
Multiagent Learning and Optimality Criteria in Repeated Game Self-play

Andriy Burkov
burkov@damas.ift.ulaval.ca

Brahim Chaib-draa
chaib@damas.ift.ulaval.ca

DAMAS Laboratory
Computer Science Department

Laval University, Canada

Résumé :
Nous présentons une approche d’apprentissage multi-
agent permettant de satisfaire un critère d’optimalité
donné lorsque les jeux répétés se font en “self-play”.
Notre approche est confrontée aux approches classiques
d’apprentissage pour les jeux répétés qui visent générale-
ment à apprendre un équilibre (Nash, Pareto). Une
comparaison est donnée d’un point de vue pratique (ou
d’ingénieur), c’est-à-dire d’un point de vue d’un con-
cepteur d’un système multiagent dont le but est de
maximiser la performance totale du système selon un
critère d’optimalité donné. De nombreuses experimen-
tations dans une large variété des jeux répétés démontrent
l’efficacité de notre approche.
Mots-clés : Apprentissage multiagent, jeux répétés, jeux
en “self-play”

Abstract:
We present a multiagent learning approach to satisfy any
given optimality criterion in repeated game self-play. Our
approach is opposed to classical learning approaches for
repeated games: namely, learning of equilibrium, Pareto-
efficient learning, and their variants. The comparison is
given from a practical (or engineering) standpoint, i.e.,
from a point of view of a multiagent system designer
whose goal is to maximize the system’s overall perfor-
mance according to a given optimality criterion. Ex-
tensive experiments in a wide variety of repeated games
demonstrate the efficiency of our approach.
Keywords: Multiagent learning, repeated games, self-
play

1 Introduction

Until now, the main body of the state-of-the-
art multiagent learning (MAL) research [2] has
been focused on finding a learning rule pos-
sessing specific properties. For example, when
adopted by all agents of a multiagent system
(MAS), such a rule could bring to each agent
an accumulated reward which is “optimal” in a
certain sense. I.e., according to the classical ap-
proach, a learning rule is considered to be good
if the rewards accumulated by the agents (also
called “players”) are close to some values sat-
isfying a certain criterion of optimality1. Two

1As a matter of fact, the terms “optimal” and “optimality” are not
always appropriate in MAS. Indeed, there are often multiple entities
(agents) having different interests in a MAS. In the classical game the-

most widely used optimality criteria in the con-
text of learning in repeated games are: closeness
of the value accumulated by each player to the
value of a certain (a) Nash equilibrium or (b)
Pareto-efficient joint strategy (which need not
be an equilibrium).

The scenario where all agents use the same al-
gorithm is called “self-play”. Typically, the per-
formance guarantees of a learning rule are given
assuming self-play [4, 2, 7, 1]. First of all,
this is because it is generally simpler to ana-
lyze the properties of a dynamical process in-
duced by a number of identical learning rules.
However, another important reason is that the
“self-play” multiagent systems (SPMAS) are of
a great practical interest.

Indeed, given an algorithm able to converge to a
value (or values) close to a given optimality cri-
terion in some SPMAS, an engineer can create
a number of identical agents (in the case of soft-
ware agents, one can just make as many copies
of one agent as required) put these agents into
a given (usually unknown) environment and let
them converge.

However, in an arbitrary repeated game, the val-
ues corresponding to different optimality crite-
ria can vary substantially from one criterion to
another. So, when the game being played is un-
known, it is usually hard to chose the best learn-
ing rule. Another problem, when using algo-
rithms satisfying such optimality criteria as (a)
or (b) listed above, is that, from a practical point
of view, neither of those criteria can be satisfac-
tory for all SPMAS. Let us clarify this claim.

Let suppose that we are an engineer that re-
ceives from a client a problem that needs to be
solved by a number of identical agents. (We
will call this problem “the environment” and
this environment is supposed to be unknown in
terms of players’ rewards for different actions.)

oretical literature such terms as “Pareto efficiency” or “equilibrium” are
used in place of “optimality”. Nevertheless, we will use these terms to
unify and simplify the presentation.

