
Sourcerer - An Infrastructure for Large-scale Collection and
Analysis of Open-source Code

Sushil K Bajracharya, Joel Ossher, Cristina V Lopes

University of California Irvine, USA

Abstract

A large amount of open source code is now available online, presenting a great potential re-
source for software developers. This has motivated software engineering researchers to develop
tools and techniques to allow developers to reap the benefits of these billions of lines of source
code available online. However, collecting and analyzing such a large quantity of source code
presents a number of challenges. Although the current generation of open source code search
engines provide access to the source code in an aggregated repository, they generally fail to take
advantage of the rich structural information contained in the code they index. This makes them
significantly less useful than Sourcerer for building state-of-the art software engineering tools, as
these tools often require access to both the structural and textual information available in source
code.

We have developed Sourcerer, an infrastructure for large-scale collection and analysis of open
source code. By taking full advantage of the structural information extracted from source code
in its repository, Sourcerer provides a foundation upon which state of the art search engines and
related tools can easily be built. We describe the Sourcerer infrastructure, present the applications
that we have built on top of it, and discuss how existing tools could benefit from using Sourcerer.

Keywords: Open Source, Internet-scale code retrieval, Data Mining, Sourcerer, Static Analysis,
Software Information Retrieval

1. Introduction

The popularity of the Open Source Software movement has dramatically increased the gen-
eral availability of free, high quality source code. The repositories that host open source software
are growing at an exponential rate [30], and the software itself is seeing increasing usage, from
both developers and the general public. With respect to developers, open source software is often
used as part of the development infrastructure, as well as in the code itself, in the form of reusable
libraries and frameworks [35, 5]. This growth in the usage and availability of open source
software provides a rich opportunity for the creation of novel software engineering solutions.
However, collecting, analyzing, and actually using such large quantities of source code is quite
challenging, which makes building and evaluating any new techniques significantly difficult. In

Email addresses: sbajrach@ics.uci.edu (Sushil K Bajracharya), jossher@ics.uci.edu (Joel
Ossher), lopes@ics.uci.edu (Cristina V Lopes)

1

this paper we present Sourcerer, an infrastructure developed to tackle these key challenges. The
paper provides details on the models Sourcerer uses to represent open source code, the content
Sourcerer stores, the tools that comprise Sourcerer, and the services that Sourcerer provides. The
current version of Sourcerer is designed to work with open source projects developed using Java.

The proliferation of open source software has given rise to two recent trends in the software
industry and the academic software engineering research community.

1. Commercial code search engines. The growth in the amount of open-source software
in public repositories is reflected in the emergence of several commercial code search
engines, such as Koders, Krugle and Google Code Search [67, 68, 11]. These code search
engines allow developers to use a single site to search billions of lines of source code
collected from various repositories on the Web.

2. Research trends in leveraging large software repositories. There has been consider-
able research effort in building specialized search tools for software developers. Studies
of developers’ activities reveal a routine use of web resources during development, in par-
ticular code examples and snippets [24, 36]. Supporting these observations several tools
have been proposed that utilize code retrieved from repositories. Examples include recom-
mending APIs [37], code-completion [25], finding reusable code fragments [41], finding
and synthesizing API examples [36, 26], and finding application for prototyping [34].

The commercial code search engines go a fair way towards fulfilling software developers’
needs for finding relevant open source code. However, their performance is often lacking, as any
user can attest. As a result, the software engineering research community has created a number of
novel approaches for large-scale code retrieval. A common theme among these approaches is the
use of structural information along with the more traditional textual information extracted from
the code. However, conducting research that requires this rich structural information presents
three major challenges:

1. Collection: The primary challenge in collecting source code off the Internet is that there is
no standard method of distribution. Open source projects are generally hosted by large
open source repositories, such as Sourceforge [69], Google Code Hosting [66], and
Apache [2], which rarely provide hooks for performing this type of collection. Ulti-
mately, the best way to obtain the source code is to scrape the download links and version
control systems from the project web pages. However, the use of different version control
systems, download protocols, and constantly changing format/content of the web pages
makes automating this collection process rather tedious.

2. Analysis: In order to leverage the structural information available in source code, one has
to be able to first extract the information itself. In order to fully extract structural informa-
tion from source code, the code must be declaratively complete; i.e. all the dependencies
must be resolved. Unfortunately, when it comes to source code from the internet, there is
no guarantee that the code is declaratively complete; missing dependencies and incomplete
files are quite common. Scaling the analysis to thousands of projects further complicates
matters, as it eliminates the feasibility of performing any type of manual processing.

3. Application: Due to the challenges posed by collection and analysis, it is often impossi-
ble to rapidly design and evaluate applications that make use of both textual and structural
information extracted from large quantities of source code. The upfront cost of construct-
ing a repository and implementing sound analysis tools makes research in large scale code
retrieval non-trivial.

2

The Sourcerer project explores various applications of the large-scale collection and analysis
of open source code. We have developed a research infrastructure that is principally driven
by the need to tackle the three major challenges mentioned above. In summary, the Sourcerer
infrastructure enables the following:

1. Collection of large amount of source code from open source repositories to build a refer-
ence repository for research in large scale source code analysis.

2. Automated analysis of arbitrary Java source code that exists out in the wild (on the inter-
net).

3. Rapid development and evaluation of applications that leverage large amount of prepro-
cessed, cross-linked and aggregated repository of source code.

This paper provides details on important aspects of Sourcerer that enable the above features.
The paper is an extension of our earlier publications on Sourcerer [20, 61]. It includes more
detailed description on the latest version of the Sourcerer infrastructure and makes the following
contributions:

• Provides key details on the design and implementation of the Sourcerer infrastructure that
enables collection and analysis of large amount of open source code.

• A summary of applications enabled by Sourcerer’s infrastructure and a list of its major
contributions in the area of large-scale code retrieval and source code data mining.

• Key details on implementation, configuration, and availability of Sourcerer to motivate its
adoption by external researchers.

The Sourcerer Infrastructure primarily consists of five different components:

1. Models: A set of abstractions that capture the elements of textual and structural informa-
tion in Sourcerer’s source code collection.

2. Tools: A collection of loosely coupled tools responsible for the collection and analysis of
source code.

3. Stored Content: Artifacts that are produced using various tools and stored locally in
Sourcerer’s repository.

4. Services: A layer of abstraction that enables access to the Stored Content.
5. Applications: that leverage the Stored Content accessed via various Services.

Paper Organization: The paper begins by covering the five components that constitute the
Sourcerer infrastructure. Sections 2 through 5 capture how we built the infrastructure by de-
scribing the models, tools, and services. In Section 6, we discuss the applications built using
Sourcerer, which validates the applicability and impact of the Sourcerer infrastructure. Section 7
provides information on availability of the Sourcerer infrastructure for use by other researchers.
In Sections 8 and 9 we discuss related and future work, and cover how Sourcerer relates to ex-
isting similar tools and platforms. We conclude in Section 10. The Appendix contains details on
implementation to motivate external users to obtain, use, and extend the Sourcerer’s open source
infrastructure.

2. Models

Three models define the basic mechanisms for storing and retrieving information from the
source code available in Sourerer’s repository.

3

Figure 1: Sourcerer’s Relational Model

2.1. Storage Model

The Storage Model captures the layout and structure of the physical files in Sourcerer’s local
repository. A layered directory structure was chosen for two main reasons. First, it allows
projects from the same source to be grouped together, which makes adding or removing content
more straightforward. Second, after initially implementing a flat version, we discovered that
the file system did not adequately handle having tens of thousands of subdirectories in a single
directory. The files collected from open source projects are stored in a folder according to the
following template:

<repo_root>/<batch>/<id>

Above, <repo root> is a folder assigned as the root of Sourcerer’s file repository. Given
the root folder, the individual project files are stored in a two-level directory structure defined by
the path fragment <batch>/<id>. Each <batch> folder contains a semi-arbitrary collection of
projects. For example, a batch could be a crawl from a specific online repository or a collection
of fixed number of projects. Inside <batch>, another set of folders exist. Each second-level

4

folder in the local repository, indicated by <id> in the above template, contains the contents of
a specific project. Each <id> directory contains a single file and two sub-directories, as shown
below:

<repo_root>/<batch>/<id>/project.properties
<repo_root>/<batch>/<id>/download/
<repo_root>/<batch>/<id>/content/

Above, project.properties is a text file that stores the project metadata as a list of name
value pairs. The download folder contains the compressed file packages that were fetched from
the originating repository (e.g. a project’s distribution in Sourceforge). The content directory
contains the expanded contents of the downloads directory. Once the contents of the download
directory have been expanded, the directory itself is usually emptied in order to free up space.

The project contents in the content directory can take two different forms, depending on its
format in the initial repository. If the project contents are checked out from a remote software
configuration management systems (such as svn and cvs), the file located at a relative path path

in the originating repository (e.g Sourceforge) exists in Sourcerer’s file repository at the following
absolute path:

<repo_root>/<batch>/<id>/contents/<path>

If, instead, the project is fetched from a package distribution, a source file can be found in
Sourcerer’s file repository at the following absolute path:

<repo_root>/<batch>/<id>/contents
/package.<i>/<path>

Above, package.<i> indicates a unique folder for each ith package that is found in a remote
repository. path indicates a relative path of a source code file that is found inside the ith archived
package, which is unarchived inside the package.<i> folder.

Project metadata: The project.properties file is a generic project description format
that generalizes the project metadata from the online repositories. Many of the attributes in
project.properties are optional, except for the following:

• crawledDate: indicates when the crawler picked up the project information

• originRepositoryUrl: URL of the originating repository; e.g. http://sourceforge.net

• name: project’s name as given in the originating repository

• containerUrl : project’s unique URL in the originating repository

And, one or both of the following: (i) Information on project’s software configuration man-
agement (SCM) system indicated by scmUrl (ii) Information on project’s source package dis-
tributed on the originating repository:

• package.size indicating total number of packages distributed

• package.name.i indicating name of the ith package, where 1 <= i <= size, and i indi-
cates a unique integer denoting a package number.

5

• package.sourceUrl.i indicating the URL to get the ith package from the originating
repository.

Two sample project.properties files showing metadata for two projects is given in Ap-
pendix A.

Jar Storage: In addition to the top-level batch directories described above, the local repos-
itory also contains a single jars directory. The jars directory is structured as follows:

<repo_root>/jars/project/<jar_path>
<repo_root>/jars/maven/<jar_path>
<repo_root>/jars/index.txt

The project subdirectory contains all of the jar files that come packaged with the projects
in the main repository. This directory is populated by crawling through the repository itself, and
copying every jar found. The copying is done so that these jar files can be modified, if necessary,
without altering the original projects. The maven subdirectory contains a mirror of the Maven2
Central Repository. Lastly, index.txt contains an index that maps from the MD5 hash of a
jar file to its location in the directory structure. This index is used to link the jar files from the
projects to the files contained in the jars directory.

