
The Relational Model

4/29/2013 1

Serge Abiteboul

INRIA Saclay & ENS Cachan

4/29/2013 1 4/29/2013 1

The course

Wednesday afternoon: Des données, à l’information, aux
connaissances : Le Web de demain

Thursday morning: data models (relational & beyond)

Thursday afternoon: web search

Friday morning: semantic

Friday afternoon: deduction (Datalog & webdamlog)

4/29/2013 2

Organization

The principles
– Abstraction

– Universality

– Independence

Abstraction: the relational model

Universality: main functionalities

Independence: the views revisited

Optimization, complexity and expressiveness

A jewel of databases

Conclusion

4/29/2013 3

The principles

4/29/2013 4

Database Management System

Goal: the management of large amounts of data
– Large data: database

– Large software to manage them: DBMS
• Very complex systems

• Years of research and development by large groups of researchers/engineers

Characteristics of the data
– Persistence over time (years)

– Possibly very large (giga, tera, etc.).

– Possibly distributed geographically

– Typically shared between many users and programs

– Typically stored on heterogeneous storage : hard disk, network

4/29/2013 5

Key role: Mediation between human and machines

The data management system acts as a mediator between
intelligent users and objects that store information

First order logic: precise and unambiguous syntax and semantics

Program: Alice does not want to write it; she does not have to

  t,d (Film(t, d,
« Bogart ») 
Séance(t, s, h))

Où et à quelle

heure puis-je

voir un film

avec Bogart?

intget(intkey){
inthash=(key%T
S);while(table[h
ash]=NULL&&ta
ble[hash]-
>getKey()=key)
hash=(hash…

4/29/2013 6

1st principle: abstraction

High level data model
– Definition language for describing the data

– Manipulation language: queries and updates

Definition language based on simple data structure
– Relations

– Trees

– Graphs

Formal language for queries
– Logics

– Declarative vs. Procedural

– Graphical languages

4/29/2013 7

Complex graphical queries
with MS Access

2nd principle: universality

DBMSs are designed to capture all data in the world for all kinds
of applications
– Powerful languages

– Rich functionalities: see further

– To avoid multiplying developments

In reality
– Less structured data are often stored in files

– Too intense applications require specialized software

– More and more the case

4/29/2013 8

Logical

level

3rd principle: independence

ANSI-SPARC Architecture (75): 3 levels

Separation into three levels
– Physical level: physical organization of data on disk,

disk management, schemas, indexes, transaction , log

– Logic: logical organization of data in a schema, query
and update processing

– Externally: views, API, programming environments

Independence
– Physical: We can change the physical organization

without changing the logical level

– Logical: We can evolve the logical level without
modifying the applications

– External: We can change or add views without
affecting the logical level

Physical level

Views
External level

4/29/2013 9

1st principle: abstraction

4/29/2013 10

High level data model: The relational model

The relational model

Codd 1970

Data are represented as tables, namely relations

Queries are expressed in relational calculus: « declarative »
– Essentially First order logic

In practice, a richer model/language: SQL
– Ordering between tuples, nesting, aggregate functions, nulls…

Very successful both scientifically and industrially
– Commercial systems such as Oracle, IBM’s DB2

– Popular free software like mySQL

– DBMS on personal computers such as MS Access

4/29/2013 11

4/29/2013 12

Relations

Queries are expressed in relational calculus

qHB = { s, h |  d, t (Film(t, d, « Humphrey Bogart »)  Séance(t, s,
h) }

In practice, using a syntax that is easier to understand:

SQL:
select salle, heure

from Film, Séance

where Film.titre = Séance.titre and acteur= «Humphrey Bogart»

4/29/2013 13

Relational
algebra

4/29/2013 14

Queries are translated in
algebraic expressions and
evaluated efficiently

The main predecessors

Trees

– IMS, IBM late 60s, 70s

– Still very used

– A hierarchy of records with
keys

Graphs

– Codasyl

– A graph of records with keys

4/29/2013

15

Part(pno,
pname, qty,

price)

