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The course 

Wednesday afternoon: Des données, à l’information, aux 
connaissances : Le Web de demain 

 

Thursday morning: data models (relational & beyond) 

 

Thursday afternoon: web search 

 

Friday morning: semantic  

 

Friday afternoon: deduction (Datalog & webdamlog) 
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Organization 

The principles 
– Abstraction 

– Universality 

– Independence 

Abstraction:   the relational model 

Universality:   main functionalities 

Independence:  the views revisited 

Optimization, complexity and expressiveness 

A jewel of databases 

Conclusion 
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The principles 
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Database Management  System 

Goal: the management of large amounts of data 
– Large data: database 

– Large software to manage them: DBMS 
• Very complex systems 

• Years of research and development by large groups of researchers/engineers 

Characteristics of the data 
– Persistence over time (years) 

– Possibly very large (giga, tera, etc.). 

– Possibly distributed geographically 

– Typically shared between many users and programs 

– Typically stored on heterogeneous storage : hard disk, network 
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Key role: Mediation between human and machines 

The data management system acts as a mediator between 
intelligent users and objects that store information 

 

 

 
 
 
 
 

First order logic:  precise and unambiguous syntax and semantics 

Program: Alice does not want to write it; she does not have to 

   t,d ( Film(t, d,                                                                               
« Bogart »)  
Séance(t, s, h) ) 

Où et à quelle 

heure puis-je 

voir un film 

avec Bogart? 

intget(intkey){ 
inthash=(key%T
S);while(table[h
ash]=NULL&&ta
ble[hash]-
>getKey()=key) 
hash=(hash… 
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1st principle: abstraction 

High level data model 
– Definition language  for describing the data 

– Manipulation language: queries and updates 

Definition language based on simple data structure 
– Relations 

– Trees  

– Graphs  

Formal language for queries 
– Logics 

– Declarative vs. Procedural 

– Graphical languages 
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Complex graphical queries  
with MS Access 



2nd principle: universality  

DBMSs are designed to capture all data in the world for all kinds 
of applications 
– Powerful languages 

– Rich functionalities: see further 

– To avoid multiplying developments 

In reality 
– Less structured data are often stored in files 

– Too intense applications require specialized software 

– More and more the case 
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Logical  

level 

3rd principle: independence 

ANSI-SPARC Architecture (75): 3 levels 

Separation into three levels 
– Physical level: physical organization of data on disk, 

disk management, schemas, indexes, transaction , log 

– Logic: logical organization of data in a schema, query 
and update processing 

– Externally:  views, API, programming environments 

Independence 
– Physical: We can change the physical organization 

without changing the logical level 

– Logical: We can evolve the logical level without 
modifying the applications 

– External: We can change or add views without 
affecting the logical level 

Physical level 

Views 
External level 
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1st principle: abstraction 
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High level data model: The relational model 



The relational model 

Codd 1970 

Data are represented as tables, namely relations 

Queries are expressed in relational calculus: « declarative »  
– Essentially First order logic 

In practice, a richer model/language: SQL 
– Ordering between tuples, nesting, aggregate functions, nulls… 

Very  successful both scientifically and industrially 
– Commercial systems such as Oracle, IBM’s DB2 

– Popular free software like mySQL 

– DBMS on personal computers such as MS Access 
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Queries are expressed in relational calculus 

qHB = { s, h |  d, t ( Film(t, d, « Humphrey Bogart »)  Séance(t, s, 
h ) } 

 

In practice, using a syntax that is easier to understand: 

SQL: 
select salle, heure 

from Film, Séance 

where Film.titre = Séance.titre and acteur= «Humphrey Bogart» 
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Relational 
algebra 
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Queries are translated in 
algebraic expressions and 
evaluated efficiently 



The main predecessors 

Trees 

– IMS, IBM late 60s, 70s 

– Still very used 

– A hierarchy of records with 
keys 

Graphs 

– Codasyl 

– A graph of records with keys 
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Part(pno, 
pname, qty, 

price) 

Supplier(sno, 
sname, sadd) 

Supplier(sno, 
sname, sadd) 