The agents (if embodied) are provided by the
client, but we are free to decide about the algo-
rithms used by the agents to solve the problem.
The client expects the good solution to satisfy
a certain quantitative criterion based on the val-
ues accumulated by the agents. For example,
this criterion can require that the solution max-
imize a given (i.e., provided by the client) alge-
braic function of players’ accumulated rewards.
In this case, which of the existing MAL algo-
rithms satisfying their respective optimality cri-
teria will we choose?

One solution would be to run each MAL algo-
rithm on the given problem, observe the results,
and pick the best. However, such an approach
can be time and ressource expensive, and does
not guarantee optimality. A more consistent ap-
proach is to construct a new learning algorithm
able to solve problems in SPMAS in a way to
satisfy functional criteria.

These functional criteria are opposed to such
criteria as (a) and (b) above, which we call “re-
lational”, meaning that they are defined by tak-
ing into account relations between the values
accumulated by each individual agent. In this
case, the absolute values themselves are sec-
ondary. For example, a joint-strategy of multi-
ple players is said to be a Nash equilibrium (cri-
terion a) if the expected reward of each player
is maximized given that the other players have
their strategies fixed. In a similar manner, a
joint-strategy is said to be Pareto-efficient (cri-
terion b) if by changing this strategy so as to in-
crease the expected value of any subset of play-
ers, there will necessarily be a player out of this
subset whose value decreases. The same rea-
soning is applicable to a number of other rela-
tional optimality criteria (such as, for example,
correlated equilibrium [6]).

In this paper, we propose an approach to mul-
tiagent learning in repeated game self-play sce-
nario when the goal is to satisfy a given func-
tional optimality criterion. We show that in such
a setting our new learning algorithm, called Self-
play Learner, is a better choice than a whole
family of equilibrium and Pareto-efficient strat-
egy learning algorithms.

2 Formal notions

We focus our attention on repeated games as a
model to represent a MAS. For simplicity of ex-
position, the most of our presentation will be

given for two-player case. Extensions to an n-
player setting (for an arbitrary n > 2) as well as
to the multistate problems are discussed in Sec-
tion 6.

2.1 Matrix games and their solutions

A finite repeated two-player matrix game Γ
(henceforth, a repeated game) consists of a
set P of two players, p and q, with (p, q) ∈
{(1, 2), (2, 1)}, and a set R of two two-
dimensional matrices, R = {Rp, Rq}. Player
p has a finite number Mp ∈ N+ of actions it
can choose from. The game is played itera-
tively. At iteration i = 1, 2, . . ., each player
p chooses an action ap

i ≤ Mp and the vector
ai = (ap

i , a
q
i) ∈ A gives a joint action. A is

called the joint action space of players. For each
player p and to each joint action ai ∈ A there
corresponds a real valued number in matrix Rp

defining the reward of that player after playing
joint action ai.

To choose an action from Mp at any iteration,
each player uses a certain rule. This rule is
called player’s strategy. A player’s strategy can
be stationary or non-stationary. Let πp

i denote
the rule by which player p chooses its action at
iteration i. Then, p’s strategy πp is called sta-
tionary if πp

i = πp
0 , ∀i. This means that p’s

strategy does not depend on current iteration, or,
in other words, that it cannot change with time.
Otherwise the strategy is called non-stationary.

A strategy profile π is a joint strategy of players,
π = (πp, πq). To compare strategies and strat-
egy profiles between them (i.e., to say whether
one is better than another) it is required to assign
a metric to a strategy. We are using the expected
limit of the means (ELM) metric. ELM assigns
a unique value to an expected sequence of re-
wards that are obtained by a player when both
players follow a given strategy profile π during
an infinite number of iterations:

up(π) = Eπ

[
lim

T→∞

1

T

T∑

i=1

Rp(πi)

]
(1)

In the above equation, up(π) is the ELM value
of strategy π. Rp(πi) denotes the expected im-
mediate reward obtained by player p at iteration
i if both players follow the strategy π at that it-
eration.

