SyLAGen: From Academic Tool Engineering Requirements to a
new Model-based Development Approach

Moritz BalZ¢, Michael Striewé, Michael Goedick#

8Paluno — The Ruhr Institute for Software Technology
University of Duisburg-Essen, Campus Essen, Germany

Abstract

In this contribution we reflect on the development L. $Gen, an academic load generation tool
for performance tests. It is able to generate a defined antduatjuests to a system under test
and measure the response times. The development of thisasdieen influenced by two facts
over the last ten years: First, its variety in functionalityd the high number of platforms and
frameworks in use; and second, the desire to specify the foattionality for measurements
as precise as possible with respect to appropriate modaisiever, these requirements often
contradict, since model-driven development is not easypgyato existing architectures. In
the case of our tool, this lead to affédirent approach for model-based development embracing
formalized design patterns. We will here introduce the reatd this academic tool and the side
effects of its development to other software engineering dosai

1. Introduction

Tool building in academia can be driven byffdrent factors: functional requirements, non-
functional requirements, experimental development gees, case studies, or others. If indus-
trial partners are involved, all of these factors can be @rfiied not only from inside academia,
but also from the outside, including change requests argl¢ionstraints. In this contribution we
reflect on the development o BaGen, which has experienced several development steps during
the past ten years, some of them with project partners freninthustry. The development has
been influenced by functional and non-functional requineimas well as by development styles,
which makes it an interesting case study for academic ta@dibg. One of the most important
findings was the creation of a new implementation style fodetdoased programming that will
be explained in detail in this paper.

In general terms, 8 AGen (the name is an acronym for the German tool description
“Synthetischer Lat-Gererator”) is a load generator application for performanetstelt is able
to generate a defined amount of requests to a system undantesteasure the response times.
Several important capabilities are explained in detailentions 2.1 and 3.1. More general
information can be found in existing publications, one néfigy to an initial version [3] and one
to a re-designed version [11].

Email addresseshoritz.balz@uni-due.de (Moritz Balz),michael .striewe@s3.uni-due.de (Michael
Striewe),michael.goedicke@s3.uni-due.de (Michael Goedicke)

1

This contribution is organized as follows: Section 2 repam the initial development of
SvLaGen to give a feeling for the initial requirements and the natifrthe load generation tool.
Section 3 elaborates on the re-development that took ptaoe gears later as a pure academic
project. Section 4 provides the main contribution of thipgreand focuses on the most important
findings on development and implementation style duringéhdevelopment phase. Section 5
concludes the paper.

2. Initial development of SyL AGEN

The initial development of 8 aGen was started as a cooperation between the University of
Duisburg-Essen and the Siemens company in the late 1990s, e first version of 8 AGex
had to meet both academic and industrial requirements. ditiad, the development process
had to obey limited project resources and some engineenidglevelopment standards used by
Siemens.

2.1. Requirements @yL AGen

From its beginning, €_aGen was intended to be a framework rather than a monolithic tool
and thus focused on extendability with respect to fodiiedént aspects: First, a system under
test may &er different interfaces for handling external requests, thus @ d@aerator must be
able to handle dierent protocols randomly and in parallel. This was the mhkgyr argument
for developing a new load generator at all, because Siemanted to be able to test their pro-
prietary protocols, which was not possible with availaldels. Second, load generation for a
client-server system may require complex client behawoatrcannot be formulated in a simple
descriptive way, but instead with non-trivial algorithnet have to be implemented program-
matically. Third, more than simple atomic measurements beagequired in complex environ-
ments, so that strategies applying sequences of measuretoensystem should be configured.
In particular, these strategies may incorporate preparstior each single measurement, e.g.
resetting databases, or adjust load generation paranbetgrsen two atomic measurements. Fi-
nally, complex load generation may result in complex uses#sat cannot be modelled as linear
scripts, but as probabilistic networks.

Some additional properties regarding the general systesigrni@ere required in parallel to
the flexibility requirements named above: To ease generafitnigh load volumes, the system
architecture must allow distributed load generation fraffiedent clients. For this purpose a
“master” component controlling the measurement shouldeotto client instances that generate
the actual load and may be either physical computers ordbgistances sharing a host system.