Order(ono, 
qty, price) 

Part(pno, 
pname) 

Little abstraction 
Languages 

-   Navigational 
-   Procedural 
-   Record-at-at-time 



The main successors: semistructured data models 

Trees 

– XML 

– Exchange format for the Web 

– Standard 

– Query languages: Xpath, Xquery 

– Developing very fast 

 

 

  Abstraction 
     Logic foundations 

     High-level languages 

    Next two classes 

Graphs 

– Semantic Web & RDF 

– Format for representing 
knowledge 

– Standard 

– Query language: SPARQL 

– Developing very fast 
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2nd principle: universality 

Must support many functionalities 
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Two main classes of applications with important 
needs for data management 

OLTP: Online Transaction Processing   – Transactional  
– E-commerce, banking, etc.. 

– Simple transactions, known in advance 

– Very high load in number of transactions per second 

OLAP: Online Analytical Processing   – Decision making  
– Business intelligence queries 

– Often very complex queries involving aggregate functions 

– Multidimensional queries: e.g., date, country, product 
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Towards universality: more functionalities 

Applications have essential functional requirements such as : 

 

• Concurrency and transactions 

• Reliability, security, access control 

• Data distribution 

• Performance and scaling 
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Towards universality: performance and scaling 

Many applications have severe performance requirements 
– Response time:  The time per operation 

– Throughput: The number of operations per time unit  

We need to be able to scale 
– Volume of data  Terabytes of data 

– Volume of requests Millions of requests per day 

For this two main tools 
– Optimization 

– Parallelism  
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Dependencies 

Laws about the data 

 

Examples 

– Séance[titre]  Film[titre]      Inclusion dependency 

 Only known films are shown 

– Séance: salle heure  titre   Functional dependencies 

 Only one movie is shown at a time in a theater 

Logical formulas 

–  t, s, h (Séance(t, s, h )  d, a ( Film(t, d, a) ) ) tgds 

–  t, t’, s, h (Séance(t, s, h )  Séance(t’, s, h )   t=t’)  egds 

Some of the most sophisticated developments in db theory 
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To protect data  To design schemas 

To optimize queries  To explain data 



Dependencies and schema design 

Use simple dependencies up to complex semantic data models 

Help choose a better relational schema 

 

 

 

 

 

 

 

Update anomalies 

Null values 
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Person Child Car 

John Toto BMW 

John Toto 2chevaux 

John Zaza BMW 

John Zaza 2chevaux 

Sue Lulu 

Sue Mimi 

Person Car 

John 2chevaux 

John BMW 

Person Child 

John Toto 

John Zaza 

Sue Lulu 

Sue Mimi 



Concurrency and transactions - ACID 

Atomicity: the sequence of operations is indivisible; in case of failure, either 
all  operations are completed or all are canceled 

Consistency: The consistency property ensures that any transaction the 
database performs will take it from one consistent state to another. (So, 
consistency states that only consistent data will be written to the 
database). 

Isolation: When two transactions A and B are executed at the same time, the 
changes made by A are not visible to B until transaction A is completed 
and validated (commit). 

Durability: Once validated, the state of the database must be permanent, and 
no technical problem should lead to cancelling of transaction operations 
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Recovery from failures 

The DBMS must survive failures 

A variety of techniques 
– Journal 

– Back-up copies 

– Shadow pages  

“Hot-standby“: second system running simultaneously 

Availability: users should not have to wait beyond what is seen 
as reasonable for an application 
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Distributed data 

Typically the case 
– When integrating several data sources 

– Organizations with many branches 

– Activities involving several companies 

– When using distribution to get better performance 

Query processing over distributed data 
– Data localization & global query optimization 

– Data fragmentation 

– Typically horizontal partitioning 

Distributed transactions 
– Two-phase commit 

– Typically too heavy for Web applications 
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More 

Security 
– Protect content against unauthorized users (humans or programs) 

– Confidentiality: access control, authentication, authorization 

Data monitoring  

Data cleaning 

Data mining 

Data streaming  

Spatiotemporal data 

Etc.  
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3rd principle: independence 