Nash equilibrium is a strategy profile π̂ =

(π̂p, π̂q) such that the following condition holds:

up(πp, π̂q) ≤ up(π) and uq(π̂p, πq) ≤ uq(π),
∀πq $= π̂q, πp $= π̂p

(2)

Let M(Γ) denote the set of all strategy profiles
of the game Γ. A Pareto-efficient solution of Γ is
a strategy profile π̄ ∈ M(Γ) such that ∀π′ $= π̄,
the following condition holds:

up(π′) < up(π̄) or uq(π′) < uq(π̄) (3)

2.2 Optimality criteria

The equations (2–3) define two relational op-
timality criteria discussed in the previous sec-
tion. And as we claimed above, there are tasks
where a use of relational criteria is not justified
from a practical standpoint. In such environ-
ments, we would prefer agents to learn (and to
use thereafter) the strategies maximizing a cer-
tain mathematical function of their utility. This,
functional, optimality criterion, depending on
the task, can be based on such functions as max,
sum, product or any other desirable function of
players’ individual utilities. If the utility is de-
fined using the ELM metric then the functional
optimality criterion u(π) for a strategy profile
π can be defined as u(π) = Opp(u

p(π)), where
up(π) is the utility of player p defined using
equation (1). In the latter equation, Op denotes a
certain mathematical operator. For a given prob-
lem, it needs to be replaced by max,

∑
, × or

any required function.

We should mention here that the we are not
the first to focus on functional optimality cri-
teria. This principle was used by Nash [9] in
his axiomatic analysis of bargaining, where he
proposed to choose the solution point maximiz-
ing the product of individual values of players.
From the computer science perspective, Littman
and Stone [8] adapted Nash’s idea to choose the
best solution point in their algorithm computing
Nash equilibrium in repeated games. For our
part, we extend these ideas to the learning in
self-play. Another related work is discussed in
Section 7.

2.3 Self-play

We explicitly focus on the self-play setting; and
this is a controlled self-play, not an acciden-
tal coincidence of learning algorithms of agents.

This is what differs our approach from the main
body of modern multiagent learning research
proposing algorithms whose behavior is justi-
fied for (or examined in) the self-play scenario.
Recall that by definition, self-play is a MAS set-
ting in which all agents are identical. Until now,
it has been typically assumed that agents’ algo-
rithms, or, in other words, rules of strategy up-
date when learning, are identical. Other prop-
erties that can also be identical, such as (i) ini-
tial knowledge of agents, (ii) their utility metrics
and (iii) optimality criteria, have escaped the at-
tention of researchers. In this paper, we aim to
fill this gap.

More precisely, in our controlled self-play sce-
nario, which we call SPMAS, we assume that
both players, (1) use the same learning algo-
rithm, (2) have internal variables initialized
with the values known to both players, (3) use
the same utility metric and (4) optimize the
same functional criterion. We claim that in any
controlled self-play scenario, Assumptions 2–4
are as well natural as Assumption 1, which is
made in many previous multiagent learning pa-
pers [4, 2, 7, 6, 1]. In particular, this means that
in any SPMAS,

Asmpt. (1) satisfied⇐⇒ Asmpts. (2–4) can be
satisfied.

Also, we assume that players can observe each
other’s actions and their own rewards after a
joint action is executed. This is as well a
common assumption for many of MAL algo-
rithms [4, 7, 1, 5].

2.4 Information and communication

Two important questions characterizing any
MAS are (i) whether the agents know their own
reward function and the reward function of the
other agent, and (ii) whether communication be-
tween agents is available during learning. In this
paper, we assume that the answer to both ques-
tions is No. Indeed, an affirmative answer to
the first question makes the learning unneces-
sary, since the agents can compute an optimal
joint strategy using the reward matrices. On the
other hand, if there is a communication between
agents, the simplest scenario is to explore the
reward structure of the game by executing joint
actions one by one. Then, using communica-
tion, agents are able to share the acquired data.
This, again, will make a further learning unnec-
essary.

3 Extended strategies

To present our new algorithm, we first need to
discuss one important implication of using the
product criterion: emerging of strategies ex-
tended in time, or simply “extended strategies”.
These non-stationary strategies are known to be
able to maximize the product of players’ indi-
vidual utilities to a greater extent than any sta-
tionary strategy [8]. As we will demonstrate
later, our Self-play Learner algorithm is able to
learn extended strategies.