The Storage Model provides a standard for storing project files in Sourcerer and is not directly
used by applications. The description above will be useful for those interesting in downloading
and using the Sourcerer’s reference file repository from [54]. Applications rely on other higher-
level abstractions to access the contents stored in Sourcerer.

2.2. Relational Model

Sourcerer’s Relational Model defines the basic source code elements and the relations be-
tween those elements. The metamodel is specific to Java, and is designed to capture its latest
version. We decided to go with a language-specific metamodel, rather than a more generic meta-
model such as FAMIX [29], as it allows us to more concisely represent Java-specific features.
Our model supports a fine-grained representation of the structural information extracted from
source code. It also links the code elements/relations with their locations in physical artifacts.

Two major goals guided the design of Sourcerer’s relational model. First, it had to be suf-
ficiently expressive as to allow fine-grained search and structure-based analyses. Second, it had
to be efficient and scalable enough to include the large amount of code from thousands of open
source projects. To meet these two goals we decided to use an adapted version of Chen et al.’s
[27] C++ entity-relationship-based metamodel as Sourcerer’s relational model for source code.
In particular, their decision to focus on what they termed a top-level declaration granularity
provides a good compromise between the excessive size of finer granularities and the analysis
limitations of coarser ones.

Our metamodel has evolved two primary ways from its original version. First, it was adapted
to include the features introduced by Java 1.5. While adding these features contributed a fair
amount of complexity to the metamodel, we felt that it was necessary given the increasing preva-
lence of open source code using the features. Second, after receiving some feedback from users,
we decided to add local variables to our metamodel, allowing for a slightly finer granularity in
our analysis.

The relational model consists of the following five elements: Project, File, Entity, Comment,
and Relation.

6

PACKAGE
CLASS
INTERFACE
ENUM
ANNOTATION
INITIALIZER
FIELD
ENUM CONSTANT
CONSTRUCTOR
METHOD
ANNOTATION ELEMENT
PARAMETER
LOCAL VARIABLE
PRIMITIVE
ARRAY
TYPE VARIABLE
WILDCARD
PARAMETRIZED TYPE
UNKNOWN

Table 1: Entity Types

A project model element exists for every project contained in Sourcerer’s repository, as well
as every unique Jar file. A project therefore contains either a collection of Java source files and
jar files, or a collection of class files. A file model element represents these three types of files:
source (.java), jar (.jar) or class (.class). Both source and class files are linked to sets of
Entities contained within them, and to the Relations that have these entities as their source and
target. Jar files, on the other hand, are linked to their corresponding jar projects, which in turn
contains all of the entities and relations.

An entity model element either corresponds to an explicit declaration in the source code (e.g.
Class, Interface, Method etc), a Java package1, or Java types that are used but do not correspond
to a known explicitly declared type (e.g. Array, Type Variable). An entity type is UNKNOWN when
the type cannot be determined due to uncertainty in the analysis. Table 1 lists all entity model
element types defined in Sourcerer. These types all adhere their standard meaning in Java, as
defined in the Java Language Specification (JLS) [32].

A relation model element represents a dependency between two Entities. A dependency d
originating from a source entity s to a target entity t is stored as a Relation r from s to t. Table 2
contains a complete list of the relation types with a brief description and example for each. All
of the relations are binary, linking a source entity to a target. The source entity for a relation
is smallest entity that contains the code that triggers that relation. While containment is clear
for most of the entities, it should be noted that FIELDs are considered to contain their initializer
code and ENUM CONSTANTs are considered to call their constructors. The source entity is always
found within the project being examined. This is not necessarily true of the target entity. It can
be a reference to the Java Standard Library or any other external jar. In fact, sometimes it is
impossible to resolve the type of the target entity, due to missing dependencies.

A comment model element represents the comments defined in the Java source code.

1Packages are not considered to be standard declared entities as they do not have a single declaration
7

R
elation

D
escription

E
xam

ple
I
N
S
I
D
E

Physicalcontainm
ent

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
I
N
S
I
D
E
j
a
v
a
.
l
a
n
g

E
X
T
E
N
D
S

C
lass

extension
j
a
v
a
.
u
t
i
l
.
L
i
n
k
e
d
L
i
s
t
E
X
T
E
N
D
S
j
a
v
a
.
u
t
i
l
.
A
b
s
t
r
a
c
t
S
e
q
u
e
n
t
i
a
l
L
i
s
t

I
M
P
L
E
M
E
N
T
S

Interface
im

plem
entation

j
a
v
a
.
u
t
i
l
.
L
i
n
k
e
d
L
i
s
t
I
M
P
L
E
M
E
N
T
S
j
a
v
a
.
u
t
i
l
.
L
i
s
t

Interface
extension

j
a
v
a
.
u
t
i
l
.
L
i
s
t
I
M
P
L
E
M
E
N
T
S
j
a
v
a
.
u
t
i
l
.
C
o
l
l
e
c
t
i
o
n

H
O
L
D
S

Field
type

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
o
f
f
s
e
t
H
O
L
D
S
i
n
t

R
E
T
U
R
N
S

M
ethod

return
type

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
t
o
C
h
a
r
A
r
r
a
y
(
)
R
E
T
U
R
N
S
c
h
a
r
[
]

R
E
A
D
S

Field
read

.
.
.
S
t
r
i
n
g
.
<
i
n
i
t
>
(
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
)
R
E
A
D
S
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
o
f
f
s
e
t

W
R
I
T
E
S

Field
w

rite
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
<
i
n
i
t
>
(
)
W
R
I
T
E
S
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
o
f
f
s
e
t

C
A
L
L
S

M
ethod

invocation
.
.
.
S
t
r
i
n
g
.
i
n
d
e
x
O
f
(
i
n
t
)
C
A
L
L
S
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
i
n
d
e
x
O
f
(
i
n
t
,
i
n
t
)

I
N
S
T
A
N
T
I
A
T
E
S

C
onstructorinvocation

f
o
o
(
)
I
N
S
T
A
N
T
I
A
T
E
S
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
<
i
n
i
t
>

T
H
R
O
W
S

D
eclared

checked
exception

j
a
v
a
.
i
o
.
W
r
i
t
e
r
.
w
r
i
t
e
(
i
n
t
)
T
H
R
O
W
S
j
a
v
a
.
i
o
.
I
O
E
x
c
e
p
t
i
o
n

C
A
S
T
S

A
castexpression

j
a
v
a
.
l
a
n
g
S
t
r
i
n
g
.
e
q
u
a
l
s
(
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t
)
C
A
S
T
S
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

C
H
E
C
K
S

A
n

instanceofexpression
j
a
v
a
.
l
a
n
g
S
t
r
i
n
g
.
e
q
u
a
l
s
(
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t
)
C
H
E
C
K
S
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

A
N
N
O
T
A
T
E
D

B
Y

A
nnotation

j
a
v
a
.
l
a
n
g
.
O
v
e
r
r
i
d
e
A
N
N
O
T
A
T
E
D
B
Y
j
a
v
a
.
l
a
n
g
.
a
n
n
o
t
a
t
i
o
n
.
T
a
r
g
e
t

U
S
E
S

A
ny

reference
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
.
<
i
n
i
t
>
(
)
U
S
E
S
c
h
a
r

H
A
S

E
L
E
M
E
N
T
S

O
F

A
rray

elem
enttype

c
h
a
r
[
]
H
A
S
E
L
E
M
E
N
T
S
O
F
c
h
a
r

P
A
R
A
M
E
T
R
I
Z
E
D

B
Y

A
ssociated

type
variables

j
a
v
a
.
u
t
i
l
.
L
i
s
t
P
A
R
A
M
E
T
R
I
Z
E
D
B
Y
<
E
>

H
A
S

B
A
S
E

T
Y
P
E

G
eneric

base
type

j
a
v
a
.
u
t
i
l
.
L
i
s
t
<
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
>
H
A
S
B
A
S
E
T
Y
P
E
j
a
v
a
.
u
t
i
l
.
L
i
s
t

H
A
S

T
Y
P
E

A
R
G
U
M
E
N
T

G
eneric

type
argum

ent
j
a
v
a
.
u
t
i
l
.
L
i
s
t
<
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
>
H
A
S
T
Y
P
E
A
R
G
U
M
E
N
T

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

H
A
S

U
P
P
E
R

B
O
U
N
D

?
extends

T
Y

PE
<
?

e
x
t
e
n
d
s
j
a
v
a
.
u
t
i
l
.
L
i
s
t
>
H
A
S
U
P
P
E
R
B
O
U
N
D
j
a
v
a
.
u
t
i
l
.
L
i
s
t

H
A
S

L
O
W
E
R

B
O
U
N
D

?
superT

Y
PE

<
?

s
u
p
e
r
j
a
v
a
.
u
t
i
l
.
L
i
s
t
>
H
A
S
L
O
W
E
R
B
O
U
N
D
j
a
v
a
.
u
t
i
l
.
L
i
s
t

Table
2:R

elation
Types

8

Figure 2 shows Sourcerer’s relational model using an ER-diagram. It shows the five elements
of Sourcerer’s relational model and a set of attribute for each of them. Table 3 provides the details
on all the attributes of the model elements. Figure 2 and Table 3 provide information on how
the model elements are linked with each other, and how the attributes in the relational model
link the relational model elements with the storage model. For example, Project element’s ‘path’
attribute links it to the physical location defined by the storage model.

Various tools in Sourcerer make use of this information to connect the relational information
with the textual content stored in the physical files.

2.3. Index Model
The Index Model complements Sourcerer’s relational model by facilitating the application

of information retrieval techniques to code entities. Sourcerer’s information retrieval component
is based on the popular Lucene [6] information retrieval engine, and therefore our index model
follows Lucene’s general approach. More details on Lucene’s content model is available in [59].

Our index model matches a Lucene document to each entity in the relational model. A doc-
ument is made up of a collection of fields, each field being a name/value pair. The simplest form
of value is a collection of terms, where a term is the basic unit for search/retrieval. Terms are
extracted from various parts of an entity, and stored in the fields of the document corresponding
to that entity.