Supplier(sno,
sname, sadd)

Supplier(sno,
sname, sadd)

Order(ono,
qty, price)

Part(pno,
pname)

Little abstraction
Languages

- Navigational
- Procedural
- Record-at-at-time

The main successors: semistructured data models

Trees

– XML

– Exchange format for the Web

– Standard

– Query languages: Xpath, Xquery

– Developing very fast

 Abstraction
 Logic foundations

 High-level languages

 Next two classes

Graphs

– Semantic Web & RDF

– Format for representing
knowledge

– Standard

– Query language: SPARQL

– Developing very fast

4/29/2013 16

2nd principle: universality

Must support many functionalities

4/29/2013 17

Two main classes of applications with important
needs for data management

OLTP: Online Transaction Processing – Transactional
– E-commerce, banking, etc..

– Simple transactions, known in advance

– Very high load in number of transactions per second

OLAP: Online Analytical Processing – Decision making
– Business intelligence queries

– Often very complex queries involving aggregate functions

– Multidimensional queries: e.g., date, country, product

4/29/2013 18

Towards universality: more functionalities

Applications have essential functional requirements such as :

• Concurrency and transactions

• Reliability, security, access control

• Data distribution

• Performance and scaling

4/29/2013 19

Towards universality: performance and scaling

Many applications have severe performance requirements
– Response time: The time per operation

– Throughput: The number of operations per time unit

We need to be able to scale
– Volume of data Terabytes of data

– Volume of requests Millions of requests per day

For this two main tools
– Optimization

– Parallelism

4/29/2013 20

Dependencies

Laws about the data

Examples

– Séance[titre]  Film[titre] Inclusion dependency

 Only known films are shown

– Séance: salle heure  titre Functional dependencies

 Only one movie is shown at a time in a theater

Logical formulas

–  t, s, h (Séance(t, s, h)  d, a (Film(t, d, a))) tgds

–  t, t’, s, h (Séance(t, s, h)  Séance(t’, s, h)  t=t’) egds

Some of the most sophisticated developments in db theory

 4/29/2013 21

To protect data To design schemas

To optimize queries To explain data

Dependencies and schema design

Use simple dependencies up to complex semantic data models

Help choose a better relational schema

Update anomalies

Null values

4/29/2013 22

Person Child Car

John Toto BMW

John Toto 2chevaux

John Zaza BMW

John Zaza 2chevaux

Sue Lulu

Sue Mimi

Person Car

John 2chevaux

John BMW

Person Child

John Toto

John Zaza

Sue Lulu

Sue Mimi

Concurrency and transactions - ACID

Atomicity: the sequence of operations is indivisible; in case of failure, either
all operations are completed or all are canceled

Consistency: The consistency property ensures that any transaction the
database performs will take it from one consistent state to another. (So,
consistency states that only consistent data will be written to the
database).

Isolation: When two transactions A and B are executed at the same time, the
changes made by A are not visible to B until transaction A is completed
and validated (commit).

Durability: Once validated, the state of the database must be permanent, and
no technical problem should lead to cancelling of transaction operations

4/29/2013 23

Recovery from failures

The DBMS must survive failures

A variety of techniques
– Journal

– Back-up copies

– Shadow pages

“Hot-standby“: second system running simultaneously

Availability: users should not have to wait beyond what is seen
as reasonable for an application

4/29/2013 24

Distributed data

Typically the case
– When integrating several data sources

– Organizations with many branches

– Activities involving several companies

– When using distribution to get better performance

Query processing over distributed data
– Data localization & global query optimization

– Data fragmentation

– Typically horizontal partitioning

Distributed transactions
– Two-phase commit

– Typically too heavy for Web applications

4/29/2013 25

More

Security
– Protect content against unauthorized users (humans or programs)

– Confidentiality: access control, authentication, authorization

Data monitoring

Data cleaning

Data mining

Data streaming

Spatiotemporal data

Etc.