2.2. Design Implementation of the Initial Version

The implementation of the first version of ISaGen was straightforward: The master compo-
nent was a monolithic desktop application based on JavalsgSuser interface. The workload
was specified textually as shown in figure 1(a). A parser femtbrkload input format was gen-
erated automatically with JavaCC [5] from a grammar desfionp Besides several parameters
like measurementtime, timeouts and so on, a workload wagoseet of so-called “flows”. Each
flow can be understood as a simple state machine where e&geltatdains load generating re-
guests to the system under test. Transitions are label&dawiteight, allowing for probabilistic
paths through these machines. This provides the requinddifiy for complex load generation
which is far more powerful than linear scripts.

2

il RE

File Options File Options

[Loadprofile |Parameters | Clients ([Measurement| Loadprafile {Parameters | Clients {|Measurement

Current Profile: D:Syl aGen Profile ExampleProfiLtst Results:

2 DT Start Measurehent with: 5 Client(s)

7 ALl Executables of phase Init executed.

& Load Profile Heasurestart: L7:20:56 Stop Measurement
Phase: Prolog with 5 Client(s)

ALl Executables of phase Proloy executed.
Save Profile Phase: Merstart with § Client(s)
Phase: MsrEnd with § Client(s)
HMeasurenent. ...
Save Prafile AS.. Client clientl.sylagen.de:444d got results.
Client clientZ.sylagen.de:4444 got results.
Client clients.sylagen.de:4444 got results.
Goto Line Number: ’_ Client client3.sylagen.de:4444 got results.
Exploration = e Client clientd.sylagen.de:44dd got results.
BaxIgnoreClients = "3" Fhase: Epilog with § Client(s)
BLL Executables of phase Epilog executed.
profiles HMeasureend: 17:22:40

= Parse Profile Heasurestart: L7:22:42
Parsing Specification... 0.K. Phase: Prolog with 2 Client(s)

Checking Context Conditions... 0.K. ALl Executables of phase Prolog executed.
Sylagen specification parsed successfully. FPhase: MsrStart with z Client(s)
Phase: MsrEnd with 2 Clientis)

Serializing...0.E. Heasurenent... ..
Clear

workload Example |

constants

Clientium -
ThroughputTolerance =
FrofileTolerance
Distance

Tineout,

Frelsr

Terlisz

PostMar

WinFlovRuns

(a) Textual workload definition in the first version @) Textual measurement output in the first version of
SyLAGen. SyLAGen.

Figure 1: The user interface of the firstlS\Gen version.

Similar to the textual input, during measurement the outyag also displayed as a log file
on the screen as shown in figure 1(b). The results of the campleasurement were stored in
plain text files since sophisticated reporting was outdigestope of the requirements.

The client components were written in C to allow fdfigent execution even on limited
devices and were connected to the master with a simple sbelketd network protocol. In order
to achieve the desired flexibility for protocols used in resfs to systems under test, so-called
“adapters” were used. Each adapter was implemented in dedid. library and provided
a set of methods to access a certain communication inteoiapeotocol of the system under
test. Since these adapters were written in C like the cligh&y could implement non-trivial
algorithms as desired. Each workload definition referenbechecessary adapters so that they
were distributed to the clients by the master before sigthie measurement.

While the resulting architecture was thus comparativetypse, one part of the application
was given special care: The measurement strategies as thefcthe measurement process
were designed as state machines. Note that the state madbinlwad definition described
above are of descriptive character and subject to be craattdhanged by the every-day users
of SyLaGeN, while the state machines for strategies we are now talkiggbare intended to
be models for the implementation and thus created and eoytede developers. However, no
modeling tools were used to derive the implementation framdefs systematically — at the time
of the initial development, the related technologies warddss advanced than today. However,
it was not desirable to implement the measurement procdasgasparts of sequential program
code and loose all semantic information by this means. keréiason, a design pattern for state
machines was employed that stored the basic informationtaiates and transitions inside the
program code. It followed some simple rules:

e A classPriostate was instantiated to represent single states. Each statmasswas
given a name to make logging messages comprehensible hater o

3

Priostate verify = new Priostate("Verify");
/7.