Fields in Sourcerer’s index models can be categorized into five types:

1. Fields for basic retrieval that store terms coming from various parts of a code Entity
2. Fields for retrieval with signatures that store terms coming from method signatures and

also terms that indicate number of arguments a method has
3. Fields storing metadata, for example the type of the Entity, so that a search could be limited

to one or more types of entities
4. Fields that store information to facilitate retrieval based on structural similarity (e.g. fields

storing fully qualified names (FQNs) of used entities and terms extracted from similar
entities

5. Fields that pertain to some metric computed on an entity
6. Fields that store ids of entities for navigational/browsing queries

Being based on Lucene, Sourcerer’s index model is quite flexible. Depending on a specific
search application, an instance of a Sourcerer’s index schema can have a subset of various field
types listed above. Appendix B shows an example code index schema used in two of Sourcerer’s
search applications: Sourcerer Code Search engine [18] and CodeGenie [46, 44, 45, 47].

Table 4 presents a subset of the fields available in the Sourcerer index. Sourcerer’s search
index can be searched using Lucene’s query language. The following Lucene query demonstrates
how different fields are utilized to express a query that incorporates textual as well as structural
information:

short_name: (week date)
AND entity_type: METHOD
AND m_ret_type_sname_contents: String
AND m_args_fqn_contents: Date

The above query has the following meaning: find a method with the terms week and date

in its short name (or simple name in JLS [32]), that returns a type with short name String and
takes in an argument type with the term Date in its name.

9

Description
Project
project id unique identifier for a project
project type denotes whether this project represents a crawled project, or a Jar file
name name of the project as it appears in the originating Internet repository
description description of the project from the originating Internet repository
version version of this project as extracted from originating Internet repository
groop specific field applicable to Maven Jars
path corresponds to the <batch>/<id> path fragment as defined by the storage model
has source denotes whether the project contains source files
File
file id unique identifier for a file
file type denotes the file’s type - source, Jar, class
name name of the file in the file system
path corresponds to either <batch>/<id>/contents/<path>, or jars/<jar path>

as defined by the storage model
hash unique MD5 hash, applicable for Jars only
project id project id that this file belongs to
Entity
entity id unique identifier for an Entity
entity type one of the several code entity types. E.g. CLASS, METHOD etc
fqn Fully qualified name (FQN) of the entity
modifiers modifiers defined for the code entity
multi denotes array dimension, applicable for ARRAY types only
file id file id that this entity is extracted from
offset start position of this entity in the source file
length length of this entity in the text (source file)
Relation
relation id unique identifier for a relation
relation type one of the several code relation types. E.g. CALLS, EXTENDS etc
relation class denotes whether the relation terminates to a library or a local entity
lhs eid the source entity that the relation originates from
rhs eid the target entity that the relation terminates into
offset start position in the source entity’s corresponding file where this relation exists
length length of the text in source code where this relation spans
Comment
comment id unique identifier for a comment
comment type denotes the comment’s type - Javadoc, Block, Line
containing eid the immediate code entity that contains this comment
following eid the immediate code entity that follows this comment
file id file where this comment is found
offset start position of comment in the source file
length length of this comment in text (source file)

Table 3: Sourcerer’s Relational Model Elements Details

10

Index Field Description
Fields for basic retrieval
fqn contents Tokenized terms from the FQN of an

entity
short name right most fragment of the FQN

(w/o method arguments for meth-
ods)

Fields for retrieval with signatures
m args fqn contents method’s formal arguments tok-

enized into terms after passing each
of them through keyword extractor

m ret type sname contents short name of the method’s return
type tokenized

Fields Storing metadata
entity type String representation of entity type.

Eg; ”CLASS”
Fields for navigation
fan in mcall local entity ids of all local callers for a

method from the same project

Table 4: Sample search index fields

Our recent publication [21] provides a more elaborate discussion on how Sourcerer’s index
model is used in a code-retrieval application.

3. Stored Content

The Sourcerer infrastructure maintains a collection of stored content corresponding to each
of the three models.

A File Repository keeps a collection of files downloaded and fetched from open source
repositories in the Internet. The structure of the code repository follows the storage model.

Two different databases store the relational information about the contents in the file repos-
itory. First, ArtifactDB stores limited information about the jar files found in the repository in
order to enable the automated resolution of missing dependencies [62]. Second, SourcererDB
stores the relational information on all projects, files and code entities that exist in the code repos-
itory. Both of the code databases exist as MySql databases whose schemas confirm to Sourcerer’s
relational model.

A Lucene based Search Index is available that stores information about terms extracted from
each code entity in the corresponding documents and fields. The search index uses a code index
schema following the index model.

4. Services

All the artifacts managed and stored in Sourcerer are accessible through a set of web ser-
vices. These services provide a layer of abstraction and programmatic access to rapidly build
applications that can leverage the underlying content stored in Sourcerer.

11

Relational Query: Both ArtifactDB and SourcererDB are implemented as MySql databases.
They provide direct access to query the underlying structural/relational information in Sourcerer
using standard SQL.

Repository Access: This service provides access to the textual content of four of Sourcerer’s
model elements: files, entities, relations and comments. Repository access is a simple HTTP-
based web service that returns the full text when given a unique id.

Dependency Slicing: This service provides dependency slices of the code entities in Sourcer-
erDB. A dependency slice of an entity is a program (collection of Java source files) which in-
cludes that entity as well as all the entities upon which it depends. Requested slices are packaged
into zip files, and should immediately be compilable. The dependency slicing service can take
in one or more entity ids and return a zip file containing the collection of sliced/synthesized Java
files that the given set of entities depend on.

Code Search: This service implements a query processing and retrieval facility. Client
applications (such as CodeGenie [46, 44, 45, 47]) can send queries as a combination of terms
and fields and the service returns a result set with detailed information on the entities that matched
the queries. The query language is based on Lucene’s implementation using which clients can
express structural information in the queries. The current code search service is implemented
as a customization of the Solr search engine [15]. Solr is a front end for Lucene, and supports
a wide range of retrieval functions such as: basic retrieval of code entities based on the vector
space model, faceting based on fields defined in the code index schema, similarity searches etc.
All these features are available over Sourcerer’s code search index. The matching and scoring
(ranking) of entities follow Lucene’s implementation. Further details on how Lucene/Solr match
the query terms in index fields and scores the matched entities is available from our previous
publication [21]; a more definitive source is [10]. In summary, a boolean retrieval is performed
based on a Lucene query as shown in Section 2.3, then all matched entities (documents) are
ranked using the TF-IDF measure [58].

Similarity Calculation: The Similarity Calculation service takes in an entity id of an entity
‘e’ and returns a list of other entities that are similar to ‘e’. Currently, the similarity calculator
can suggest similar entities based on three different measures of usage similarity. For this pur-
pose, the similarity calculator uses the usage information stored in SourcererDB. The Structural
Semantic Indexing technique that we presented in [21] makes use of the similarity calculation
service. Further details on similarity calculation is available in [21].

Except the Relational Query service, all other services are simple HTTP based services.
Currently three services are open to the public. A detailed description of how to use these services
is available online [40].

5. Tools

A number of loosely coupled tools are available in the Sourcerer infrastructure. These tools
are primarily responsible for collecting and analyzing source code and producing Sourcerer’s
stored contents.

Code Crawler: Sourcerer consists of a multithreaded plugin-based code crawler that can
crawl the web pages in online source code repositories. To adapt with the changes and differ-
ences with web pages in different Internet repositories, the crawler follows a plugin based design.
A separate plugin can be written targeting the crawl of a repository. This makes it possible to just
update the plugin or add new plugins when a different or new web site has to be crawled. Cur-
rently the crawler consists of plugins for Sourceforge [69], Java.net [3], Tigris [4], Google Code

12

Hosting [66], and Apache [2]. The crawler takes a set of root URLs as an input and produces a
list of download URLs and version control links along with other project specific metadata. This
project specific metadata is in the form as specified by (the project.properties file in) the
storage model.

Repository Creator: The Repository Creator tool is responsible for parsing the output list
from the Code Crawler, filtering noise from the list (e.g. removing duplicate links), and down-
loading the contents from the online repositories to Sourcerer’s local file repository. Given a
local file repository’s root folder, the repository creator creates the required folder structure and
places the contents as specified by Sourcerer’s storage model. The repository creator first creates
the two level folder structure based on the number of projects it needs to add to the repository.
Second, it creates the project.properties file describing each project. Third, it fetches the
files from remote/original repositories. project.properties has metadata about two content
sources in remote repositories: (i) Source Configuration Management systems such as svn and
cvs, and (ii) downloadable packages such as compressed distributions (zips, tars etc). When an
information on a SCM repository is available, the repository creator first tries to check out con-
tents from the respective SCM system. If errors are encountered or if the SCM check out brings
no contents, then the repository creator downloads all the packages, given that the information
on links to the packages exist in project.properties. After the download, the repository
creator explodes the archives inside the content folder corresponding to the project. The end
result of this process is a local Sourcerer repository based on the storage model and that contains
contents fetched from remote open source repositories.

Repository Manager: The repository manager tool is responsible for two tasks: (i) library
management, and (ii) optimizing the local repository for feature extraction. Under library man-
agement, the repository manager creates and maintains a local mirror of all jar files from the
Maven2 central repository 2 [13]. It also aggregates all of the jar files from the individual
projects into the jars directory, as described above. It then creates an index of all the unique jar
files in the repository. These jars can be used to provide missing types to projects in Sourcerer’s
file repository during feature extraction if needed. Under optimizing the local repository, the
repository manager performs tasks such as compressing the contents inside a project’s folder,
and cleaning the jars’ manifest files to avoid problems due to unexpected classpath additions.

Feature Extractor: The Feature Extractor in Sourcerer is responsible for extracting the de-
tailed structural information from the source code files stored in Sourcerer’s file repository. The
feature extractor is built as a headless Eclipse plug-in, to make use of Eclipse’s AST Parser.
Before running the feature extractor, the source code is preprocessed to detect missing libraries
using import statements. Some additional heuristics are used to be able to fully resolve the bind-
ings in the source code types and links to the libraries. These heuristics are fully explained in
our earlier publication [62]. The Repository Manager and the Feature Extractor together im-
plement the required techniques for Automated Dependency Resolution, a key feature available
in the Sourcerer infrastructure, that enables feature extraction from large number of open source
projects despite missing dependencies and errors. In summary automated dependency resolu-
tion works as follows. First, the feature extraction runs through the available projects to detect
missing types. It creates the AST representation of code available in the projects and generates
a list of missing types reported by the underlying Eclipse parser. From the list of missing types,
the feature extractor generates a list of possible FQNs for those types to be found. It then looks

2Maven is a build system for Java that provides the facility to fetch required libraries from a central repository [12].