Views 
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Views 

Definition:  

– Function: Database  Database 

Perhaps the most fundamental concept in databases  
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Database 
states 

View States 

0 1 

0 2 

0 1 

0 2 

0 1 

0 2 

1 1 

1 2 

1 1 

1 2 

0 

1 

π
1 



2 meters 1 meter 

View definition 

Classical query  
– Define view … 

Implicit definition and 
recursion 

– Datalog 

– Dependencies (tgds) 

Mix explicit/implicit: Active 
XML 

<state n=‘Colorado’> 

 <resort n=‘Aspen’>  

     <sc> Unisys.com/snow(“Aspen”) </sc> 

    <sc> Yahoo.com/GetHotels(“Aspen”)</sc> 

    </resort>   … 

</state> 
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n 

Colorado 

n 

Aspen 

state 

resort resort 

n 

Lake Tahoe 

f g t 



To materialize or not 

Intentional 

 

 

 

Update: do nothing 

Query: complex 

Materialized 

 

 

 

Update: propagate 

– Base  view: costly 

 view maintenance 

– View  base: ambiguous  

Query: simple 
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Query vs. 
Update 

The database 
trade-off 



Integration: view over several bases 

Intentional: mediator 

 

 

 

Queries are complex 

Materialized: warehouse 

 

 

 

Updates are complex 
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Definitions 

- Global-as-view:  v = (db1, … , dbn) 

- Local-as-view:  dbi= i(v) for each i 

- Complex logical constraints between the database and the views 



Optimization, complexity and expressivity 
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The reasons of the success 

Calculus: The queries are based on relational calculus, a logical 
language, simple and understandable by people especially in 
variants such as SQL. 

Algebra: A calculus query can easily be translated into an 
algebraic expression (Codd Theorem) that can be evaluated 
efficiently. 

Optimization: The algebra is a limited model of computation (it 
does not allow computing arbitrary  functions). That is why it 
is possible to optimize algebraic expressions evaluation. 

Parallelization: Finally, for this language, parallelism allows 
scaling to very large databases (class AC0). 
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(a) For each f in film  

 For each s in séance do …  complexity in  n2 

(b) If few tuples pass the selection  complexity in  n 

(c) Using the index    complexity  constant 

Rewriting algebraic expressions 
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Séance Film 

I 
N 
D 
E 
X 

Séance Séance 

⨝ 

 Projection  
sur salle, heure 

  

Sélection  
« acteur = 
 « Humphrey 
Bogart » » 

 

 

 

Hashjoin 

Film 

Film 

 

⨝ ⨝ 



A possible query plan (without index) 
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Optimization 

Using access structures 
– Hash 

– B-trees 

Using sophisticated algorithms 
– E.g., merge join 

Cost evaluation to select an execution plan 

Problem: search space is too large 

Technique: Rewrite queries based on heuristics to explore only 
part of it 
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Optimization & scaling using parallelism 

Not all problems can take 
advantage of parallelism 

Data management can greatly 
benefit from parallelism 
– Relational calculus is in AC0 

– Acyclic join queries are 
embarrassingly parallelizable 

– Typically divide the data and 
work separately on pieces 

4/29/2013 37 

Filtre f 

f 

f 

f 

f 



A jewel of databases 

Containment of conjunctive queries 
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Containment of conjunctive queries 

Q = { x |∃x’,x”,y ( R(xy) ⋀ R(x’y) ⋀ R(x”,1)) } 
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Q 

x y 

x’ y 

x” 1 

I 

2 

3 2 

4 1 

20 

30 20 

30 1 
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Q(I) 

1 

10 

x 

1 

10 

V1 

V2 



Another query 

∃x’,x”,y ( R(xy) ⋀ R(x’y) ⋀ R(x”,1) ⋀  x’ = x” ⋀ R(z,z) ) 

Q’ = ∃x’,y,z ( R(xy) ⋀ R(x’y) ⋀ R(x’,1) ⋀ R(z,z) ) 
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Q’ 

x y 

x’ y 

x’ 1 

z z 

I 

1 2 

3 2 

4 1 

10 20 

30 20 

30 1 

5 5 

Q’(I) 