Transition foundMarkGoToVerify = new Transition("FoundMarkGoToVerify", verify) {
boolean checkCondition() {
return theState.loadTooHighOrNoMoreMeasurementsPossible();

}

void doAction() {
phase="Verify";
theState.saveResults();
theState.decreaseToFirstUnexplored() ;
theState.doMeasure() ;
}
};

Listing 1: The informal program code pattern used in the fiession of SLaGen with a state and a transition.

e An interface withget methods provided access to the business logicytfaSen and
allowed to extract variables related to the measurememgy@@mple the number of restarts
after errors.

e AclassTransitionwas instantiated for each transition and connected to ststi@nces.
Each instance implemented two methoeise ckCondition evaluated expressions related
to method calls on the variables interfadgeAction executed business logic by accessing
other parts of the program code.

An exemplary part of the program code pattern can be seestindil. In the upper part,
a state instance is created. In the lower part, a transitistance is created. In order to supply
it with guard and action program code, it is created as anyanouas class implementing both
required methods.

The state machine was first populated by creating instancesdtes and transitions. After-
wards an execution method was called that repeated thevinlicssteps beginning with the start
state: (1) Invoking and evaluating alheckCondition methods of the transitions emanating
from the current state. (2) Selecting a transition whosedyueturnedtrue and invoking its
doAction method. (3) Setting the target state of the chosen transisdhe new current state.

By this means the state machine functionality was made @ipland comprehensible for
developers in the program code. However, no connectionydamal model was maintained,
neither implicitly nor explicitly.

3. Review and Extensions

After the initial development, 8 AGex had been in use for several years both for industrial
purposes and in academic courses. Besides minor maintighaages, there was no critical
review of the source code and no plans for further major agraent steps. However, even
maintenance of the clients becaméidult since the C-related tool chain was outdated and no
experienced C developers were available to create a newTmneope with this problem, the
client was re-implemented in Java in 2006. At this time, ththars discovered that documen-
tation for the initial development was partly incompleteoot-of-sync with the actual program
code, which can be considered a quite common problem fordomging projects. In addition,

4

the look and feel of the master’s user interface had alsorheamtdated and old fashioned, as
well as the style of communication and data exchange betwester and clients became labo-
rious and frail in comparison to more up-to-date technaegiThese were major issues since
industry projects were still accomplished, although thegqut partners did not participate in the

development, but only ordered measurements without krgpthie underlying system.

Thus it was decided to start a complete re-engineering grége SyLaGen in 2007. In con-
trast to the initial development, the decision for re-eegiing SLAGen was a pure academic
project without industrial partnership. Moreover, it didtthappen inside a limited time frame
or with dedicated resources. One the one hand, this alloaremhdére freedom and experiments
during development, but on the other hand the availablauress where generally low and could
neither be increased by referring to upcoming project deaslnor by additional funding. As
a consequence, the first step towards a new versioryloAG~ was a student project that was
concerned with design recovery and code review for theiagistersion of SLaGen. This crit-
ical review resulted in two interesting facts: First, maasoent strategies were implemented as
explicit state machines as described in the previous sediia they were not as well decoupled
from algorithmic details as it was required for the intendleslibility. Second, the behaviour of
several other parts of the system could also easily be destds state machines, suggesting at
least a far more modular architecture than the one that waleimented.

3.1. New Requirements and Re-engineering Goals

Not only the code review and design recovery activities & axperiences from years of
using SLaGen set up the goals for a second version ef.8Gen: First, the architecture of the
master should be modularized, implementing aspects likesarement control, master-client-
communication and user interface in independent softwameponents. Particular focus was
put on decoupling the state machine descriptions for measemt strategies from execution
details realized by the measurement control componens fHojuirement was not only driven
by the academic goal of a fully modularized architecture abso by the need for implementing
new measurement strategies. A more modular architectusealga required in order to add
sophisticated reporting capabilities which were not ideldiin the initial version. Second, the old
user interface and communication protocols should be cepldy new versions. The new user
interface should be based on the Rich Client Platform of ttlgpge development environment
[13] since it provides many features for building editorsl am at the same time integrated in
program code development tools, which is of interest fopéela. The communication protocol
should make use of XML to wrap complex data structures, sbithi@uld be handled with
standard protocols instead of proprietary protocols aifidsgay flexible for extensions in the
future. Replacing the old proprietary protocols in turnlimes rewriting the communication
interface of the clients as well. Third, the new capabditigined from using Eclipse RCP should
be used for a new input editor for formulating workloads in@aenconvenient format. However,
this last point was more a nice sidffext than a crucial argument in favour of re-development.