13

up the ArtifactDB for possible Jar files where the missing FQNs could be found. While doing
so it selects the jar files that can provide the maximum number of missing FQNs. Once the jars
are selected, they are included in the classpath of the project with missing types and then the
feature extractor runs again. This process is repeated until all missing types are found or if no
jars could be located for remaining missing types. After this step, the feature extraction does a
full extraction of entities and relations from the projects. Our evaluation of automated depen-
dency resolution has shown that it can increase the percentage of declaratively complete projects
in Sourcerer from 39% to 69%. Full details of automated dependency resolution is available in
our previous publication [62].

Database Importer: This tool allows importing the Feature Extractor’s output into the code
databases: ArtifactDB and SourcererDB.

Code Indexer: The code indexer tool is responsible to index all code entities in Sourcerer’s
repository using the textual and structural information available for the entities. The code indexer
obtains this information using three services, the File Access Service - to obtain the full text
corresponding to a code entity, SourcererDB to retrieve entities and comments related to a code
entity being indexed, and Similarity Calculation service to retrieve similar entities. As a result of
the indexing process, the code indexer produces a semi-structured full text index based on Lucene
[6]. Currently the code indexer is implemented as a customization of the Solr [15] indexing and
search system. The code index schema varies based on a particular code search application. To
index a code entity, the code indexer can retrieve all or some the following data: the full-text for
the corresponding entity, the fully qualified names (FQNs) of related entities, comments of the
used libraries, and FQNs of used entities. The search index schema will consist of fields to store
the terms corresponding to these data types. The terms are extracted from the FQNs and full-text
using code-specific analysis techniques (e.g. camel case splitting, removing language keywords
as stop words etc). The code indexer tools consists of several of these code-specific analyzers.
Appendix B provide further details on configuring the code indexer.

6. Applications

The services and stored contents in Sourcerer have been used to develop several code re-
trieval systems and data mining techniques on source code. The data collected in Sourcerer’s file
repository have enabled large-scale inter-project analysis techniques that have helped strengthen
the capability of the infrastructure itself. This section reviews Sourcerer’s key features that facil-
itated its application in the area of large scale code search, analysis and data mining on source
code.

Table 5 lists 6 applications of Sourcerer that have produced major research contributions.
The applications are listed in a chronological order. Major publications corresponding to each
application is listed in the fourth column. These references provide full details on the specific
contributions these applications of Sourcerer has made in the area of Internet-scale code retrieval
and source code data mining.

The first column in Table 5 denotes the Sourcerer milestone, indicating the version of the
Sourcerer’s infrastructure used in these applications. The difference in Sourcerer’s infrastructure
between milestones M1 and M2 is explained at the end of this section.

The last column in Table 5 indicates whether the corresponding Sourcerer application is
available online, and provides the reference to the URL for those that are available online.

14

6.1. Impact

Among the 6 applications in Table 5 Sourcerer Code Search (SCS) Engine, CodeGenie,
Structural Semantic Indexing (SSI), and Sourcerer API Search (SAS) fall under the application
category of Internet-scale code retrieval. The work done in Topic Modeling Source Code is an
example of source code data mining applications that Sourcerer enables. Finally, Sourcerer Ref-
erence Collection (SRC) is an effort towards building reference collection for replicable research
in large scale code analysis. Together, these applications demonstrate Sourcerer’s impact and
contribution since its inception.

6.2. Applications Enabled by Infrastructure Features

Reference Collection: Sourcerer’s file repository, storage model, and a simple attribute
based project metadata format (see Appendix A) provides a basis for creating a large code
repository that can store and describe contents fetched from thousands of open source projects.
This enabled us to create and release a recent Sourcerer file repository as a reference collection
of source code for research in large-scale analysis of source code. The reference repository is
available at [54].

Data Mining: The storage model, file repository, relational model, and relational access to
SourcererDB allows creating a text-based corpus of source code documents. Each document
can have terms extracted from code entities, along with terms extracted from entities that they
depend on. This allows rapid construction of a corpus with the bag-of-words representation of
documents. The topic modeling work was enabled by the capability of Sourcerer to create many
variations of such corpora with little effort.

Code Indexing: The index model, repository access, and the relational query service facili-
tate rapid construction of a search index. The code indexer, being based on Solr, allows building
the search index in a declarative way. Two XML files are needed that specify the exact search
index (index schema) fields, and data sources to be used to produce a search index (data sources).
A wide range of code-specific text analyzers, implemented as part of the Sourcerer infrastructure,
can be specified in the index schema to generate terms required for the index fields. Appendix
C provides an example of Sourcerer’s declarative code indexing.

Code Retrieval/Search: All of the five Sourcerer’s services enable many required features
for building code search applications. First, the code search service can process any standard
Lucene query to retrieve a set of code entities from the search index. Again, using Solr as
the search server facilitates many advanced search techniques. The format of the search result
can be customized as per application’s need. Usually the search result contains a subset of
matched entities called ‘hits’, each representing a code entity. Each hit is associated an entity
id, which can be used to look up information with the other services. This service-based design
facilitates building code search tools that are (i) deeply integrated with developers’ working
environment, and (ii) leverage textual/structural information extracted from a large amount of
source code. Codegenie is an excellent example. Codegenie uses the code search service to first
search the entities. It then, using the repository access service, fetches the desired code for each
entity returned as a search result. Finally, it gets compilable slices of code using the dependency
slicing service that can be merged back into a developer’s project workspace. Full details on how
Codegenie is built on top of Sourcerer’s services is given in [46].

Inter-project Structural Analysis: The collection of large number of source code for projects,
libraries and automated dependency resolution technique have enabled large scale structural/de-
pendency analysis across projects. The first example of this application is the computation of

15

global Coderank [19, 18, 48], a measure of popularity for a code entity based on adaptation of
Google’s Pagerank [43] algorithm on the code-graph created using SourcererDB. In this code-
graph, entities represent nodes and relations represent edges. Cross-project links are made by
finding the source code implementation for libraries that projects refer to. For example, when
a code entity has a relation terminating to a binary (library) entity l, the corresponding source
entity ls can be found in the SourcererDB. This allows us to create a global graph of program
dependencies that span projects. The details on creating such cross-project links are available in
our previous publication [61].

6.3. Sourcerer Milestones

Both the design and implementation of Sourcerer has been constantly evolving. Because
of this, earlier applications of Sourcerer use slightly different versions of the models and the
repository. At large, the changes in Sourcerer can be divided into two milestones M1 and M2,
based on five key features. Table 6 shows these features. Sourcerer M1 existed from 2006 -
2009, and the relational model only captured the entities and relations in Java as defined in Java
Language Specification 1.3. These entities and relations were extracted using a custom Java
parser built using the JFlex/CUP software packages. Search applications built with Sourcerer
M1 used the schema shown in Appendix B, Table C.7. The repository used with Sourcerer M1
had 4632 projects.

Sourcerer M2 is a major rewrite of the entire Sourcerer infrastructure. The original design
was kept intact, but the implementation was different, producing a set of loosely coupled tools
(described earlier Section 5) unlike a monolithic tool that implemented the functionalities of all
current tools in Sourcerer M1. Sourcerer M2’s relational model captures the entities and relations
as defined Java 1.5. Sourcerer M2 also contains a new and bigger source repository with around
18,000 projects. Sourcerer M2, has been open sourced since 2009. The work on code retrieval
done with Sourcerer M2 uses a different code index schema that is described in [21].

7. Availability and Access

The implementation of the Sourcerer infrastructure is available online as an open source
project [9]. Some of the services are available online as listed in Table 5. As mentioned earlier,
we have recently released Sourcerer M2’s file repository as a reference collection to be used for
research in large scale analysis of source code [54]. Currently, researchers from four different
universities have downloaded and are using the repository. Appendix D describes a workflow
of using Sourcerer; starting from crawling code to running evaluations using tools available in
its implementation. We believe this will motivate other researchers to use and extend Sourcerer
in their research.

8. Related Work

The work done in code analysis and relational model for source code in Sourcerer is quite
similar to the approach taken by many reverse engineering tools and models. For example,
FAMIX is a language independent model for describing the static structure of object-oriented
software systems [29], and is conceptually compatible with the relational model we use. FAMIXs
primary purpose is to support the exchange of information between multiple tools. Where as

16

M
ile

st
on

e
A

pp
lic

at
io

n
K

ey
Id

ea
/C

on
tr

ib
ut

io
n

Pu
bl

ic
at

io
ns

W
eb

M
1

So
ur

ce
re

rC
od

e
Se

ar
ch

E
ng

in
e

C
od

er
an

k;
In

cl
ud

in
g

St
ru

ct
ur

al
In

fo
r-

m
at

io
n

in
co

de
re

tr
ie

va
l

[1
9,

18
,4

8]
Y

es
[1

7]

To
pi

c
M

od
el

in
g

So
ur

ce
C

od
e

E
xt

ra
ct

in
g

co
nc

ep
ts

an
d

au
th

or
-t

op
ic

as
so

ci
at

io
n

[4
9,

50
,5

1,
48

]

In
fo

rm
at

io
n-

th
eo

re
tic

m
od

el
of

A
sp

ec
ts

[2
3]

C
od

eG
en

ie
Te

st
-d

riv
en

co
de

se
ar

ch
[4

6,
44

,4
5,

47
]

Y
es

[8
]

D
ep

en
de

nc
y

Sl
ic

in
g

M
2

In
te

r-
pr

oj
ec

tS
tr

uc
tu

ra
lA

na
ly

si
s

C
ro

ss
-p

ro
je

ct
lin

ki
ng

fo
r

de
te

rm
in

in
g

gl
ob

al
us

ag
e

st
at

is
tic

s
[6

1]

St
ru

ct
ur

al
Se

m
an

tic
In

de
xi

ng
E

ff
ec

tiv
e

re
tr

ie
va

l
of

A
PI

us
ag

e
ex

am
-

pl
es

le
ve

ra
gi

ng
us

ag
e

si
m

ila
ri

ty
[2

1]

So
ur

ce
re

rA
PI

Se
ar

ch
Pr

ot
ot

yp
e

fo
r

E
xp

lo
ra

to
ry

C
od

e
Se

ar
ch

us
in

g
SS

I
[2

2]
Y

es
[1

]

So
ur

ce
re

rR
ef

er
en

ce
C

ol
le

ct
io

n
R

ef
er

en
ce

C
ol

le
ct

io
n

fo
r

re
se

ar
ch

in
la

rg
e

sc
al

e
an

al
ys

is
of

so
ur

ce
co

de
Y

es
[5

4]

Ta
bl

e
5:

V
ar

io
us

A
pp

lic
at

io
ns

of
So

ur
ce

re
rI

nf
ra

st
ru

ct
ur

e

17

Milestone Period JLS Index Model Repo. Size Feature Extractor Open
Sourced

M1 2006 - 2009 1.3 SCS 4K Homegrown No
M2 2009 - 2010 1.5 SSI 18K, ∼350 Eclipse-based Yes

Table 6: Sourcerer Milestones

Sourcerer’s relational model’s purpose is to represent the structural information in code at the
right level of granularity and scale.

