However, these requirements often
contradict, since model-driven development is not easy to apply to existing architectures. In
the case of our tool, this lead to a different approach for model-based development embracing
formalized design patterns. We will here introduce the nature of this academic tool and the side
effects of its development to other software engineering domains.

1. Introduction

Tool building in academia can be driven by different factors: functional requirements, non-
functional requirements, experimental development processes, case studies, or others. If indus-
trial partners are involved, all of these factors can be influenced not only from inside academia,
but also from the outside, including change requests and time constraints. In this contribution we
reflect on the development of SyLaGen, which has experienced several development steps during
the past ten years, some of them with project partners from the industry. The development has
been influenced by functional and non-functional requirements as well as by development styles,
which makes it an interesting case study for academic tool building. One of the most important
findings was the creation of a new implementation style for model-based programming that will
be explained in detail in this paper.

In general terms, SyLaGen (the name is an acronym for the German tool description
“Synthetischer Last-Generator”) is a load generator application for performance tests. It is able
to generate a defined amount of requests to a system under testand measure the response times.
Several important capabilities are explained in detail in sections 2.1 and 3.1. More general
information can be found in existing publications, one referring to an initial version [3] and one
to a re-designed version [11].

Email addresses:moritz.balz@uni-due.de (Moritz Balz),michael.striewe@s3.uni-due.de (Michael
Striewe),michael.goedicke@s3.uni-due.de (Michael Goedicke)

1

This contribution is organized as follows: Section 2 reports on the initial development of
SyLaGen to give a feeling for the initial requirements and the natureof the load generation tool.
Section 3 elaborates on the re-development that took place some years later as a pure academic
project. Section 4 provides the main contribution of this paper and focuses on the most important
findings on development and implementation style during there-development phase. Section 5
concludes the paper.

2. Initial development of SyLaGen

The initial development of SyLaGen was started as a cooperation between the University of
Duisburg-Essen and the Siemens company in the late 1990s. Thus, the first version of SyLaGen
had to meet both academic and industrial requirements. In addition, the development process
had to obey limited project resources and some engineering and development standards used by
Siemens.

2.1. Requirements ofSyLaGen

From its beginning, SyLaGen was intended to be a framework rather than a monolithic tool
and thus focused on extendability with respect to four different aspects: First, a system under
test may offer different interfaces for handling external requests, thus a load generator must be
able to handle different protocols randomly and in parallel. This was the majorkey argument
for developing a new load generator at all, because Siemens wanted to be able to test their pro-
prietary protocols, which was not possible with available tools. Second, load generation for a
client-server system may require complex client behaviourthat cannot be formulated in a simple
descriptive way, but instead with non-trivial algorithms that have to be implemented program-
matically. Third, more than simple atomic measurements maybe required in complex environ-
ments, so that strategies applying sequences of measurements to a system should be configured.
In particular, these strategies may incorporate preparations for each single measurement, e.g.
resetting databases, or adjust load generation parametersbetween two atomic measurements. Fi-
nally, complex load generation may result in complex use cases that cannot be modelled as linear
scripts, but as probabilistic networks.

Some additional properties regarding the general system design were required in parallel to
the flexibility requirements named above: To ease generation of high load volumes, the system
architecture must allow distributed load generation from different clients. For this purpose a
“master” component controlling the measurement should connect to client instances that generate
the actual load and may be either physical computers or logical instances sharing a host system.

2.2. Design Implementation of the Initial Version

The implementation of the first version of SyLaGen was straightforward: The master compo-
nent was a monolithic desktop application based on Java’s Swing user interface. The workload
was specified textually as shown in figure 1(a). A parser for the workload input format was gen-
erated automatically with JavaCC [5] from a grammar description. Besides several parameters
like measurement time, timeouts and so on, a workload was composed of so-called “flows”. Each
flow can be understood as a simple state machine where each state contains load generating re-
quests to the system under test. Transitions are labeled with a weight, allowing for probabilistic
paths through these machines. This provides the required flexibility for complex load generation
which is far more powerful than linear scripts.

2

(a) Textual workload definition in the first version of
SyLaGen.

(b) Textual measurement output in the first version of
SyLaGen.

Figure 1: The user interface of the first SyLaGen version.