3.2. Implementation of the New Version

The considerations for a redesign lead to a module strudtatds shown in figure 2: The
overall measurement is controlled by a user interface neogiudl an attached configuration store.
The main task of the user interface is the creation of the iwads for the performance tests,
which are validated by a related module. When the measuramstarted, the workload infor-
mation is passed to the measurement module. It uses thé wlmfule which is connected to

5

User Interface
Configuration

controls

[Validation]

Measurement

Exploration

creates ‘
o

Figure 2: The module structure invBaGen with the basic kinds of relations between modules duringhieasurement
process. The load generation strategies in the “measutémeniule are embedded in and tightly connected to the
different modules.

[Workloads

o

=

uses
uses

[Clients

o
@

Connections]

actual clients by means of a connection module that sergeam abstraction layer overftérent
possible communication protocols. In the measurement tepthe diferent load generation
strategies are realized as plug-ins. They share the bsdingis provided by SLAGen, but dif-
fer with respect to the number of measurements and the nuofilséents to be used. When a
measurement is finished, the data collected by the cliestshimitted to the result module. Itis
passed over to a reporting module that can emplég@int reporting technologies, e.g. writing
the raw numbers to a file or alternatively passing them to histipated reporting system. The
prepared results are then provided to the user by the usefaoe again.

In order to facilitate a clean and formal approach to debnitand implementation of the
measurement strategies, a systematic re-engineering ppiedito the existing source code.
This re-engineering was supported by the fact that the staiehines contained information
about states, transitions, guards, and variables. Thét idsthis was a set of state machines
models defined in the timed automata model checker UPPAALW8]Jch was chosen for its
good visualization, simulation, and verification capdia$.

The other parts of the application were not developed basedarlels. The reason for this
is the high number and tight connection of dependenciesdeggaplatforms and frameworks:

e The user interface module completely depends on the stasctietermined by the Eclipse
RCP platform. The resulting user interface can be seen ingigu

e The workload module depends on the XML schema of the desim#load format and
frameworks to map them to in-memory object structures.

e The validation module depends on frameworks that can ingmeepiled Java libraries in
order to validate adapters.

[5yLaGen Master __ il

=lalx]|

Fle ot Window - Search
el e
i SyLaGenProjects B\ o) = 7 7 B[l workioad ‘quexf test' - SylaGen HML Editar 93 =g
= 2 Workspace
; ‘f o SylLaGen Workload (XML)

(-1 quext_test (2008-09-04, 09:56) [

B workinads
LD quenf _test Measure Pode: [Exploration Mode B

B adapters
|4 hiep-adapter jar ~ Time settings

il Pre Measurements 0005100 Hhimmiss)
- workloads

Measurement 00:30:00 [hhemm:ss]
Post Measurement: 00:01:00 [hh:mm:ss]

Timeout: 00:10:00 [hh:mm:ss]
~ workers
Workers 5 =i
Worker Distance: 9 Hia
Workers per Client Maximum: [[T H
Wworker Selection; Undefined #
Worker Precision: 1 aﬁ [
= Error handling
M
Accept missing Workers:
Accept Adapter Cal Errors: 5 = [of cale]
A
1
2 SyLaGenMaster 52 B console £3°. X% #8-r3-70)
IMaster active - registered clients: 5 uexF._test (2008-09-04, 09:56)
e [o] et —— IZTMS fEEE L=
15 LOAD_GEWERATION_IN_PROGRESS i tw‘ WWWW 2 i R R
dei1i18 15 LOAD_GEWERATION_IN_PROGRESS & en esRtranRt R -
deitiiz s LORD_GENERATION_TH_PROGRESS i b o
ernbergse-teaching uni-duedeiditl 15 LOAD_GENERATION_IN_PROGRESS b R“S‘:WT"‘ I 85 warkers o " ¢ st 1 MEASREVENT OK
Blkoehnse-teaching,uni-duz.dei1115 15 LOAD_GEWERATION_IN_PROGRESS YE Restialacinn easurEmen statss i =
-4 Preparing measurement oK
¥ Measurement with 75 workers ok
' Result collection oK Measurement status is ADAPTER_CALL_ERROR
-+ Preparng measurement o
&2 Measurement with 7S workers 8% =