When two players p and q play a joint action
a = (ap, aq) their rewards can be visualized as a
point x = (xp, xq) = (Rp(ap, aq), Rq(ap, aq)) in
a two-dimensional space.2 Let the set X contain
all such points: X = {(Rp(ap, aq), Rq(ap, aq)) :
ap ≤ Mp, aq ≤ M q)}. Players can achieve
any point in X as their ELM values by playing
the corresponding joint action at every iteration.
The convex hull of the set X contains all points
that can be obtained as a linear combination of a
subset of points of X . It is easily observable that
the points laying on the boundary of the convex
hull are always constructed as a linear combina-
tion of only two points of X . In terms of play-
ers’ strategies, a point z on the boundary (recall
that a point in X is a vector of players’ ELM val-
ues) can be achieved by the players by playing
a joint action, corresponding to a certain point
x, a w-fraction of all iterations, and by playing
another joint action, corresponding to a point y,
the (1 − w)-fraction of all iterations (where w,
0 ≤ w ≤ 1, defines the coefficient of linear
combination).
Definition 1. Given l ∈ N+, 0 ≤ w ≤ 1, a ∈ A
and b ∈ A, an Extended Joint Action (EJA) is
a joint strategy in which players play a during
the first k =)l · w* iterations and b during the
following l − k iterations.
Definition 2. An Extended Joint Strategy (EJS)
is an EJA repeated infinitely often.

We call l the length of an EJA and k its switch
point. Notice that for each point z constructed
as a combination of two points x and y from X ,
∃ an EJS with certain a, b, l and w.

When the product criterion is used, the bound-
ary of the convex hull is of a particular inter-
est because the point z maximizing the product

2In this subsection, we use a simplified notation introduced in [8].
According to it, x = (xp, xq) and y = (yp, yq) denote the vectors of
players’ rewards for two different joint actions viewed as two points in
a two-dimensional space.

criterion is always found on the boundary [9].
For two given points of X , x = (xp, xq) and
y = (yp, yq), forming an edge of the boundary,
the value of w maximizing the product criterion
on this edge can be computed as follows [8],

w =
−yq(xp − yp)− yp(xq − yq)

2(xq − yq)(xp − yp)
(4)

If w < 0 or w > 1, the maximum is achieved
at respectively x or y. To find w∗ maximizing
the product criterion over all points of the con-
vex hull, it is only required go over all pairs of
points of X , compute w using Equation (4) and
then pick a pair x∗ and y∗ of points (and the cor-
responding w∗) for which the criterion is maxi-
mized.

As one can note, an EJS will achieve the opti-
mal ELM value defined by w∗, x∗ and y∗ only
when l → ∞. Let us show that as l → ∞ the
error induced by using a finite value of l rapidly
decreases.

Proposition 1. Let R denote the ELM value of
an optimal point z on the boundary of X defined
by the values w∗, x∗ and y∗ found as described
above. Let l be the length of an EJA defined for
two joint actions a and b from A corresponding
to the points x∗ and y∗ from X . Let R̃ denote
the ELM of this EJA. Let ε = R̃ − R define the
error of using l < ∞ in this EJA. Then ε → 0
as l →∞.

Proof. We have l2R = (lwxp + (l −
lw)yp)(lwxq +(l−lw)yq) and l2R̃ = ()lw*xp+
(l−)lw*)yp)()lw*xq +(l−)lw*)yq). We know
that for any natural x,)x* < x + 1. Thus, we
can write that l2R̃ < ((lw + 1)xp + (l − (lw +
1))yp)((lw + 1)xq + (l− (lw + 1))yq). The dif-
ference between l2R̃ and l2R is then bounded
as follows: l2R̃ − l2R < l(xp − yp)(xq −
yq)(2w − 1) + 2xpxq − xpyq − ypxq. Since
l > 1, the error ε = R̃ − R is bounded as fol-
lows: ε < (xp−yp)(xq−yq)(2w−1)

l + 2xpxq−xpyq−ypxq

l2 .
Therefore, as l tends to ∞, ε tends to 0 with a
rate inversely proportional to l.