Similar to the textual input, during measurement the outputwas also displayed as a log file
on the screen as shown in figure 1(b). The results of the complete measurement were stored in
plain text files since sophisticated reporting was outside the scope of the requirements.

The client components were written in C to allow for efficient execution even on limited
devices and were connected to the master with a simple socket-based network protocol. In order
to achieve the desired flexibility for protocols used in requests to systems under test, so-called
“adapters” were used. Each adapter was implemented in a single DLL library and provided
a set of methods to access a certain communication interfaceor protocol of the system under
test. Since these adapters were written in C like the clients, they could implement non-trivial
algorithms as desired. Each workload definition referencedthe necessary adapters so that they
were distributed to the clients by the master before starting the measurement.

While the resulting architecture was thus comparatively simple, one part of the application
was given special care: The measurement strategies as the core of the measurement process
were designed as state machines. Note that the state machines for load definition described
above are of descriptive character and subject to be createdand changed by the every-day users
of SyLaGen, while the state machines for strategies we are now talking about are intended to
be models for the implementation and thus created and editedby the developers. However, no
modeling tools were used to derive the implementation from models systematically – at the time
of the initial development, the related technologies were far less advanced than today. However,
it was not desirable to implement the measurement process aslarge parts of sequential program
code and loose all semantic information by this means. For this reason, a design pattern for state
machines was employed that stored the basic information about states and transitions inside the
program code. It followed some simple rules:

• A classPriostate was instantiated to represent single states. Each state instance was
given a name to make logging messages comprehensible later on.

3

Priostate verify = new Priostate("Verify");

// ...

Transition foundMarkGoToVerify = new Transition("FoundMarkGoToVerify", verify) {
boolean checkCondition() {
return theState.loadTooHighOrNoMoreMeasurementsPossible();

}

void doAction() {
phase="Verify";
theState.saveResults();
theState.decreaseToFirstUnexplored();
theState.doMeasure();

}
};

Listing 1: The informal program code pattern used in the firstversion of SyLaGen with a state and a transition.

• An interface withget methods provided access to the business logic of SyLaGen and
allowed to extract variables related to the measurement, for example the number of restarts
after errors.

• A classTransition was instantiated for each transition and connected to stateinstances.
Each instance implemented two methods:checkConditionevaluated expressions related
to method calls on the variables interface;doAction executed business logic by accessing
other parts of the program code.

An exemplary part of the program code pattern can be seen in listing 1. In the upper part,
a state instance is created. In the lower part, a transition instance is created. In order to supply
it with guard and action program code, it is created as an anonymous class implementing both
required methods.

The state machine was first populated by creating instances for states and transitions. After-
wards an execution method was called that repeated the following steps beginning with the start
state: (1) Invoking and evaluating allcheckCondition methods of the transitions emanating
from the current state. (2) Selecting a transition whose guard returnedtrue and invoking its
doAction method. (3) Setting the target state of the chosen transition as the new current state.

By this means the state machine functionality was made explicitly and comprehensible for
developers in the program code. However, no connection to any formal model was maintained,
neither implicitly nor explicitly.

3. Review and Extensions

After the initial development, SyLaGen had been in use for several years both for industrial
purposes and in academic courses. Besides minor maintenance changes, there was no critical
review of the source code and no plans for further major development steps. However, even
maintenance of the clients became difficult since the C-related tool chain was outdated and no
experienced C developers were available to create a new one.To cope with this problem, the
client was re-implemented in Java in 2006. At this time, the authors discovered that documen-
tation for the initial development was partly incomplete orout-of-sync with the actual program
code, which can be considered a quite common problem for longrunning projects. In addition,

4

the look and feel of the master’s user interface had also become outdated and old fashioned, as
well as the style of communication and data exchange betweenmaster and clients became labo-
rious and frail in comparison to more up-to-date technologies. These were major issues since
industry projects were still accomplished, although the project partners did not participate in the
development, but only ordered measurements without knowing the underlying system.