Figure 3: The user interface of the second versionifs&ex based on Eclipse Rich Client Platform. We can see the

project explorer on the left hand, a workload being editethenmiddle, and the status display of clients and a running
measurement at the bottom.

e The connection module currently uses a lean socket-bastatt to allow for connection

to clients running on dierent platforms. For this purpose, all data is adjustedxbaed
number formats defined for this protocol.

e The measurement module provides calculations regardndabta used during measure-
ment, for example mean throughput and request times.

e The result module embraces statistical calculations t@mesults collected from single
clients into a consistent overall result.

e The reporting module interacts with existing librariesdogating simple files, spreadsheet
files, or input for reporting systems.

While for some of these tasks certainly model-driven apginea [4] can be applied, the num-
ber and variety of requirements precludes a consistent htvtden approach. A derivation of
the implementation from models would either have beendchib few parts of the application or
would have introduced a notabl&@rt for customization of existing model-driven developrmen
tools. A generation of program code for the strategies wiiale been possible, but was not
desirable since it would have been an isolated solutiongJ, 1

However, an ad-hoc implementation was also not feasibleceS&L aGen is an academic
tool used in diferent projects and research contexts, requirements chaftegeand quickly.
Thus it was soon clear that it was not desirable to manuatiyeléhe implementation from these
models again, since this would lead to the facts that the la@tiewould just be a documentation
and (2) would soon be inconsistent if no notable constinttavould be putinto synchronizing

7

models and implementation. It was thus clear that possigpecaches currently available did
not fulfill the objectives to develop the software in a cotesis manner while at the same time
automating the synchronization with the models.

Following this conclusion and reflecting on the patterndolasolution from the initial ver-
sion, we developed a new approach for implementing funatinbased on models that can be
integrated with arbitrary program code, as we will explaimiore detail in section 4. At this time
of the development it turned out as very beneficial to run gidesign project without industry
partners and tight time frames, because this situatiometious to delay active development of
SvLAGeN for experiments on the approach. As a result of these expetsnthe second version
of SyLaGen is as modularized as desired, uses all frameworks and piefas necessary, and
contains measurement strategies that are based on andljocoramected to formal models.

4. Formalized Design Patterns

The need for a model-based development technology thajrates in a heterogeneous ap-
plication like S'LAGen lead to the development of alternatives. It is likely that msearch in
this area would have been offiirent character if it was not motivated by the need to devel-
opment SLaGen with its different — and partly contradicting — requirements. Moreower,
are convinced that we would have needed more time to achiaetigal results without this
use-case-driven way of research.

4.1. Approach

The informal design pattern used in the first version oE 85ex as shown and explained
in section 2.2 was considered to be optimally integratechandverall application. However,
it lacked the possibility for a synchronization with fornmabdels. The main reason for this
is that it would not be possible to interpret the program cafitl respect to abstract models
in an automated way: The fact that instances are createdriglesmodel elements makes it
necessary to interpret possibly arbitrary algorithms ttegheine the model specification from
object instantiations.

We therefore decided to modify the existing approach maiitig respect to the storage of
information. For this purpose we usdtribute-enabled programminfp] that uses meta data
facilities introduced in programming languages like Jab2] fo store meta data inside the pro-
gram code and interpret the static structures by this m&dris results in program code patterns
that are formalized so that the static structures can reptéise abstract syntax of models. Thus
transformations can extract complete models from the codardingly. The approach has so far
been published aambedded mode]2].