When l and w∗ are known to the players (i.e.,
defined by the designer of the MAS before to
start learning) they are able to construct the EJS
maximizing, to the extent of the error induced
by using a finite value of l, the product criterion.

4 Self-play Learner

In this section, we present our new algorithm
called Self-play Learner (SPL).

4.1 Internal variables

Our algorithm has one internal variable that
needs to be initialized with the same value for all
agents before the learning is started. This vari-
able, called Rmax, reflects the maximum utility
that an agent can obtain in the game. In many
practical tasks, this value can be set by the MAS
designer depending on how the utility is defined.
For example, for robots cleaning the floor this
value can be set based on the maximum possi-
ble surface one robot can clean given the initial
volume of detergent in its tank. It is assumed
that Rmax ≥ Rp(ap, aq) for any player p and for
all ap ≤ Mp and aq ≤ M q. I.e., Rmax does not
underestimate any of the rewards of players.

During learning, an SPL agent p maintains sev-
eral other internal variables. The variables
Kp(ap, aq), ∀ap ≤ Mp, aq ≤ M q, reflect
the number of times that a particular joint ac-
tion (ap, aq) has been played. The variables
Lp(ap, aq), ∀ap ≤ Mp, aq ≤ M q, reflect the
number of times that the action aq has been
played by q at the iteration i+1 following an it-
eration i at which players were playing (ap, aq).

4.2 Our algorithm

The main steps of our SPL algorithm are:

1. While learning (exploration phase)

(a) Play a random action,
(b) Observe the reward R,
(c) Replay the same action proportionally to R,
(d) Update counters of the other player’s play.

2. While playing (exploitation phase)

(a) Optimize according to the criterion and the
counters,

(b) Play optimally.

Algorithm 1: Main steps of Self-play Learner.

Exploration phase. During the finite exploration
phase (whose length is known by both agents)
players explore the reward structure of the
game. SPL players are explicitly synchronized
(this is an advantage of self-play). During the

exploration phase, at each odd iteration i, an
SPL player p plays a random action ap

i and ob-
serves its reward Rp

i and the action aq
i played by

the other player. On the next iteration, i + 1,
player p replays the action ap

i played at the pre-
vious iteration with probability δ = Rp

i /Rmax.
Otherwise, with probability (1 − δ) player p
plays a random action (different from ap

i) from
Mp.

Exploitation phase. As soon as, during the ex-
ploration phase, both players were using the
same algorithm, during the exploitation phase
player p can make the following assumption
about the unknown reward function of player q:

Rq(ap, aq)

Rmax
≈ Lp(ap, aq)

Kp(ap, aq)

Indeed, since the value Rmax is the same for
(and is known by) both players; and as the play-
ers replayed at every iteration i + 1 their action
ap

i , played at the previous iteration i, according
to the proportion Rp(ap

i , a
q
i)/Rmax, the values

of counters Lp(ap, aq) and Kp(ap, aq) can give
to player p a good estimate of the real value of
Rq(ap, aq). More precisely, player p can com-
pute an estimate of the other player’s rewards as
follows,

R̃q(ap, aq) =
Lp(ap, aq)Rmax

Kp(ap, aq)
(5)

By so doing, it becomes possible to compute the
strategy maximizing any given functional crite-
rion and to execute this strategy thereafter. For
example, if the functional criterion is sum, the
optimal strategy can be computed by the players
as,

πp
i = argmax

ap:(ap,aq)∈A∧aq≤Mq

(
R̃q(ap, aq) + Rp(ap, aq)

)
∀i

(6)
If the functional criterion is max, the optimal

strategy can be computed similarly. Finally, if
the functional criterion is product, the optimal
strategy can be computed as shown in Algo-
rithm 2.

In many games, to construct the optimal strategy
to execute during the exploitation phase, both
players can use Equation (6) or the procedure
of Algorithm 2. The only problem arises when
there are several points in X whose ELM values
are close to each other according to the func-
tional criterion in question. Let suppose we have

1. For all pairs of points x, y from the set X , such
that, x = (Rp(ap, aq), R̃q(ap, aq)) and y =
(Rp(bp, bq), R̃q(bp, bq)) (where ap, bp ≤ Mp and
aq, bq ≤ Mq) compute w using Equation (4) and
construct the corresponding EJS using Definitions
1–2.