Thus it was decided to start a complete re-engineering project for SyLaGen in 2007. In con-
trast to the initial development, the decision for re-engineering SyLaGen was a pure academic
project without industrial partnership. Moreover, it did not happen inside a limited time frame
or with dedicated resources. One the one hand, this allowed for more freedom and experiments
during development, but on the other hand the available resources where generally low and could
neither be increased by referring to upcoming project deadlines nor by additional funding. As
a consequence, the first step towards a new version of SyLaGen was a student project that was
concerned with design recovery and code review for the existing version of SyLaGen. This crit-
ical review resulted in two interesting facts: First, measurement strategies were implemented as
explicit state machines as described in the previous section, but they were not as well decoupled
from algorithmic details as it was required for the intendedflexibility. Second, the behaviour of
several other parts of the system could also easily be described as state machines, suggesting at
least a far more modular architecture than the one that was implemented.

3.1. New Requirements and Re-engineering Goals

Not only the code review and design recovery activities but also experiences from years of
using SyLaGen set up the goals for a second version of SyLaGen: First, the architecture of the
master should be modularized, implementing aspects like measurement control, master-client-
communication and user interface in independent software components. Particular focus was
put on decoupling the state machine descriptions for measurement strategies from execution
details realized by the measurement control component. This requirement was not only driven
by the academic goal of a fully modularized architecture, but also by the need for implementing
new measurement strategies. A more modular architecture was also required in order to add
sophisticated reporting capabilities which were not included in the initial version. Second, the old
user interface and communication protocols should be replaced by new versions. The new user
interface should be based on the Rich Client Platform of the Eclipse development environment
[13] since it provides many features for building editors and is at the same time integrated in
program code development tools, which is of interest for adapters. The communication protocol
should make use of XML to wrap complex data structures, so that it could be handled with
standard protocols instead of proprietary protocols and still stay flexible for extensions in the
future. Replacing the old proprietary protocols in turn includes rewriting the communication
interface of the clients as well. Third, the new capabilities gained from using Eclipse RCP should
be used for a new input editor for formulating workloads in a more convenient format. However,
this last point was more a nice side effect than a crucial argument in favour of re-development.

3.2. Implementation of the New Version

The considerations for a redesign lead to a module structurethat is shown in figure 2: The
overall measurement is controlled by a user interface module and an attached configuration store.
The main task of the user interface is the creation of the workloads for the performance tests,
which are validated by a related module. When the measurement is started, the workload infor-
mation is passed to the measurement module. It uses the client module which is connected to

5

Clients Connections

Measurement

Results Reporting

User Interface

Exploration

Single

Stress

Configuration

ValidationWorkloads

controls

creates

u
s
e
s

u
s
e
s

p
re

p
a
re

s

reports

Figure 2: The module structure in SyLaGen with the basic kinds of relations between modules during themeasurement
process. The load generation strategies in the “measurement” module are embedded in and tightly connected to the
different modules.

actual clients by means of a connection module that servers as an abstraction layer over different
possible communication protocols. In the measurement module, the different load generation
strategies are realized as plug-ins. They share the business logic provided by SyLaGen, but dif-
fer with respect to the number of measurements and the numberof clients to be used. When a
measurement is finished, the data collected by the clients issubmitted to the result module. It is
passed over to a reporting module that can employ different reporting technologies, e.g. writing
the raw numbers to a file or alternatively passing them to a sophisticated reporting system. The
prepared results are then provided to the user by the user interface again.

In order to facilitate a clean and formal approach to definition and implementation of the
measurement strategies, a systematic re-engineering was applied to the existing source code.
This re-engineering was supported by the fact that the statemachines contained information
about states, transitions, guards, and variables. The result of this was a set of state machines
models defined in the timed automata model checker UPPAAL [8], which was chosen for its
good visualization, simulation, and verification capabilities.

The other parts of the application were not developed based on models. The reason for this
is the high number and tight connection of dependencies regarding platforms and frameworks:

• The user interface module completely depends on the structures determined by the Eclipse
RCP platform. The resulting user interface can be seen in figure 3.

• The workload module depends on the XML schema of the desired workload format and
frameworks to map them to in-memory object structures.

• The validation module depends on frameworks that can inspect compiled Java libraries in
order to validate adapters.

6

Figure 3: The user interface of the second version of SyLaGen based on Eclipse Rich Client Platform. We can see the
project explorer on the left hand, a workload being edited inthe middle, and the status display of clients and a running
measurement at the bottom.

• The connection module currently uses a lean socket-based protocol to allow for connection
to clients running on different platforms. For this purpose, all data is adjusted to text and
number formats defined for this protocol.