4/29/2013 26

3rd principle: independence

Views

4/29/2013 27

Views

Definition:

– Function: Database  Database

Perhaps the most fundamental concept in databases

4/29/2013 28

Database
states

View States

0 1

0 2

0 1

0 2

0 1

0 2

1 1

1 2

1 1

1 2

0

1

π
1

2 meters 1 meter

View definition

Classical query
– Define view …

Implicit definition and
recursion

– Datalog

– Dependencies (tgds)

Mix explicit/implicit: Active
XML

<state n=‘Colorado’>

 <resort n=‘Aspen’>

 <sc> Unisys.com/snow(“Aspen”) </sc>

 <sc> Yahoo.com/GetHotels(“Aspen”)</sc>

 </resort> …

</state>

4/29/2013 29

n

Colorado

n

Aspen

state

resort resort

n

Lake Tahoe

f g t

To materialize or not

Intentional

Update: do nothing

Query: complex

Materialized

Update: propagate

– Base  view: costly

 view maintenance

– View  base: ambiguous

Query: simple

4/29/2013 30

Query vs.
Update

The database
trade-off

Integration: view over several bases

Intentional: mediator

Queries are complex

Materialized: warehouse

Updates are complex

4/29/2013 31

Definitions

- Global-as-view: v = (db1, … , dbn)

- Local-as-view: dbi= i(v) for each i

- Complex logical constraints between the database and the views

Optimization, complexity and expressivity

4/29/2013 32

The reasons of the success

Calculus: The queries are based on relational calculus, a logical
language, simple and understandable by people especially in
variants such as SQL.

Algebra: A calculus query can easily be translated into an
algebraic expression (Codd Theorem) that can be evaluated
efficiently.

Optimization: The algebra is a limited model of computation (it
does not allow computing arbitrary functions). That is why it
is possible to optimize algebraic expressions evaluation.

Parallelization: Finally, for this language, parallelism allows
scaling to very large databases (class AC0).

4/29/2013 33

(a) For each f in film

 For each s in séance do … complexity in  n2

(b) If few tuples pass the selection complexity in  n

(c) Using the index complexity  constant

Rewriting algebraic expressions

4/29/2013 34

Séance Film

I
N
D
E
X

Séance Séance

⨝

 Projection
sur salle, heure

 

Sélection
« acteur =
 « Humphrey
Bogart » »







Hashjoin

Film

Film



⨝ ⨝

A possible query plan (without index)

4/29/2013 35

Optimization

Using access structures
– Hash

– B-trees

Using sophisticated algorithms
– E.g., merge join

Cost evaluation to select an execution plan

Problem: search space is too large

Technique: Rewrite queries based on heuristics to explore only
part of it

4/29/2013 36

Optimization & scaling using parallelism

Not all problems can take
advantage of parallelism

Data management can greatly
benefit from parallelism
– Relational calculus is in AC0

– Acyclic join queries are
embarrassingly parallelizable

– Typically divide the data and
work separately on pieces

4/29/2013 37

Filtre f

f

f

f

f

A jewel of databases

Containment of conjunctive queries

4/29/2013 38

Containment of conjunctive queries

Q = { x |∃x’,x”,y (R(xy) ⋀ R(x’y) ⋀ R(x”,1)) }

4/29/2013 39

Q

x y

x’ y

x” 1

I

2

3 2

4 1

20

30 20

30 1

5 5

Q(I)

1

10

x

1

10

V1

V2

Another query

∃x’,x”,y (R(xy) ⋀ R(x’y) ⋀ R(x”,1) ⋀ x’ = x” ⋀ R(z,z))

Q’ = ∃x’,y,z (R(xy) ⋀ R(x’y) ⋀ R(x’,1) ⋀ R(z,z))

4/29/2013 40

Q’

x y

x’ y

x’ 1

z z

I

1 2

3 2

4 1

10 20

30 20

30 1

5 5

Q’(I)