2. Pick the EJS having the highest ELM value (accord-
ing to the product functional optimality criterion).

Algorithm 2: Procedure to find the optimal
strategy for the product criterion.

a game as follows,

R1,2 =

(
1, 2 0, 0
0, 0 2, 1

)

At the end of the exploration phase, players have
certain estimates of the other player’s reward
function computed using Equation (5). Two
points, (1, 2) and (2, 1), in X have the same
ELM value. However, as the length of the ex-
ploration phase is finite, the players have an er-
ror in estimates of each other’s rewards. There-
fore, the strategies computed by the players in-
dependently can belong to different joint strate-
gies. For example, player 1 can decide that the
optimal strategy is to play the row 1, expecting
to see the outcome (1, 2), but player 2 will play
the column 2 foreseeing the outcome (2, 1). As
the result, they will collect the suboptimal out-
come (0, 0).

To settle this coordination problem, SPL players
have different roles determined by their player
numbers. Roles, as well as player numbers, is a
shared information which is given to both play-
ers before the learning is started. Each player
knows its role and behaves accordingly. Let us
call the roles leader and follower34. The leader
computes its strategy using Equation (6) or the
procedure of Algorithm 2. The follower, in or-
der to be synchronized with the leader, com-
putes its strategy as a function of the leader’s
strategy. In particular, if the functional criterion
is sum, the follower computes its strategy as,

πp
i+1 = argmax

ap:(ap,aq
i)∈A

(
R̃q(ap, aq

i) + Rp(ap, aq
i)

)
∀i

(7)
If the functional criterion is max, the follower
computes its strategy in a similar way. Finally,

3Despite such names, the agents are still making their actions simul-
taneously. Thus we are remaining in a repeated game formalism.

4Roles can be assigned at random: the ELM value of a joint strategy
does not depend on a particular choice of leader and follower.

if the functional criterion is product, the fol-
lower keeps in memory the most recent EJA
played so far. Let i + 1 denote the iteration
corresponding to the beginning of a new pe-
riod of length l. At the beginning of iteration
i + 1, the follower computes the new EJA con-
taining its own sequence of l optimal actions as-
suming that the leader will follow the strategy
played in the previous period. Then, at itera-
tions i+1, i+2, . . . , i+ l, the follower executes
this sequence. More formally, let H denote the
leader’s part of the most recent EJA played so
far and let Hk, 1 ≤ k ≤ l, be the leader’s ac-
tions in this EJA. To find its optimal sequence
of actions, the follower p first finds the switch
point k∗ as the smallest k such that Hk−1 $= Hk.
Then it sets aq∗ = Hk−1 and bq∗ = Hk and finds
the pair (ap∗, bp∗) that satisfies,

(ap∗, bp∗) = argmax
(ap,bp):ap,bp≤Mp

(
R̃q(ap, aq∗) · Rp(bp, bq∗)

)

(8)
Then the new EJA is defined by k∗ and the joint
actions a∗ = (ap∗, aq∗) and b∗ = (bp∗, bq∗).

5 Experimental results

It is only fair to compare a new algorithm with
the existing algorithms if it uses the same or re-
laxed assumptions and is searching for the same
kind of solution. In our case, there is no other
algorithm capable of learning strategies opti-
mizing functional criteria in MAS (two excep-
tions and their limitations are discussed in Sec-
tion 7). On the other hand, there exist a num-
ber of MAL algorithms, as those cited above,
which, while using different assumptions, con-
verge to the same kinds of relational solutions
like Pareto-efficient or Nash equilibrium. So,
in our case we will indirectly compare our al-
gorithm with all these algorithms by comparing
the ELM value of the solution found by SPL
with the corresponding values (according to the
same criterion) of different relational solutions.
The goal of this comparison is to demonstrate
that when the goal of the designer is to satisfy a
given functional optimality criterion, SPL is the
best choice.