• The measurement module provides calculations regarding the data used during measure-
ment, for example mean throughput and request times.

• The result module embraces statistical calculations to merge results collected from single
clients into a consistent overall result.

• The reporting module interacts with existing libraries forcreating simple files, spreadsheet
files, or input for reporting systems.

While for some of these tasks certainly model-driven approaches [4] can be applied, the num-
ber and variety of requirements precludes a consistent model-driven approach. A derivation of
the implementation from models would either have been limited to few parts of the application or
would have introduced a notable effort for customization of existing model-driven development
tools. A generation of program code for the strategies wouldhave been possible, but was not
desirable since it would have been an isolated solution [7, 15].

However, an ad-hoc implementation was also not feasible. Since SyLaGen is an academic
tool used in different projects and research contexts, requirements changeoften and quickly.
Thus it was soon clear that it was not desirable to manually derive the implementation from these
models again, since this would lead to the facts that the models (1) would just be a documentation
and (2) would soon be inconsistent if no notable constant effort would be put into synchronizing

7

models and implementation. It was thus clear that possible approaches currently available did
not fulfill the objectives to develop the software in a consistent manner while at the same time
automating the synchronization with the models.

Following this conclusion and reflecting on the pattern-based solution from the initial ver-
sion, we developed a new approach for implementing functionality based on models that can be
integrated with arbitrary program code, as we will explain in more detail in section 4. At this time
of the development it turned out as very beneficial to run the re-design project without industry
partners and tight time frames, because this situation allowed us to delay active development of
SyLaGen for experiments on the approach. As a result of these experiments, the second version
of SyLaGen is as modularized as desired, uses all frameworks and platforms as necessary, and
contains measurement strategies that are based on and formally connected to formal models.

4. Formalized Design Patterns

The need for a model-based development technology that integrates in a heterogeneous ap-
plication like SyLaGen lead to the development of alternatives. It is likely that our research in
this area would have been of different character if it was not motivated by the need to devel-
opment SyLaGen with its different – and partly contradicting – requirements. Moreover,we
are convinced that we would have needed more time to achieve practical results without this
use-case-driven way of research.

4.1. Approach

The informal design pattern used in the first version of SyLaGen as shown and explained
in section 2.2 was considered to be optimally integrated in the overall application. However,
it lacked the possibility for a synchronization with formalmodels. The main reason for this
is that it would not be possible to interpret the program codewith respect to abstract models
in an automated way: The fact that instances are created for single model elements makes it
necessary to interpret possibly arbitrary algorithms to determine the model specification from
object instantiations.

We therefore decided to modify the existing approach mainlywith respect to the storage of
information. For this purpose we useattribute-enabled programming[9] that uses meta data
facilities introduced in programming languages like Java [12] to store meta data inside the pro-
gram code and interpret the static structures by this means.This results in program code patterns
that are formalized so that the static structures can represent the abstract syntax of models. Thus
transformations can extract complete models from the code accordingly. The approach has so far
been published asembedded models[2].

In SyLaGen, an embedded model for state machines based on UPPAAL has been created. It
stores the complete state machine syntax in static elementsof the program code and re-uses for
this purposes some principles of the informal design pattern of the the first version, but also adds
some additions:

• An interface providesget methods that abstract from the overall business logic of SyLa-
Gen and provide a limited set of well-defined variables to be usedin the state machine.

• Another interface (calledactor) provides entry points to the business logic that can be
called from inside the state machine. The names of the methods are by this means the
action labels for the state machine.

8

Contract Definition in Source Code

public class AfterMeasurementState implements IState

{

@Transition(target = UpUpState.class , contract = BeginUpUpContract.class)

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{

 actor.doMeasure ();

}

// ...

}

State Definition

Target State Pointer Contract Pointer

Action Label

Transition

State and Transition Definition in Source Code

}

public class BeginUpUpContract implements IContract< IMeasurementVariables >

public boolean checkCondition(IMeasurementVariables vars)

{

 return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());

}

{

public boolean validate(IMeasurementVariables before , IMeasurementVariables after)

{

 return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistance()));

}

Contract Definition

Variable DefinitionsCurrent Variable Values

Guard

Update

Variable Labels
Current Variable Values

Cached Variable Values

Variable Labels

Figure 4: A state definition with an outgoing transition and its contract. The first method of the contract checks a pre-
condition with the current variable values, while the second method checks a post-condition by comparing the current
values to previous values.