In SyLAGeN, an embedded model for state machines based on UPPAAL hagiessed. It
stores the complete state machine syntax in static eleroéttise program code and re-uses for
this purposes some principles of the informal design pattéthe the first version, but also adds
some additions:

¢ An interface provideget methods that abstract from the overall business logicybfaS
Gen and provide a limited set of well-defined variables to be usdHte state machine.

¢ Another interface (calle@ctor) provides entry points to the business logic that can be
called from inside the state machine. The names of the mstamalby this means the
action labels for the state machine.
8

public class AfterMeasurementState implements IState f-—.smte Definition

{ [® Target State Pointer [Contract Pointer
|
@Transition(target =[UpUpState.class]|, contract =[BeginUpUpContract.class])

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{
actor.doMeasure| () ;
} —® Transition
/7 ...
} —— @ Action Label

State and Transition Definition in Source Code

,—. Contract Definition

public class BeginUpUpContract implements IContract<‘IMeasurementVariables‘ >
i T |

(L.
,—0 Current Variable Values Variable Definitions

public boolean checkCondition(‘IMeasurementVariables vars‘)
{ ——® Guard

return (!vars.getAbort|() && !vars.getRestart|() && vars.ge'dTooLow());

}

——® Update

[]
———@ Variable Labels &—

|—. Cached Variable Values

—® Current Variable Values

public boolean validate(IMeasurementVariables, IMeasurementVariables after|)

{
return (after.geﬁNumberOfWorkers() == (before.getNumberOfWorkers|() + before.get[\ZWorkerDistance()))i !
i

) e
'——@ Variable Labels ®

Contract Definition in Source Code

Figure 4: A state definition with an outgoing transition ateddontract. The first method of the contract checks a pre-
condition with the current variable values, while the setamethod checks a post-condition by comparing the current
values to previous values.

e States are represented as class definitions. The class sarte¥preted as the name of the
related state.

¢ Transitions are represented as methods inside state €laBsey contain a set of method
calls to the actor interface, so that each transition has @f sessociated action labels.

¢ Meta data at transition methods refers to the target stats aefinition and to methods
containing expressions for guards and updates. Thesesskpms evaluate to boolean
values and access the variables in the related interface.

An example of the formal program code pattern can be seentrefig. It shows a part of
the S'\LAGEN stateAfterMeasurementState in the “exploration” strategy that decides how to
proceed after a single measurement was performed. As weeeaithe single elements of the
program code can be interpreted unambiguously with respehe state machine model. Since
the classes are not instantiated to be equipped with sersatiite program code can be statically
analysed at development time and run time. Some more dbtiks already been described in
our previous publications [2, 1].

The execution of this pattern follows a similar principleishe first version, but also with
some important changes. These changes are based on thHetamit design pattern introduces
a new abstraction layer and thus an additional layer of @utiion and modularity. Consequently,
execution is not based on object instances, but on the statictures instead, which are ac-
cessed by means of structural reflection [6]. Thus the statthine is not populated by creating
instances of state and transitions inside the applicatiance code itself, but by reading the pro-
gram code by an execution framework in the measurement raodiile execution framework
for the embedded model interprets the program code as felb@ginning with the start state’s
class definition and performing the following steps: (1t&miating the class, invoking and eval-
uating all guard methods of the transition methods in theeturstate. (2) Selecting a transition
whose guard returnedrue and invoking its transition method. Besides the class iristaon at
beginning of step 1, these steps are similar to what the akloredid. (3) Invoking the update
expression to determine if the business logic has perfoahadges that are compatible with the
state machine specification. This step of permanent seffieation could now be introduced
since the necessary information is now available from thbezided formal model. (4) Setting
the target state of the chosen transition as the new curtiagetuntil a final state is reached. This
step again is similar to the last step in the old version. H@wét has to be noted that all steps
that are similar to the old version are now performed by thecation framework and not by
the source code defining the state machine. Thus the goatofidéng strategy definition and
strategy execution can be considered fulfilled in the newiver

4.2. Usage for Development

This complete information about the model allows not onlyspecify the state machine
semantics more precisely than before and execute them imtamated way. Moreover, we
can extract the model from within the program code and viewnanipulate it in appropriate
modeling tools, in this case UPPAAL as shown in figure 5 [1Ohc8 the program code pattern
is a valid notation for the complete model specificationscase also transform a changed model
back to program code and thus apply changes.