10 

x 

V1 

V2 



Question 

Definition:  Q’ ⊆ Q if for all I, Q’(I) ⊆ Q(I) 

  Q’ ≣ Q if Q’ ⊆ Q and Q ⊆ Q’  

 

Problem: given Q’, Q, test whether Q’ ⊆ Q  

 

Central issue for query optimization 
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If there is a homomorphism from Q to Q’, Q’ ⊆ Q  
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Q 

x y 

x’ y 

x” 1 

Q’ 

x y 

x’ y 

x’ 1 

z z 

I 

1 2 

3 2 

4 1 

10 20 

30 20 

30 1 

5 5 

Q’(I) 

10 
H V 

HoV                                        

x 

x 

Q(I) 

10 

⊆ 



If Q’ ⊆ Q, there is a homomorphism from Q to Q’ 
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Q’ 

x y 

x’ y 

x’ 1 

z z 

Q 

x y 

x’ y 

x” 1 

Q(IQ’) 

x 

Q’(IQ’) 

x 

Q’ ⊆ Q 

Identity  

x 

x 

IQ’ 

x y 

x’ y 

x’ 1 

z z 

H 



Q’ ⊆ Q iff there is a homomorphism from Q to Q’ 
 
The problem is NP-complete 
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Disjunction 

Thm: ∪Q’i ⊆ ∪Qj  iff for each i, there exists j, Q’i ⊆ Qj 

 

⟸) Suppose for each i, there exists j, Q’i ⊆ Qj 

Let I be some instance: consider some I; there exists j, Q’i(I)  ⊆ Qj(I) 

Q’i(I)  ⊆ ∪Qj(I); so, ∪Q’i (I) ⊆∪Qj (I); so,∪Q’i ⊆ ∪Qj  

⇒) Suppose ∪Q’i ⊆ ∪Qj    

 (to simplify assume wlg they are Boolean queries) 

Consider some i and the instance IQ’i  

∪Q’i (IQ’i ) not empty;  so ∪Qj(IQ’i ) not empty;  

For some j, Qj(IQ’i ) not empty;  

So there is a homomorphism from Qj to Q’i  
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Beyond  

• Negation: containment of FO queries is undecidable 

– co r.e. for finite relations  (r.e. for arbitrary relations)   

• Recursion: containment of datalog is undecidable 

– Decidable for monadic datalog 

– Undecidable for monadic datalog over trees or strings (for 
infinite alphabet) 

 

• Tableau homorphism is a particular case of 
subsumption in resolution theorem proving 
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Conclusion 
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Relational databases 

Very successful in industry 

Lots of results in academia 
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Blend with other technologies 

Logic programming 

Production rule systems 

Object-oriented languages 

Workflows  

Clusters of machines 

Peer-to-peer architecture 

 

4/29/2013 49 



Always question everything 

 

In industry: to challenge the well established guys  

In academia: to discover new problems 

Revisit the models, languages​​, principles 

Main motivations 
– To facilitate application development 

– Performance to scale to always more data and queries 

• For extreme applications that cannot be supported by standard technology 

• Web search engines with huge volumes of data/queries 

• World wide banking with huge volumes of transactions 

– To offer more in terms of reliability, security, etc.. 
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For instance, what can be questioned 
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Relational model Beyond 

Entries in relations are atomic values Entries are set of values 

Missing data, probabilistic data 

Spatio-temporal data 

Data are regular Semistructured 

ACID Weaker concurrency 

Universal Specialized: noSQL 

Data are persistent Persistent queries on data flows 

Data are static Data & behavior: Object databases 
Active databases 

Constraints are static (FDs, etc.) Triggers 

… 



Foundations of databases, S. Abiteboul, R. Hull, V. Vianu. 
Addison-Wesley. 1995. www.webdam.inria.fr/Alice 

 

 

Database Systems: The Complete Book, J.Widom, J.D. 
Ullman, H.Garcia-Molina 
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Merci ! 
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