• States are represented as class definitions. The class name is interpreted as the name of the
related state.

• Transitions are represented as methods inside state classes. They contain a set of method
calls to the actor interface, so that each transition has a set of associated action labels.

• Meta data at transition methods refers to the target state class definition and to methods
containing expressions for guards and updates. These expressions evaluate to boolean
values and access the variables in the related interface.

An example of the formal program code pattern can be seen in figure 4. It shows a part of
the SyLaGen stateAfterMeasurementState in the “exploration” strategy that decides how to
proceed after a single measurement was performed. As we can see, the single elements of the
program code can be interpreted unambiguously with respectto the state machine model. Since
the classes are not instantiated to be equipped with semantics, the program code can be statically
analysed at development time and run time. Some more detailshave already been described in
our previous publications [2, 1].

9

The execution of this pattern follows a similar principle asin the first version, but also with
some important changes. These changes are based on the fact that our design pattern introduces
a new abstraction layer and thus an additional layer of indirection and modularity. Consequently,
execution is not based on object instances, but on the staticstructures instead, which are ac-
cessed by means of structural reflection [6]. Thus the state machine is not populated by creating
instances of state and transitions inside the application source code itself, but by reading the pro-
gram code by an execution framework in the measurement module. The execution framework
for the embedded model interprets the program code as follows beginning with the start state’s
class definition and performing the following steps: (1) Instantiating the class, invoking and eval-
uating all guard methods of the transition methods in the current state. (2) Selecting a transition
whose guard returnedtrue and invoking its transition method. Besides the class instantiation at
beginning of step 1, these steps are similar to what the old version did. (3) Invoking the update
expression to determine if the business logic has performedchanges that are compatible with the
state machine specification. This step of permanent self-verification could now be introduced
since the necessary information is now available from the embedded formal model. (4) Setting
the target state of the chosen transition as the new current state until a final state is reached. This
step again is similar to the last step in the old version. However, it has to be noted that all steps
that are similar to the old version are now performed by the execution framework and not by
the source code defining the state machine. Thus the goal of decoupling strategy definition and
strategy execution can be considered fulfilled in the new version.

4.2. Usage for Development
This complete information about the model allows not only tospecify the state machine

semantics more precisely than before and execute them in an automated way. Moreover, we
can extract the model from within the program code and view ormanipulate it in appropriate
modeling tools, in this case UPPAAL as shown in figure 5 [10]. Since the program code pattern
is a valid notation for the complete model specifications, wecan also transform a changed model
back to program code and thus apply changes.

At run time it is possible to monitor the execution of the program code pattern with respect to
the state machines since the static structures of the program code are interpreted by the execution
framework. A tool exists that shows the related model elements and their behavior, including a
visual view of the state machine of the measurement strategycurrently in use. By this means it is
possible to track errors in the context of the abstract specifications without relying on meta data
or tracing information, but only on the embedded model that is contained in the program code
without any additional effort.

Thus the approach fulfills the needs of the academic tool development in this case:

• The number and variety of frameworks and platforms in use precludes solutions that re-
quire a complete formal definition at higher levels of abstraction or determine the software
architecture by themselves. Instead, program code based onmodels is required to seam-
lessly integrate in the existing structures. The formalized design patterns allow for this
since they share the notation of the program code that is alsoused by the frameworks and
platforms.

• The high frequency of change requests makes a separate maintenance and synchronization
of program code and complex and time-consuming. The formalized program code patterns
works with different abstraction levels, but uses only one notation to store them, so that
changes always affect all abstraction levels.

10

Figure 5: The UPPAAL model of the state machine controlling the “exploration” load generation strategy.

• Resources for industry-quality documentation are often not available in an academic con-
text, so that there is a constant risk that the model documentation may not fully represent
the reality. In the shared notation of the program code, documentation is always up-to-date
since the model specifications can be extracted as long as thecode complies to the formal
specifications for the program code pattern. This can easilybe validated or enforced with
static code analysis.

In summary, the development and maintenance of SyLaGen was very interesting from our
point of view: The reflection on the technologies in use and the requirements that occur for
academic tools lead to a different model-based development approach, which has proved to work
in this context since 2008.