Linton’s OMEGA system was one of the first to model source code in a relational manner,
when back in 1984 he used a relational schema to describe a Pascal-like language [53, 52]. As
discussed earlier, Sourcerer’s relational model is most closely related to that of Chen et al. [27].
It is also nearly identical to the one used by the back-end repository for [37].

Sourcerer’s approach to large scale collection of open source code is, in many ways, similar to
Spars-J, a software component repository created by Inoue et al. [42]. Spars-J contains structure
and reference information similar to SourcererDB, with the addition of various software metrics.
Spars-J also merges similar components, except at the entity, rather than project, level. However
the Spars-J public demo appears to be limited to pre-Java 1.5. Although their web-interface al-
lows for searching and browsing of individual files and packages, as well as for references to be
followed, it provides no support for direct database or web-service access, making it unsuitable
as a foundation to build applications. In addition to Spars-J, there are many other component
repositories and code search engines. Merobase, for example, is a commercial component repos-
itory that provides a developer API to access its structure-based search [14]. Though it lacks
any reference-based information, this still puts it ahead of many other code search engines, such
as Google Code Search [11] and Koders [67].

9. Future Work

This section presents existing software engineering tools from a few different areas, and
describes how they could have benefited from the Sourcerer infrastructure. We also discuss
important areas of improvement that could be made to the Sourcerer infrastructure itself.

9.1. Possible Benefits to Existing Tools

A natural extension to Sourcerer’s applications would be to reimplement or interface existing
software engineering tools with Sourcerer’s repository and services. This can not only ease and
improve the development of these tools (or future tools like these) but also provide opportunities
for fair and more scientific evaluation/comparison of these tools with a common underlying
repository.

Example Recommendation: Holmes et al.’s Strathcona [37] is a tool for using a developer’s
current structural context to recommend source code examples. Strathcona attempts to match the
structural information in the current context against examples from its repository. The informa-
tion stored in Strathcona’s repository is sufficiently similar to that in Sourcerer’s that Strathcona
could be implemented on top of the Sourcerer infrastructure. This would focus Strathcona’s de-
velopment on the matching heuristics and client integration, while immediately providing access
to a very large repository.

18

Figure 2: Sourcerer’s Overall Architecture

XSnippet [63], Prospector [57] and PARSEWeb [64] are all systems designed to provide
examples of object instantiation. Although implementation on top of Sourcerer would provide
some benefit to all of them, PARSEWeb would be dramatically improved. Currently PARSEWeb
uses Google Code Search to find and download likely examples of object instantiation. These
snippets are then analyzed to determine if they contain appropriate invocation sequences. This
analysis is complicated by the fact the code snippets are missing most of their external refer-
ences. PARSEWeb is forced to utilize a variety of heuristic techniques to guess the missing
types. Sourcerer is ideally suited for this sort of use, as it can provide snippets where the external
references are present, eliminating the errors introduced by the fuzzy analysis.

Information Mining: Both SpotWeb [65] and CodeWeb [60] are tools for detecting API
hotspots. If they were to use Sourcerer, hotspots could be detected directly simply by ordering
the entities in a jar by the number of incoming relations.

Pragmatic Reuse: Holmes and Walker’s approach to reuse [38] shares many similarities
with our dependency slicing. While our approach is fully automated, drawing in all necessary
dependencies, theirs permits a greater level of customization, allowing developers to exclude
dependencies they do not want. In order to achieve this customization, however, a developer
must download and import the full project into his workspace. This creates a fair amount of
manual overhead, for if there are multiple candidate projects for reuse, the process must be
repeated for each one. Furthermore, any unresolved dependencies in the initial project download
will remain unresolved in the final result. The combination of their approach with the Sourcerer
infrastructure has the potential to eliminate many of these problems. One could construct a reuse
plan on a slice returned by our system, further reducing its size, without having to worry about
downloading the full project or unrelated or unresolved dependencies.

19

9.2. Extending Sourcerer

Another area of future work in Sourcerer is to address some of its current limitations, and
find opportunities to integrate it with complementary platforms/infrastructure.

Multiple Languages: Currently Sourcerer is designed explicitly to work with the Java pro-
gramming language. Although Java is quite popular as a language of choice to develop software
applications today, there are other languages that are equally popular. Even in a single project,
it is common to use multiple languages today. For example, a Java project itself might include
scripts written in dynamic languages such as Ptyhon and Groovy. Projects also include other
declarative mechanisms to generate and build code that make extensive use of languages such
as XML. Therefore, models and tools to analyze and store multiple languages, and more impor-
tantly, dependencies between them seem to be an important area that an infrastructure such as
Sourcerer needs to improve on. In this regard, existing approaches such as XIRC [31] that allows
some form of cross artifact analysis in development environments seem relevant. One strategy
could be to apply techniques used in XIRC and scale it up to make it work with Sourcerer.

Addressing Evolution: The current design of the Sourcerer infrastructure does not have a
strong support to address the evolution of the source code. Source code in open source reposi-
tories are constantly modified and updated, at least in active projects. Sourcerer’s current design
requires it to create a separate project for each unique version of project it needs to store. In
terms of storage and analysis this is not the most efficient approach to deal with evolving soft-
ware. A careful survey of the requirements and application of evolutionary data on source code
can guide Sourcerer’s future approach in dealing with evolution. One possibility would be to ex-
tend Sourcerer’s current models with elements that describe evolution, as seen in the meta-model
used by the Small Project Observatory project [56].

Considering non-code artifacts: Source code is not the only artifact that is available in
open source repositories. It is well known that during a software development lifecycle vari-
ous kinds of non-source artifacts are produced and used. For example, data on issues, bugs,
documentation, authorship, developer’s activities/ history etc. While Sourcerer is not primarily
designed to address these kinds of non-source artifacts, it is important to find an approach to
connect Sourcerer’s models and services with repositories (for example Hipikat [28] that store
these non-code artifacts.

Integrating with other open source analysis platforms: Another avenue of extension
would be to integrate Sourcerer with open-source quality monitoring platforms, such as Alitheia
Core [33], that aim to collect source code metrics from open source projects on the Internet. Such
integration could enable yet new applications, that would leverage open-source quality metrics
with information available in Sourcerer’s stored contents.

The FLOSSmole project is a collaborative effort to collect and analyze large amount of open
source project data [39]. Sourcerer is more comprehensive in terms of tools, services and depth
of information it covers for analyzing the source code available in open source project. FLOSS-
mole’s database include more project specific metadata, and had information on larger number
of open source projects. On one hand, the data from FLOSSmole project could be used, instead
of the data produced by Sourcerer’s code crawler, to construct a Sourcerer file repository. On
other hand, the depth of information that can be produced using Sourcerer can further enhance
the kinds of analyses that FLOSSmole currently supports. Therefore, integrating Sourcerer with
FLOSSmole could widen the scope and impact of both projects.

20

10. Conclusion

This paper presented the design and implementation of the Sourcerer infrastructure. The
primary components and the basic working principle of Sourcerer can be summarized in the ar-
chitecture diagram presented in Figure 2. Sourcerer’s architecture consists of a set of loosely
coupled tools that produce various stored contents. These stored contents confirm to the de-
sign specified by three models: Storage, Relational and Index. Five different services provide a
layer of abstraction for programmatic access to the underlying stored content. These services en-
able the development of applications that require access to preprocessed information from large
amount of source code (in both textual and structural form).

The Sourcerer infrastructure makes three primary contributions in the area of large-scale
collection, analysis and application of open source code:

1. Collection: The storage model, a common metadata format for describing open source
projects across various online repositories, and the plugin-based design of the code crawler
enable collection of large-amount of code from the Internet.

2. Analysis: A large collection of libraries in Sourcerer’s file repository, and the automated
dependency resolution implemented in the feature extractor increases the number of declar-
atively complete projects to 69% from 39% [62]. This makes it possible to extract fine-
grained structural information from a large number of projects even in the presence of
missing dependencies.

3. Applications: Sourcerer consists of several services that provide a layer of abstraction
and programmatic access to textual, structural, and information retrieval models of source
code. This enables rapid development and evaluation of novel techniques for source code
retrieval and data mining. By providing the required models, tools, and services - it serves
as a testbed for rapid implementation and evaluation of large scale code analysis tools such
as Internet-scale code search tools. The successful application of Sourcerer in applications
such as Sourcerer Code Search engine [19, 18, 48] , Codegenie [46, 44, 45, 47], and
Structural Semantic Indexing validates [21] Sourcerer’s impact in this area.

Besides above three contributions, Sourcerer provides key resources to conduct replicable
research in large scale code analysis by (i) making available a large collection of source code
in a standard format [54], and (ii) by making the infrastructure’s implementation available as
an open source project [9]. Finally, we hope that the details on the Sourcerer’s implementation
available in the Appendix will motivate external usage and contribution to the Sourcerer project.

Acknowledgements: Sourcerer is a large systems project, incorporating over 8 people (up to
4 at a given time). The first two authors are responsible for all work done in Sourcerer since
milestone M2. We acknowledge contributions made by other in the earlier versions of Sourcerer
infrastructure.

Contributors to Sourcerer milestone M1: Yimeng Dou implemented the first basic version of
the Sourcerers crawler that was replaced by a more robust and plugin-based code crawler by Huy
Huynh. Trung Ngo was instrumental in contributing to the first design and implementation of
the overall Sourcerer infrastructure and developed the context sensitive analysis, core indexing
components, and the ‘Coderank’ [18, 19, 48] technique that was part of the graph-based heuristic
to improve code retrieval in SCS. Paul Rigor contributed to deployment and running our tools
on various system configurations ranging from a single machine to clusters of machines. Erik
Linstead was responsible for running the experiments required for evaluation of retrieval schemes

21

in SCS [19, 48], and was the primary contributor to data-mining applications of Sourcerer [49,
50, 51, 48, 23]. Otavio Lemos, contributed to the idea of of Test-driven Code Search (TDCS) and
implemented CodeGenie [46, 44, 47, 45]. Last but not the least, Pierre Baldi led the data-mining
research in Sourcerer and supported the infrastructure’s implementation since its inception.