We empirically tested SPL on two different
testbeds. The first series of testbeds, called
“Random Games M” (or, RGs M, for short),
contains randomly generated two-player re-
peated games with the number of player actions,
M = Mp = M q, equal respectively to 2, 3,
5 and 10. In each game from Random Games
M, the rewards of players are integer values uni-

formly distributed between 0 and 100, and new
values are generated each time a game is started.

The second testbed, called “Conflict Games”
(CGs), contains 57 games listed in [3]. These
are two-player two-action repeated games
whose rewards are integer values between 1
and 4. These games were called “conflict” be-
cause there exists no outcome that simultane-
ously maximizes the ELM value of both players
in these games. Conflict Games are especially
suitable to make a comparison of solutions com-
puted by SPL for different functional criteria
with other possible solutions usually found by
other MAL algorithms in self-play (e.g., Nash
equilibrium and Pareto-efficient solution).

We did our experiments in the following way.
From each testbed, a game was randomly picked
and played during 100, 000 iterations. This pro-
cess (called an experiment) was repeated 100
times and then the obtained data were averaged.
Table 1 presents the ELM values of the strate-
gies to which SPL players converge in differ-
ent games. The alternative (relational) solutions
are respectively the best (in terms of the cor-
responding ELM value) pure stationary Pareto-
efficient solution (BPE column) and the best
and the worst stationary Nash equilibria (BNE
and WNE columns respectively). We did not
compare the SPL’s solution with non-stationary
Pareto-efficient solutions because there are no
algorithms whose convergence to such kind of
solution was proved in a non-special case (one
exception is discussed in Section 7). As one can
see, in both testbeds the solution found by SPL
outperforms all other possible solutions of those
games. The advantage of SPL is especially pro-
nounced if the functional optimality criterion is
product. In this case, SPL often converges to an
extended strategy, which is typically more effi-
cient in optimizing this criterion.

The curves of Figures 1 (a–c) reflect the evolu-
tion of the ELM value during learning in games
from Random Games M. For each learning iter-
ation, the curves present the current ELM value
according to one of three functional criteria.
(These values were averaged over 100 experi-
ments.) We can observe that for all three func-
tional optimality criteria, the ELM value of SPL
becomes close to the optimal one after a reason-
ably small number of learning iterations.

6 Discussions

So far, we have seen that SPL is efficient in re-
peated games. Now, let us talk about extensions
of SPL to more complex settings, such as n-
player, with n > 2, repeated games and multi-
state environments (like those usually modeled
as stochastic games [7]). One of possible exten-
sions of SPL to n-player repeated games is quite
straightforward. Instead of two roles – leader
and follower – there will be n roles, one per
player. For example, player 1 assigned with the
role 1 will behave as leader. Any other player
p assigned with a role 1 < p ≤ n will behave
as follower whose leader is player p− 1. Obvi-
ously, in this case each player 1 ≤ p ≤ n will
maintain the counters Lq and Kq for all other
players.

To make an extension of SPL to multistate envi-
ronments, one could once again take advantage
of the self-play setting. Depending on the na-
ture of the environment, agents can use a certain
(known to all agents) algorithm to compute a set
of strategies for a given environment. For exam-
ple, for a multi-robot motion coordination prob-
lem [7], these strategies can be possible trajecto-
ries of a robot. To each of these strategies robots
can associate an action of a top level repeated
game Γ. Then, a joint-action in the game Γ is
a pair of trajectories in the original multistate
environment, and the corresponding reward is
the cumulative reward of players after simulta-
neously executing this pair of trajectories.

7 Related Work

We would emphasize two most pertinent works
related to our research. In the first one [6] the
desired solution of the learning problem is cor-
related equilibrium. When several equilibria are
possible, the author proposes to choose a unique
one by using an “objective function”, an analog
of our functional criterion. However, this im-
plies that agents have two opposite goals: (1)
to be selfish (inclination to equilibrium solu-
tion implies the agents to be selfish) and (2) to
want to sacrifice, by selecting, using the objec-
tive function, an equilibrium, which is probably
sub-optimal to itself. Generally, if the agents are
supposed to want to sacrifice, there is no need in
seeking after an equilibrium solution.