5. Conclusion and Future Work

In this contribution we presented the development of the load generator platform SyLaGen.
Considering the development of academic tools, it is from our point of view interesting with

11

respect to two aspects. First, we considered special (technical as well as organizational) require-
ments that lead to the need of non-standard solutions. In this case, certain quality criteria were
desired, but not easy to meet in the dynamic context of academic projects. Second, the academic
context lead to a solution that is from our point of view generally applicable to problems of the
same class. This kind of research that happens beside actualprojects, in similar contexts referred
to asserendipity[14], is in our opinion a valuable contribution of the development of “real”
applications in academia.

Future work regarding SyLaGen will include more reflections on model-based development.
On the one hand, it is desirable to cover more parts of the application with formal models. This
affects foremost the overall process of the measurement and also the modules and their interac-
tions. Since it will not be feasible to generate the completecode, we want to create appropriate
embedded models for these purposes. On the other hand, this leads to the questions how dif-
ferent domain-specific models can interoperate: By using the source code as the only notation,
we will have a situation where different domain-specific models are tightly connected. A formal
specification of their interoperability is desirable. SyLaGen as a tool is large enough to serve as
a realistic and demanding case study for both kinds of research in model-based development.

References

[1] Moritz Balz, Michael Striewe, and Michael Goedicke. Embedding State Machine Models in Object-Oriented
Source Code. InProceedings of the 3rd Workshop on Models@run.time at MODELS 2008, pages 6–15, 2008.

[2] Moritz Balz, Michael Striewe, and Michael Goedicke. Continuous Maintenance of Multiple Abstraction Levels in
Program Code. InProceedings of the 2nd International Workshop on Future Trends of Model-Driven Development
- FTMDD 2010, Funchal, Portugal, 2010.

[3] Reinhard Bordewisch, Bärbel Schwärmer, Michael Goedicke, and Peter Tröpfner. Lastsimulation für anwendung-
sumgebungen in vernetzten it-architekturen.Mitteilungen der GI-Fachgruppe MMB, (43), 2003.

[4] Alan W. Brown, Sridhar Iyengar, and Simon Johnston. A Rational approach to model-driven development.IBM
Systems Journal, 45(3):463–480, 2006.

[5] Tom Copeland.Generating Parsers with JavaCC. Centennial Books, 2nd edition, 2007.
[6] François-Nicola Demers and Jacques Malenfant. Reflection in logic, functional and object-oriented programming:

a short comparative study. InIn IJCAI ’95 Workshop on Reflection and Metalevel Architectures and their Applica-
tions in AI, pages 29–38, 1995.

[7] Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad, and the ugly.IBM Systems Journal,
45(3):451–461, 2006.

[8] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, Oct 1997.

[9] Don Schwarz. Peeking Inside the Box: Attribute-Oriented Programming with Java 1.5.ONJava.com, June 2004.
http://www.onjava.com/pub/a/onjava/2004/06/30/insidebox1.html.

[10] Michael Striewe, Moritz Balz, and Michael Goedicke. Enabling Graph Transformations on Program Code. In
Proceedings of the 4th International Workshop on Graph Based Tools, Enschede, The Netherlands, 2010, 2010.
accepted for publication.

[11] Michael Striewe, Moritz Balz, and Michael Goedicke. SyLaGen - An Extendable Tool Environment for Generating
Load. In Bruno Müller-Clostermann, Klaus Echtle, and ErwinRathgeb, editors,Proceedings of “Measurement,
Modelling and Evaluation of Computing Systems” and “Dependability and Fault Tolerance” 2010, March 15 - 17,
Essen, Germany, volume 5987 ofLNCS, pages 307–310. Springer, 2010.

[12] Sun Microsystems, Inc. JSR 175: A Metadata Facility forthe JavaTM Programming Language, 2004.http:
//jcp.org/en/jsr/detail?id=175.

[13] The Eclipse Foundation. Eclipse website.http://www.eclipse.org/.
[14] Pek van Andel. Serendipity: Expect also the Unexpected. Creativity and Innovation Management, 1(1):20–32,

1992.
[15] John Vlissides. Generation Gap.C++ Report, 8(10):12, 14–18, 1996.

12