References

[1] Sourcerer wiki page on sourcerer api search tool http://wiki.github.com/sourcerer/Sourcerer/sas.
[2] Web Site for Apache Software Foundation. http://apache.org.
[3] Web site for Java.net. http://java.net.
[4] Web site for Tigris. http://tgris.org.
[5] Black Duck’s web page with Koders usage information. http://corp.koders.com/about/, February 2010.
[6] Lucene web site. http://lucene.apache.org, Jan 2010.
[7] Web Location of Galago Search Evaluation Tool. http://code.google.com/p/galagosearch/source/browse/tags/galagosearch-

1.04/galagosearch-core/src/main/java/org/galagosearch/core/eval/Main.java, July 2010.
[8] Web page for codegenie. http://sourcerer.ics.uci.edu/codegenie, July 2010.
[9] Web page for Sourcerer’s github repository. http://github.com/sourcerer/Sourcerer, June 2010.

[10] Web Page on Apache Lucene Scoring. http://lucene.apache.org/java/2 4 0/scoring.html, Mar 2010.
[11] Web site for Google Code Search. http://www.google.com/codesearch, July 2010.
[12] Web site for maven. http://maven.apache.org, July 2010.
[13] Web site for maven’s central repository. http://repo1.maven.org/maven2/, July 2010.
[14] Web site for merobase. http://www.merobase.com/, July 2010.
[15] Web Site for Solr http://lucene.apache.org/solr/ , July 2010.
[16] Web site for Sun Grid Engine. http://gridengine.sunsource.net, July 2010.
[17] Web page for sourcerer project and the sourcerer code search engine. http://sourcerer.ics.uci.edu, July.
[18] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes. Sourcerer: a search engine for open

source code supporting structure-based search. pages 681–682, New York, NY, USA, 2006. ACM Press.
[19] S. Bajracharya, T. Ngo, E. Linstead, P. Rigor, Y. Dou, P. Baldi, and C. Lopes. A study of ranking schemes in

internet-scale code search. Technical Report UCI-ISR-07-8, UCI ISR, November 2007.
[20] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An internet-scale software repository. In Proceedings of

the 2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools and Evaluation, pages 1–4.
IEEE Computer Society, 2009.

[21] S. Bajracharya, J. Ossher, and C. Lopes. Leveraging usage similarity for effective retrieval of examples in code
repositories. 18th International Symposium on the Foundations of Software Engineering, 2010.

[22] S. Bajracharya, J. Ossher, and C. Lopes. Searching api usage examples in code repositories with sourcerer api
search. In SUITE 2010: Second International Workshop on Search-driven Development - Users, Infrastructure,
Tools and Evaluation, 2010.

[23] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya. A theory of aspects as latent topics. In Proceedings of
the 23rd ACM SIGPLAN conference on Object oriented programming systems languages and applications, pages
543–562, Nashville, TN, USA, 2008. ACM.

[24] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer. Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code. In Proceedings of the 27th international conference on
Human factors in computing systems, pages 1589–1598, Boston, MA, USA, 2009. ACM.

[25] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve code completion systems. In
Proceegings of FSE, pages 213–222, Amsterdam, The Netherlands, 2009. ACM.

[26] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A Search Engine for Java Using Free-Form Queries. In Fundamental
Approaches to Software Engineering, pages 385–400. 2009.

[27] Y. Chen, E. R. Gansner, and E. Koutsofios. A c++ data model supporting reachability analysis and dead code
detection. IEEE Trans. Softw. Eng., 24(9):682–694, 1998.

[28] D. Cubranic, G. Murphy, J. Singer, and K. Booth. Hipikat: a project memory for software development. Software
Engineering, IEEE Transactions on, 31(6):446–465, 2005.

[29] S. Demeyer, S. Tichelaar, and S. Ducasse. Famix 2.1 — the famoos information exchange model. Technical report,
University of Bern, 2001.

[30] A. Deshpande and D. Riehle. The total growth of open source. In Fourth Conference on Open Source Systems.
Springer Verlag, 2008.

[31] M. Eichberg, M. Mezini, K. Ostermann, and T. Schafer. Xirc: A kernel for cross-artifact information engineering

22

in software development environments. In WCRE ’04: Proceedings of the 11th Working Conference on Reverse
Engineering (WCRE’04), pages 182–191, Washington, DC, USA, 2004. IEEE Computer Society.

[32] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The. Addison Wesley, 3 edition,
June 2005.

[33] G. Gousios and D. Spinellis. Alitheia Core: An extensible software quality monitoring platform. In Proceedings
of the 31st International Conference on Software Engineering, pages 579–582. IEEE Computer Society, 2009.

[34] M. Grechanik, K. M. Conroy, and K. A. Probst. Finding Relevant Applications for Prototyping. In Proceedings of
the Fourth International Workshop on Mining Software Repositories, page 12. IEEE Computer Society, 2007.

[35] J. Hammond. What developers think. http://www.drdobbs.com/architect/222301141, Jan 2010.
[36] R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: finding and leveraging implicit references in a web search

interface for programmers. In Proceedings of the 20th annual ACM symposium on User interface software and
technology, pages 13–22, Newport, Rhode Island, USA, 2007. ACM.

[37] R. Holmes and G. C. Murphy. Using structural context to recommend source code examples. In ICSE ’05:
Proceedings of the 27th international conference on Software engineering, pages 117–125, New York, NY, USA,
2005. ACM Press.

[38] R. Holmes and R. J. Walker. Lightweight, Semi-automated Enactment of Pragmatic-Reuse Plans. In Proceedings
of the 10th international conference on Software Reuse: High Confidence Software Reuse in Large Systems, pages
330–342, Beijing, China, 2008. Springer-Verlag.

[39] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A collaborative repository for FLOSS research data and
analyses. International Journal of Information Technology and Web Engineering, 1(3):17–26, 2006.

[40] http://sourcerer.ics.uci.edu/services. Sourcerer web services.
[41] O. Hummel, W. Janjic, and C. Atkinson. Code conjurer: Pulling reusable software out of thin air. IEEE Softw.,

25(5):45–52, 2008.
[42] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and S. Kusumoto. Component rank: relative

significance rank for software component search. In ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 14–24, Washington, DC, USA, 2003. IEEE Computer Society.

[43] R. M. Lawrence Page, Sergey Brin and T. Winograd. The pagerank citation ranking: Bringing or-
der to the web. Stanford Digital Library working paper SIDL-WP-1999-0120 of 11/11/1999 (see:
http://dbpubs.stanford.edu/pub/1999-66).

[44] O. Lemos, S. K. Bajracharya, J. Ossher, P. C. Masiero, and C. Lopes. Applying test-driven code search to the reuse
of auxiliary functionality. In 24th Annual ACM Symposium on Applied Computing (SAC 2009), 2009.

[45] O. A. L. Lemos, S. K. Bajracharya, and J. Ossher. CodeGenie:: a tool for test-driven source code search. In
Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications
companion, pages 917–918, Montreal, Quebec, Canada, 2007. ACM.

[46] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, P. C. Masiero, and C. V. Lopes. A test-driven approach to code search
and its application to the reuse of auxiliary functionality. Information and Software Technology, (To appear).

[47] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero, P. Baldi, and C. V. Lopes. CodeGenie:
using test-cases to search and reuse source code. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pages 525–526, Atlanta, Georgia, USA, 2007. ACM.

[48] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer: mining and searching internet-
scale software repositories. Data Mining and Knowledge Discovery, 18(2):300–336, Apr. 2009.

[49] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining concepts from code with probabilistic
topic models. In Proceedings of the twenty-second IEEE/ACM international conference on Automated software
engineering, pages 461–464, Atlanta, Georgia, USA, 2007. ACM.

[50] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining eclipse developer contributions via Author-
Topic models. In Proceedings of the Fourth International Workshop on Mining Software Repositories, page 30.
IEEE Computer Society, 2007.

[51] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining internet-scale software repositories. In
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages
929–936, Cambridge, MA, 2008. MIT Press.

[52] M. A. Linton. Queries and views of programs using a relational database system. Technical Report UCB/CSD-83-
164, EECS Department, University of California, Berkeley, 1983.

[53] M. A. Linton. Implementing relational views of programs. In SIGPLAN Not., page 132–140, New York, NY, USA,
1984. ACM Press.

[54] C. V. Lopes, S. K. Bajracharya, J. Ossher, and P. F. Baldi. UCI Source Code Data Sets.
[http://www.ics.uci.edu/∼lopes/datasets/] Irvine, CA: University of California, Bren School of Information and
Computer Sciences.

[55] Lucid Imagination. Lucidworks for solr certified distribution reference guide.
http://www.lucidimagination.com/Downloads/LucidWorks-for-Solr/Reference-Guide, 2010.

23

[56] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. The Small Project Observatory: Visualizing software ecosystems.
Science of Computer Programming, 75(4):264–275, Apr. 2010.

[57] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid mining: helping to navigate the api jungle.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 48–61, New York, NY, USA, 2005. ACM Press.

[58] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press,
1 edition, July 2008.

[59] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action. Manning Publications, 2 edition, July 2010.
[60] A. Michail. Code web: data mining library reuse patterns. In Proceedings of the 23rd International Conference on

Software Engineering, pages 827–828, Toronto, Ontario, Canada, 2001. IEEE Computer Society.
[61] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes. SourcererDB: an aggregated repository of statically

analyzed and cross-linked open source java projects. In Mining Software Repositories, 2009. MSR ’09. 6th IEEE
International Working Conference on, pages 183–186, 2009.

[62] J. Ossher, S. Bajracharya, and C. Lopes. Automated dependency resolution for open source software. In 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010), pages 130–140, Cape Town, South
Africa, 2010.

[63] N. Sahavechaphan and K. Claypool. Xsnippet: mining for sample code. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and applications, pages
413–430, New York, NY, USA, 2006. ACM Press.

[64] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for reusing open source code on the web. In
Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering, pages
204–213, Atlanta, Georgia, USA, 2007. ACM.

[65] S. Thummalapenta and T. Xie. SpotWeb: detecting framework hotspots and coldspots via mining open source code
on the web. In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International Conference on,
pages 327–336, 2008.

[66] Web Site for Google Code Hosting. http://code.google.com/projecthosting.
[67] Web site for Koders. http://www.koders.com, 2010.
[68] Web site for Krugle. http://www.krugle.com, 2010.
[69] Web Site for Sourceforge. http://sourceforge.net.

Appendix A. Sample project.properties files

The example below shows metadata description for a project crawled from Google code
hosting.