10

x

V1

V2

Question

Definition: Q’ ⊆ Q if for all I, Q’(I) ⊆ Q(I)

 Q’ ≣ Q if Q’ ⊆ Q and Q ⊆ Q’

Problem: given Q’, Q, test whether Q’ ⊆ Q

Central issue for query optimization

4/29/2013 41

If there is a homomorphism from Q to Q’, Q’ ⊆ Q

4/29/2013 42

Q

x y

x’ y

x” 1

Q’

x y

x’ y

x’ 1

z z

I

1 2

3 2

4 1

10 20

30 20

30 1

5 5

Q’(I)

10
H V

HoV

x

x

Q(I)

10

⊆

If Q’ ⊆ Q, there is a homomorphism from Q to Q’

4/29/2013 43 4/29/2013 43

Q’

x y

x’ y

x’ 1

z z

Q

x y

x’ y

x” 1

Q(IQ’)

x

Q’(IQ’)

x

Q’ ⊆ Q

Identity

x

x

IQ’

x y

x’ y

x’ 1

z z

H

Q’ ⊆ Q iff there is a homomorphism from Q to Q’

The problem is NP-complete

4/29/2013 44

Disjunction

Thm: ∪Q’i ⊆ ∪Qj iff for each i, there exists j, Q’i ⊆ Qj

⟸) Suppose for each i, there exists j, Q’i ⊆ Qj

Let I be some instance: consider some I; there exists j, Q’i(I) ⊆ Qj(I)

Q’i(I) ⊆ ∪Qj(I); so, ∪Q’i (I) ⊆∪Qj (I); so,∪Q’i ⊆ ∪Qj

⇒) Suppose ∪Q’i ⊆ ∪Qj

 (to simplify assume wlg they are Boolean queries)

Consider some i and the instance IQ’i

∪Q’i (IQ’i) not empty; so ∪Qj(IQ’i) not empty;

For some j, Qj(IQ’i) not empty;

So there is a homomorphism from Qj to Q’i

4/29/2013 45

Beyond

• Negation: containment of FO queries is undecidable

– co r.e. for finite relations (r.e. for arbitrary relations)

• Recursion: containment of datalog is undecidable

– Decidable for monadic datalog

– Undecidable for monadic datalog over trees or strings (for
infinite alphabet)

• Tableau homorphism is a particular case of
subsumption in resolution theorem proving

4/29/2013 46

Conclusion

4/29/2013 47

Relational databases

Very successful in industry

Lots of results in academia

4/29/2013 48

Blend with other technologies

Logic programming

Production rule systems

Object-oriented languages

Workflows

Clusters of machines

Peer-to-peer architecture

4/29/2013 49

Always question everything

In industry: to challenge the well established guys

In academia: to discover new problems

Revisit the models, languages​​, principles

Main motivations
– To facilitate application development

– Performance to scale to always more data and queries

• For extreme applications that cannot be supported by standard technology

• Web search engines with huge volumes of data/queries

• World wide banking with huge volumes of transactions

– To offer more in terms of reliability, security, etc..

4/29/2013 50

For instance, what can be questioned

4/29/2013 51

Relational model Beyond

Entries in relations are atomic values Entries are set of values

Missing data, probabilistic data

Spatio-temporal data

Data are regular Semistructured

ACID Weaker concurrency

Universal Specialized: noSQL

Data are persistent Persistent queries on data flows

Data are static Data & behavior: Object databases
Active databases

Constraints are static (FDs, etc.) Triggers

…

Foundations of databases, S. Abiteboul, R. Hull, V. Vianu.
Addison-Wesley. 1995. www.webdam.inria.fr/Alice

Database Systems: The Complete Book, J.Widom, J.D.
Ullman, H.Garcia-Molina

4/29/2013 52

Merci !

4/29/2013 52 4/29/2013 52

http://www.webdam.inria.fr/Alice
http://www.webdam.inria.fr/Alice