Atrun time it is possible to monitor the execution of the piarg code pattern with respect to
the state machines since the static structures of the progwde are interpreted by the execution
framework. A tool exists that shows the related model eldmand their behavior, including a
visual view of the state machine of the measurement strat@ggntly in use. By this meansiitis
possible to track errors in the context of the abstract $ipations without relying on meta data
or tracing information, but only on the embedded model thatantained in the program code
without any additional €ort.

Thus the approach fulfills the needs of the academic toolldpweent in this case:

e The number and variety of frameworks and platforms in uselpdes solutions that re-
quire a complete formal definition at higher levels of absttom or determine the software
architecture by themselves. Instead, program code basetbdals is required to seam-
lessly integrate in the existing structures. The formaidesign patterns allow for this
since they share the notation of the program code that isuasd by the frameworks and
platforms.

¢ The high frequency of change requests makes a separateemaiice and synchronization
of program code and complex and time-consuming. The fomdlprogram code patterns
works with diferent abstraction levels, but uses only one notation te stem, so that
changes alwaydfect all abstraction levels.
10

|/ /53-Home/striewe/Eigene Dateien/Lehre/sylagenaml - UPPAAL == ===
File Edit View Tools Options Help

Oa@ e e e [Ja o
Editor | Smulasor | verrie |

MName: |Template Parameters:

ExplorationStartState
true

ReadyFomeasurementState
true

zasurementState B&(NumberOfRestarts<MaximumRestarts)))

OmRestarts+1

(Abort||((NumberOfRestarts>=MaximumR estal

({Abort==rals start==falsg)&&Too

orkers+WorkerDistance)
s<MadimumRestarts)) starts<iMadimumRestarts))
arts=Numbero ﬂ-?vstar‘tsﬂ

kel stam @‘

u pu;mtat»

High))
orkers-WarkerDistance)

((AL

TooHIg)&

((Abort==talse)& &(Restarts
Numbel

((Abort==false)B &(start==fal TooHigh)) . ({Abort==false)& &((Restart==false)&& TooLaw})
o] |(((Restart==false)&& (MumberOfWarkers==1))||f Restart&a(berOfRestarts>=MaximumRestarts))))
({Abart==f; iF oHigh))
{(Abol 58) Numbei ero rkers-1)
(Abort==ralse)&&(Restart&a(Numk a<imun ts)))
((Abo &&(Resta { estarts<Ma<imumRestarts))) NumberOfRe: el =
N N estarts+1

(Abort||((NumberCfRestarts>=MaximumR estart Restart)) (Abort||{(NumberCfRestarts>=MaximumR e \)
DownUpState UpDownState
(Abort||({(NumberOfRestarts>=MaximumR estarts)& &Restart)) (Abort||({(NumberCfRestarts>=MaximumR estarts)& &Restart))
j.T&I minationState

true
NumberOfWarers=0

O EndState

WMadmumRestarts
ORe

Figure 5: The UPPAAL model of the state machine controlling ‘texploration” load generation strategy.

¢ Resources for industry-quality documentation are ofteramailable in an academic con-
text, so that there is a constant risk that the model docuatientmay not fully represent
the reality. In the shared notation of the program code, dmntation is always up-to-date
since the model specifications can be extracted as long astleecomplies to the formal
specifications for the program code pattern. This can ebsilyalidated or enforced with
static code analysis.

In summary, the development and maintenancexdfaGen was very interesting from our
point of view: The reflection on the technologies in use aral rdquirements that occur for
academic tools lead to aftkrent model-based development approach, which has proveatk
in this context since 2008.