00 #Thu Sep 24 16:15:01 PDT 2009
01 releaseDate=null
02 name=dlctarea1
03 category=DLC, Java, Netbeans, FileChooser
04 languageGuessed=Java
05 versionGuessed=$SCM
06 scmUrl=svn checkout

http\://dlctarea1.googlecode.com/svn/trunk/
dlctarea1-read-only

07 license=GNU General Public License v2
08 keywords=null
09 sourceUrl=null
10 exractedVersion=$SCM
11 projectDescription=Tarea n\uFFFD 1
12 fileExtensions=null
13 originRepositoryUrl=http\://code.google.com
14 containerUrl=http\://code.google.com/p/dlctarea1/
15 contentDescription=null
16 crawledDate=2009-Sep-23

The example below shows metadata description for a project crawled from Sourceforge. This
description includes list of downloadable packages along with the SCM URL, unlike above that
only has the SCM URL.

24

00 #Tue Sep 22 23:53:26 PDT 2009
01 versionGuessed=$SCM
02 containerUrl=http\://sourceforge.net/cvs/?group_id\=25954
03 projectDescription=\ The Virtual Data Center project is

building an operational, open-source, digital library to
enable the sharing of quantitative research data, and the
development of distributed virtual collections of data
and documentation.

04 contentDescription=cvs
05 package.releaseDate.2=2006-04-17 20\:23
06 package.releaseDate.1=2006-04-17 20\:23
07 license=GNU General Public License GPL
08 languageGuessed=Java , Perl
09 keywords=null
10 exractedVersion=$SCM
11 package.sourceUrl.2=

http\://downloads.sourceforge.net/thedata/
VDC-1.0.4-11.Fedora.4.tar

12 crawledDate=2009-Feb-28
13 package.sourceUrl.1=

http\://downloads.sourceforge.net/thedata/
VDC-1.0.4-11.RedHat.4AS.tar

14 package.versionGuessed.2=VDC 1.0.4 Final
15 package.versionGuessed.1=VDC 1.0.4 Final
16 fileExtensions=null
17 category=Education , Dynamic Content , Indexing/Search ,

Other/Nonlisted Topic , Scientific/Engineering , Archiving
18 package.name.2=thedata-vdcfedora
19 package.extractedVersion.2=VDC 1.0.4 Final
20 package.name.1=thedata-vdcredhatas
21 package.extractedVersion.1=VDC 1.0.4 Final
22 sourceUrl=null
23 releaseDate=null
24 originRepositoryUrl=http\://sourceforge.net
25 scmUrl=

cvs -d\:pserver\:anonymous@thedata.cvs.sourceforge.net\
:/cvsroot/thedata login;

cvs -z3 -d\:pserver\:anonymous@thedata.cvs.sourceforge.net\
:/cvsroot/thedata co -P modulename

26 package.size=2
27 name=thedata

These two examples show that Sourcerer’s project metadata format enables description of
projects and contents across various online repositories.

Appendix B. Sourcerer Code Index Schemas

Table C.7 shows Sourcerer’s code index model used in Sourcerer Code Search and CodeGe-
nie.

Appendix C. Declarative Code Indexing with Solr

This section shows how Sourcerer provides a declarative way of defining and creating a code
index using Solr. The syntax, specification and declarative approach is due to the use of Solr.

Three kinds of specifications are required for creating a search index in Sourcerer. First,
every index field needs to define a field type.

Field Declaration: The XML fragment below shows a field declaration named sname contents

that has a field type of FT sname contents. The field stores the terms extracted from a simple
name of code entity, the text source from which the field is populated is a FQN of a code entity.
This is retrieved from SourcererDB, details are shown later in this section.

25

<field name="sname_contents" type="FT_sname_contents"/>

Field Types: A number of fields can be declared once a field type is defined. A field type
specifies the analysis done on the textual content that will be stored in the corresponding field.
For example, the field type FT sname contents defined below denote the field type to store
the terms extracted from the simple name of Java code entities. These terms are extracted from
the FQNs of entities that are retrieved from SourcererDB.

01 <fieldType name="FT_sname_contents"
02 class="solr.TextField">
03 <analyzer type="index">
04 <tokenizer
05 class="solr.KeywordTokenizerFactory" />
06 <filter class="sourcerer.FqnFilterFactory"
07 extractSig="0" shortNamesOnly="1" />
08 <filter class=
09 "sourcerer.NonAlphaNumTokenizerFilterFactory"/>
10 <filter class=
11 "sourcerer.CamelCaseSplitFilterFactory"/>
12 <filter class=
13 "sourcerer.LetterDigitSplitFilterFactory"
14 preserveOriginal="1" />
15 <filter class="solr.LowerCaseFilterFactory"/>
16 </analyzer>
17 <analyzer type="query">

The field type definition shown above indicates that a FQN (an input text to the field) is treated
as a Keyword token (due to the use of the class shown in Line 05). Therefore, the analysis starts
with the full FQN in its original form. The FQN is then piped through five filters. Each filter
takes a token stream (a stream of terms), processes it and produces a new token stream. The
terms produced at the end is what gets stored in a field. The values of the attribute ‘class’ in
the XML fragment above (Lines 06 - 15) denote a Java implementation of a token filter to use.
Classes with the prefix ‘sourcerer’ are code specific token filters available as part of Sourcerer’s
implementation. In the above example, the first filter (lines 06 and 07) extracts the simple name
from the FQN, a second filter (Line 08) splits the simple name using non-alphanumeric characters
as delimiters, the third filter does a camel case split on the new token stream, the fourth filter
split the term further based on letter-digit transition while keeping the terms already present in
the token stream, and the last filter converts every term to a lowercase version. The output from
this last filter gets stored as terms corresponding to a simple name of a Java entity.

Data Source Configuration: Another step in declarative specification for indexing is the
configuration of data sources that provide the content from which terms will be extracted and
stored in the index fields. The XML snippet below shows how SourcererDB and the repository
access service is used to feed data into some index fields.

01 <document name="entity">
02 <entity name="code_entity" pk="entity_id"
03 query="SELECT entity_id, fqn FROM entities
04 WHERE entity_type in
05 (’CLASS’,’METHOD’,’CONSTRUCTOR’)’’
06 transformer="sourcerer.Transformer"
07 code-server-url=
08 "http://sourcerer-url/file-server">
09 <field column="fqn" name="sname_contents" />

26

10 <field column="fqn" name="fqn"/>
11 <field column="entity_id" name="entity_id" />
12 <field column="code_text" name="full_text"/>

Above, Line 02 indicates that a document in the index represents a code entity. Line 03
specifies a SQL query that will fetch a set of columns from SourcererDB. Lines 09 - 12 indicate
the number of fields that will be stored for the corresponding document. The values for the
attribute ‘column’ specifies the column name corresponding to the SQL query that start in Line
03. The values for the attribute ‘name’ indicates the index field the contents from the column
will be stored into. Line 12 indicates that the column to be used to get the content for the index
field full text is named ‘code text’ that does not exist in the SQL query starting at Line 03.
This column is added by the class named sourcerer.Transformer, which acts as a data
transformer. The class is responsible to fetch the source code corresponding to an entity. It uses
the value from the column entity id, sends an HTTP request to the repository access service
available at the URL specified in Line 07, and provides the text as an input to be stored for index
field full text.

This demonstrates how easily a searchable index can be created once the services are ac-
cessible in Sourcerer. The XML snippets shown above are simplified versions of what exists in
Sourcerer’s indexing tool implementation. The first two snippets come from the schema defini-
tion file (named schema.xml in a Solr installation), the third snippet comes from the data import
file (named db-data-config.xml in a Solr installation). More details on configuring these files are
available from standard references on Solr [55, 15].

Appendix D. Example Sourcerer Workflow

This section presents how various parts of Sourcerer’s implementation (available in Github
at http://github.com/sourcerer/Sourcerer) can be used in evaluation of a code retrieval scheme.
It starts from running the code crawler to build a file repository to running a client application.
The workflow resembles the setup/scenario of evaluation done for Structural Semantic Indexing
as described in [21].3

Creating a Sourcerer File Repository: The two projects found under infrastructure/tool-
s/core are needed to create the Sourcerer file repository. The projects codecrawler and core-
repository-manager are used to crawl and build the file repository. codecrawler implements the
code crawler tool, and core-repository-manager implements the Repository Creator tool. Bina-
ries to run these tools are found in the Github repository folder bin.

Once a file repository is in place, the following projects are needed to perform automated
dependency resolution: repository-manager - that implements the Repository Manager tool, ex-
tractor - that implements the Feature Extractor, model - that implements the Relational Model,
database - that implements the Database Importer tool, and utilities. These projects can all be
found under infrastructure/tools/java, except for utilities, which is found under infrastructure. In
order to use a Sourcerer file repository created using the Repository Creator Tool, some prepro-
cessing of the repository is necessary. The jar files from the projects must be aggregated and then
indexed for quick access. This is done by running edu.uci.ics.sourcerer.repo.Main twice,

3The repository used in [21] was partly created manually. The files were added to a folder structure confirming
Sourcerer’s storage model.

27

Index Field Description
Fields for basic retrieval
contents Default field to be searched. combination of fqn contents, fqn fragments and fqn
fqn Fully qualified name of an entity, untokenized
fqn contents Tokenized terms from the FQN of an entity.
fqn fragments untokenized form of FQN fragments. Eg: for a FQN;

foo.bar.SomeOne.method(int) - the fragments are; foo bar SomeOne method
short name right most fragment of the FQN (w/o method arguments for methods)
short name contents tokenized form of short name
comments The collected text (untokenized) from an entity’s comments
Fields for retrieval with signatures
m sig args fqn method’s formal arguments FQN in format

org.foo.Arg1,x.y.arg2,z.arg3,...,Y.argn
m sig args sname method’s formal arguments short name in format arg1,arg2,arg3,...,argn
m sig ret type sname short name of the method’s return type, rightmost of FQN
m sig ret type fqn FQN of the method’s return type
m args arity Number of arguments a method has
m args fqn fragments method’s arguments’ FQN fragments (not ordering info)
m args fqn contents method’s formal arguments tokenized into terms after passing each of them

through keyword extractor
m args sname contents Terms extracted from the short names of each method argument
m ret type fqn fragments FQN fragments of return type
m ret type contents method’s return type FQN tokenized into terms after passing it through keyword

extractor
m ret type sname contents short name of the method’s return type tokenized
Fields Storing metadata
modifiers modifiers applied on this entity
is binary true for entities coming from jars/classes and those that are missing, false for

entities coming from source code
entity type String representation of entity type. Eg; ”CLASS”
Fields storing metrics
complexity currently mapped to lines of code
coderank local local coderank
Fields for navigation
entity id the entity id of this entity in the code database
parent id the parent entity that contains this entity (via the inside relation)
fan in all local all incoming entity ids
fan out all local all outgoing entity ids
fan in mcall local entity ids of all local callers for a method from the same project
fan out mcall local entity ids of all local callees for a method from the same project

Table C.7: Fields in Sourcerer’s code index schema used in Sourcerer Code Search and Codegenie

28

St
ep

Ta
sk

ru
n

Sc
ri

pt
/C
l
a
s
s

/s
er

vi
ce

fo
un

d
in

fo
ld

er
/p

a
c
k
a
g
e

pa
rt

of
..