In the second work [5], the authors propose an
approach for learning of multi-step strategies,
analogous to our extended strategies. When the

Table 1: Utility of SPL for different function optimality criteria compared to the utilities of other
solutions.

max
SPL BPE BNE WNE

CGs 4.00 3.62 3.44 3.44
RGs 2 88.71 82.11 80.02 78.00
RGs 3 94.68 88.85 84.19 80.37
RGs 5 98.18 94.29 87.83 77.73
RGs 10 99.46 96.60 92.68 71.25

sum
SPL BPE BNE WNE

CGs 6.41 6.29 6.02 5.97
RGs 2 140.73 126.88 128.10 124.84
RGs 3 161.14 151.02 150.34 138.83
RGs 5 174.05 162.14 157.98 139.73
RGs 10 187.15 182.09 175.93 135.01

product
SPL BPE BNE WNE

CGs 10.43 9.96 9.06 8.94
CGs 2 5179.85 4549.06 4432.09 3970.02
CGs 3 6555.84 5987.72 5805.01 4720.69
CGs 5 7715.53 7050.49 6725.64 5320.81
CGs 10 8745.05 8097.79 7806.81 4414.34

 60

 70

 80

 90

 100

 110

 0 4 8 12

(a)

M=2
M=3
M=5
M=10

 100

 120

 140

 160

 180

 200

 0 2 4 6

(b)

M=2
M=3
M=5
M=10

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 1 2 3 4

(c)

M=2
M=3
M=5
M=10

Figure 1: The evolution of ELM value of the learned policy in Random Games M according to
different functional criteria: (a) max, (b) sum and (c) product. The X axis represents learning
iterations (×103); the Y axis represents ELM value.

length l of a multi-step strategy is fixed to 1
(the only value used in their experiments), this
yields in a relatively small number of learn-
ing iterations. However, by increasing l (to al-
low more complex joint strategies) the number
of joint strategies to explore becomes exponen-
tially large, and only a small number of them is
really interesting. In our approach, we find the
best extended joint strategies directly, i.e., with-
out enumeration of all pairs of action sequences
of length l. Besides, this approach does not per-
mit satisfying a given functional criterion.

8 Conclusions

In this paper, we presented a novel approach
to multiagent learning in self-play. We argued
that when the learning problem is a known (or
controlled) self-play, a good learning algorithm
should get additional benefit from this. Then,
we presented the notion of functional optimal-
ity criterion, as opposed to relational optimality
criteria such as Nash equilibrium. We demon-
strated that the solution of a problem found by
an algorithm seeking to satisfy a relational op-
timality criterion can be suboptimal if a func-
tional optimality criterion needs to be satisfied.
We then showed that in such problems, our algo-
rithm is a better choice than a big class of clas-
sical multiagent algorithms for self-play. We
also presented the notion of extended strategy
and showed how it can be learned. These non-

stationary strategies are especially efficient in
satisfying the product optimality criterion.

References
[1] B. Banerjee and J. Peng. Performance bounded rein-

forcement learning in strategic interactions. Proceed-
ings of AAAI-04, 2004.

[2] M. Bowling and M. Veloso. Multiagent learning us-
ing a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[3] S.J. Brams. Theory of Moves. American Scientist,
81(6):562–570, 1993.

[4] C. Claus and C. Boutilier. The dynamics of reinforce-
ment learning in cooperative multiagent systems. In
Proceedings of AAAI’98, 1998.

[5] J.W. Crandall and M.A. Goodrich. Learning to com-
pete, compromise, and cooperate in repeated general-
sum games. In Proceedings ICML’05, 2005.

[6] Amy Greenwald. Correlated-Q learning. In In AAAI
Spring Symposium, 2003.

[7] J. Hu and M. Wellman. Nash Q-learning for general-
sum stochastic games. Journal of ML Research,
4:1039–1069, 2003.

[8] M.L. Littman and P. Stone. A polynomial-time Nash
equilibrium algorithm for repeated games. Decision
Support Systems, 39(1):55–66, 2005.

[9] J. Nash. The Bargaining Problem. Econometrica,
18(2):155–162, 1950.