5. Conclusion and Future Work

In this contribution we presented the development of thd [generator platform & AGen.
Considering the development of academic tools, it is frompaint of view interesting with
11

respect to two aspects. First, we considered special (ieadtas well as organizational) require-
ments that lead to the need of non-standard solutions. $rcdse, certain quality criteria were
desired, but not easy to meet in the dynamic context of aced@mjects. Second, the academic
context lead to a solution that is from our point of view gettigrapplicable to problems of the
same class. This kind of research that happens beside pobjedts, in similar contexts referred
to asserendipity[14], is in our opinion a valuable contribution of the devaieent of “real”
applications in academia.

Future work regarding 3 aGen will include more reflections on model-based development.
On the one hand, it is desirable to cover more parts of thaagtign with formal models. This
affects foremost the overall process of the measurement andh&lsnodules and their interac-
tions. Since it will not be feasible to generate the compteide, we want to create appropriate
embedded models for these purposes. On the other handed#ds to the questions how dif-
ferent domain-specific models can interoperate: By usiegthurce code as the only notation,
we will have a situation where flierent domain-specific models are tightly connected. A férma
specification of their interoperability is desirablexLSGen as a tool is large enough to serve as
a realistic and demanding case study for both kinds of reeéamodel-based development.

References

[1] Moritz Balz, Michael Striewe, and Michael Goedicke. Eedding State Machine Models in Object-Oriented
Source Code. liProceedings of the 3rd Workshop on Models@run.time at MOBELO8 pages 6-15, 2008.

[2] Moritz Balz, Michael Striewe, and Michael Goedicke. @anous Maintenance of Multiple Abstraction Levels in
Program Code. IfProceedings of the 2nd International Workshop on Futuredseof Model-Driven Development
- FTMDD 2010, Funchal, Portuga010.

[3] Reinhard Bordewisch, Barbel Schwéarmer, Michael Gdegliand Peter Tropfner. Lastsimulation fir anwendung-
sumgebungen in vernetzten it-architekturdfitteilungen der Gl-Fachgruppe MME43), 2003.

[4] Alan W. Brown, Sridhar lyengar, and Simon Johnston. Ai&sl approach to model-driven developmetBM
Systems Journa#t5(3):463—-480, 2006.

[5] Tom Copeland.Generating Parsers with JavaC@entennial Books, 2nd edition, 2007.

[6] Francois-Nicola Demers and Jacques Malenfant. Refledt logic, functional and object-oriented programming:
a short comparative study. In IJCAIl '95 Workshop on Reflection and Metalevel Architezgiand their Applica-
tions in Al pages 29-38, 1995.

[7] Brent Hailpern and Peri Tarr. Model-driven developmeFtie good, the bad, and the uggM Systems Journal
45(3):451-461, 2006.

[8] Kim G. Larsen, Paul Pettersson, and Wang YerAdr in a Nutshell.Int. Journal on Software Tools for Technology
Transfer 1(1-2):134-152, Oct 1997.

[9] Don Schwarz. Peeking Inside the Box: Attribute-Oriehferogramming with Java 1.8DNJava.comJune 2004.
http://www.onjava.com/pub/a/onjava/2004/06/30/insidebox1.html.

[10] Michael Striewe, Moritz Balz, and Michael Goedicke. dbfing Graph Transformations on Program Code. In
Proceedings of the 4th International Workshop on Graph BaEmls, Enschede, The Netherlands, 202@0.
accepted for publication.

[11] Michael Striewe, Moritz Balz, and Michael Goedicke.L&f5en - An Extendable Tool Environment for Generating
Load. In Bruno Miiller-Clostermann, Klaus Echtle, and Enfathgeb, editorsProceedings of “Measurement,
Modelling and Evaluation of Computing Systems” and “Depegritity and Fault Tolerance” 2010, March 15 - 17,
Essen, Germanyolume 5987 of NCS pages 307-310. Springer, 2010.

[12] Sun Microsystems, Inc. JSR 175: A Metadata Facility the Javd™ Programming Language, 200ttp:
//jcp.org/en/jsr/detail?id=175.

[13] The Eclipse Foundation. dapse website.http: //www.eclipse.org/.

[14] Pek van Andel. Serendipity: Expect also the Unexpect@tkativity and Innovation Managemerit(1):20-32,
1992.

[15] John Vlissides. Generation GaP++ Report 8(10):12, 14-18, 1996.

12