1
cr

aw
lp

ro
je

ct
s

ru
n-

co
de

-c
ra

w
le

r.s
h

bi
n/

C
od

e
C

ra
w

le
r

2
cr

ea
te

re
po

si
to

ry
la

yo
ut

re
po

-f
ol

de
r-

cr
ea

to
r.s

h
bi

n/
R

ep
os

ito
ry

C
re

at
or

3
po

pu
la

te
re

po
si

to
ry

co
nt

en
t-

fe
tc

he
r.s

h
bi

n/
R

ep
os

ito
ry

C
re

at
or

4
pr

ep
ar

e
re

po
si

to
ry

fo
re

xt
ra

ct
io

n
M
a
i
n
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
r
e
p
o

R
ep

os
ito

ry
M

an
ag

er
5

fe
at

ur
e

ex
tr

ac
tio

n
fo

rA
rt

ifa
ct

D
B

E
x
t
r
a
c
t
o
r
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
e
x
t
r
a
c
t
o
r

Fe
at

ur
e

E
x-

tr
ac

to
r

6
po

pu
la

te
A

rt
ifa

ct
D

B
M
a
i
n
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
d
b
.
t
o
o
l
s

D
at

ab
as

e
Im

po
rt

er
7

ru
n

A
rt

ifa
ct

D
B

M
yS

ql
D

at
ab

as
e

R
el

at
io

na
l

A
cc

es
s

8
fu

ll
fe

at
ur

e
ex

tr
ac

tio
n

E
x
t
r
a
c
t
o
r
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
e
x
t
r
a
c
t
o
r

Fe
at

ur
e

E
x-

tr
ac

to
r

9
po

pu
la

te
So

ur
ce

re
rD

B
M
a
i
n
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
d
b
.
t
o
o
l
s

D
at

ab
as

e
Im

po
rt

er
10

ru
n

So
ur

ce
re

D
B

M
yS

ql
D

at
ab

as
e

R
el

at
io

na
l

A
cc

es
s

11
ge

t
ra

w
us

ag
e

da
ta

fo
r

H
am

-
m

in
g

D
is

ta
nc

e/
Ta

ni
m

ot
o

C
oe

ffi
ci

en
t

ba
se

d
si

m
ila

ri
ty

ru
n-

ra
w

-u
sa

ge
-w

ri
te

r.s
h

bi
n/

Si
m

ila
ri

ty
C

al
cu

la
tio

n

12
ge

t
fin

al
us

ag
e

da
ta

fo
r

H
am

-
m

in
g

D
is

ta
nc

e/
Ta

ni
m

ot
o

C
oe

ffi
ci

en
t

ba
se

d
si

m
ila

ri
ty

ru
n-

fil
te

re
d-

us
ag

e-
w

ri
te

r.s
h

bi
n/

Si
m

ila
ri

ty
C

al
cu

la
tio

n

13
pr

ep
ar

e
in

de
x

fo
rT

F-
ID

F
si

m
ila

ri
ty

ru
n-

in
de

x.
sh

in
fr

as
tr

uc
tu

re
/s

er
vi

ce
s/

so
lr-

co
nfi

g
C

od
e

In
de

xe
r

14
ru

n
T

F-
ID

F
ba

se
d

si
m

ila
ri

ty
se

rv
ic

e
So

lr
In

st
an

ce
in

fr
as

tr
uc

tu
re

/s
er

vi
ce

s/
so

lr-
co

nfi
g

Si
m

ila
ri

ty
C

al
cu

la
tio

n
15

ru
n

H
D

/T
C

ba
se

d
si

m
ila

ri
ty

se
rv

ic
e

S
i
m
i
l
a
r
i
t
y
S
e
r
v
e
r
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
s
e
r
v
e
r
.
s
i
m
i
l
a
r
i
t
y

Si
m

ila
ri

ty
C

al
cu

la
tio

n
16

ru
n

R
ep

os
ito

ry
ac

ce
ss

F
i
l
e
S
e
r
v
e
r
.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
s
e
r
v
e
r
.
f
i
l
e

R
ep

os
ito

ry
A

cc
es

s
17

ru
n

fin
al

in
de

xi
ng

ru
n-

in
de

x.
sh

in
fr

as
tr

uc
tu

re
/s

er
vi

ce
s/

so
lr-

co
nfi

g
C

od
e

In
de

xe
r

18
ru

n
co

de
se

ar
ch

se
rv

ic
e

So
lr

In
st

an
ce

C
od

e
Se

ar
ch

19
ru

n
re

tr
ie

va
le

va
lu

at
io

n
fo

rS
SI

E
v
a
l
S
n
i
p
p
e
t
s
E
n
t
r
y
P
o
i
n
t

.
j
a
v
a

e
d
u
.
u
c
i
.
i
c
s
.
s
o
u
r
c
e
r
e
r

.
e
v
a
l
s
n
i
p
p
e
t
s
.
c
l
i
e
n
t

A
pp

lic
at

io
ns

Ta
bl

e
C

.8
:A

n
ex

am
pl

e
So

ur
ce

re
rW

or
kfl

ow

29

with the aggregate-jar-files and create-jar-index flags respectively. In each case, the input
repository (input-repo) must be specified.

Building ArtifactDB: As specified by the storage model, the jars folder in the file repos-
itory contains the jar files used to resolve the missing dependencies. The contents of this folder
and the corresponding Jar-index can be constructed from any managed repository, which can con-
tain whatever artifacts the user wants, such as a mirror of the Maven Central Repository. We rec-
ommend contacting the people at Apache in order to obtain such a mirror, though a crawler and
downloader for it can be found in the repository-manager project in the edu.uci.ics.sourcerer.
repo.maven package. Once the file repository is ready with the Jar-index, the Feature Extractor tool is used to ex-
tract the types provided by these artifacts. The Feature Extractor is run as an Eclipse application, class Extractor
inside package edu.uci.ics.sourcerer.extractor , which is found in the extractor project. It can either
be used directly in Eclipse, or as a headless plugin. The following must be specified in command-line arguments:
the type of extraction (extract-jars to limit to jar files and extract-binary to ignore jar file source), the in-
put file repository (input-repo), and the output repository (output-repo). After the extraction is complete, an
instance of ArtifactDB can be populated with the type information. This is done using class Main, inside package
edu.uci.ics.sourcerer.db.tools, in the database project.

Automated Dependency Resolution: Once ArtifactDB is ready, the Feature Extractor tool can perform automated
dependency resolution. Dependency resolution is available for both jar and project extraction, simply by adding the
resolve-missing-types flag to the Extractor. If dependency resolution is used, the database containing
the ArtifactDB must also be specified as an argument to Extractor.

Building SourcererDB: Populating SourcererDB is done in exactly the same way as ArtifactDB.
Running Services: The File Repository and SourererDB make up two content sources needed for indexing. To

proceed with indexing, first the file repository needs to be served using the Repository Access service. An implementation
of this service is available in the Github repository under infrastructure/ services/ file-server.

To create the search index required for retrieval evaluation described in [21], two different similarity calculation
services are needed. First, that computes the Tanimoto Coefficient/Hamming Distance based similarity. This part is
implemented in infrastructure /services /similarity-server. The similarity-server requires a data source with information
on API usage. This can be provided as a plain text file. A tool to generate this usage information is available inside
project infrastructure /tools /core /machine-learning. Two classes produce the required usage statistics. First, class
UsagePreCalculatorRunner inside package edu.uci.ics.sourcerer.ml.db.tools calculates the us-
age details on all entities and APIs. Second, class FilteredUsageCalculator found in the same package finally
prepares the required usage statistics by filtering outliers (e.g.; APIs that are used by only one entity).

The second similarity calculation service that computes the TF-IDF based similarity requires a running instance of
a minimal code search service that is available under infrastructure /services /solr-config. The procedure required to run
the indexing tool and the code search service is same as for running these tools to do the final retrieval evaluation. The
only difference lies in writing the schemas and data configuration specification.

Indexing: The implementation of the code indexer and code search tools is available under infrastructure /services
/solr-config. To run the code index tool, first a Solr installation needs to be configured by writing schemas as described
Appendix B. The script that runs the search tool is available in the Github project solr-config, and is named runindex.sh.
This script runs the indexing in a cluster of machines running the Sun Grid Engine distributed computing platform [16].
The script can easily be modified to run the indexing in a single machine.

Retrieval and Evaluation: The retrieval step requires four different services to be running: Repository Access (file-
server in Github), Relational Query (an instance of SourcererDB), similarity server for HD/TC similarity (similarity-
server) in Github, and similarity server for TF-IDF similarity (a configured instance of solr-config). Once these services
are up and running, an instance of the retrieval evaluation tool can be run to execute different queries and collect the re-
quired statistics that get generated. The retrieval tool is available in Github under project infrastructure /apps /codesearch.
The implementation of the retrieval tool used in [21] is available as a GWT (Google Web Toolkit) based web application
starting at class EvalSnippetsEntryPoint in package edu.uci.ics.sourcerer.evalsnippets.client.

The output of running the retrieval evaluation tool can be processed using a tool available in Galago Search project
[7]. Finally, the output from Galago Search project provides the necessary data that can be analyzed to measure the
retrieval performance. To ease this analysis, handy scripts to be used with the R statistical programming environment are
available in Sourcerer’s Github location research /api-location /evaluation.

Summary: The workflow described above demonstrates that Sourcerer provides an end-to-end solution for large
scale collection, analysis and retrieval of code. A collection of tools and services are required for that purpose. The
implementation of these tools and services are found in Sourcerer’s github repository but can be difficult to trace through
in the order they need to be used. Therefore, in Table C.8, we present a summary of the workflow described above in
19 steps that need to be performed in the given order. The table shows the name and location of the implementation for
scripts, tools and services corresponding to each step. It also shows the part of the Sourcerer’s architecture that each

30

implementation belongs to.

31

