Datalog Revival

Serge Abiteboul INRIA Saclay & ENS Cachan

Datalog history

Started in 77: logic and database workshop

Simple idea: add recursion to positive FO queries

Blooming in the 80th

Logic programming was hot

Industry was not interested:

 "No practical applications of recursive query theory ... have been found to date." Hellerstein and Stonebraker (Readings in DB Systems)

Quasi dead except local resistance [e.g., A., Gottlob]

Revival in this century

Organization

- Datalog
- Datalog evaluation
- Datalog with negation
- Datalog revival
- Conclusion

Datalog

Limitation of relational calculus

G a graph: G(0,1), G(1,2), G(2,3), ... G(10,11) Is there a path from *0* to *11* in the graph?

k-path $\exists x_1 \dots x_k$ (G(0,x_1) \land G(x₁,x₂) \land ... \land G(x_{k-1},x_k) \land G(x_k,11)) Path of unbounded length: **infinite** formula

G(2,3) $T(x, y) \leftarrow G(x, z), T(z, y)$

fact rule

datalog rule :
$$R_1(u_1) \leftarrow R_2(u_2), \ldots, R_n(u_n)$$
 for $n \ge 1$
head body

- Each u_i is a vector of terms
- Safe: each variable occurring in head must occur in body
- Intentional relation: occurs in the head
- Extensional relation: does not

Datalog program

- 1. G(0,1), G(1,2), G(2,3), ... G(10,11)
- 2. $T(x, y) \leftarrow G(x, y)$
- 3. $T(x, y) \leftarrow G(x, z), T(z, y)$
- 4. Ok() \leftarrow T(0, 11)

edb(P) = {G}
idb(P) = {T,Ok}
program P

Datalog program

- 1. G(0,1), G(1,2), G(2,3), ... G(10,11)
- 2. $T(x, y) \leftarrow G(x, y)$ $T(10, 11) \leftarrow G(10, 11)$
- 3. $T(x, y) \leftarrow G(x, z), T(z, y)$
- 4. Ok() \leftarrow T(0, 11)

 $T(\theta, 11) \leftarrow G(\theta, 10) T(101) 1$ Ok() $\leftarrow T(0, 11)$

Rule 2: v(x)=10 & v(y) = 11 $rac{10,11}{2}$ Rule 3: v(x)=9, v(z)=10 & v(y)=11 $rac{10,11}{2}$

Rule 3: v(x)=0, v(z)=1 & v(y)=11Rule 4: v(x)=0, v(y)=11

☞ T(0,11) ☞ <mark>Ok(</mark>)

...

Model semantics

View P as a first-order sentence Σ_{P} describing the answer

- Associate a formula to each rule $R_{1}(u_{1}) \leftarrow R_{2}(u_{2}), \dots, R_{n}(u_{n}) :$ $\forall x_{1}, \dots, x_{m}(R_{2}(u_{2}) \land \dots \land R_{n}(u_{n}) \Longrightarrow R_{1}(u_{1}))$ where x_{1}, \dots, x_{m} are the variables occurring in the rule $P = \{r_{1}, \dots, r_{n}\}, \Sigma_{P} = r_{1} \land \dots \land r_{n}$

The **semantics** of **P** for a database **I**, denoted **P(I)**, is the **minimum model of** Σ_{P} **containing I**

Does it always exist? How can it be computed?

Example: Transitive closure

```
G(0,1), G(1,2), G(2,3)
T(x,y) \leftarrow G(x,y)
T(x,y) \leftarrow G(x,z), T(z,y)
```


Existence of P(I)

There exists at least one such model: the largest instance one can build with the constants occurring in I and P is a model of P that includes I – B(I,P)

P(I) always exists: it is the intersection of all models of P that include I over the constants occurring in I and P

How can it be computed?

Fixpoint semantics

A fact A is an *immediate consequence* for K and P if

- 1. A is an extensional fact in K, or
- 2. for some instantiation $A \leftarrow A_1, \ldots, A_n$ of a rule in P, each A_i is in K

Immediate consequence operator:

T_P(K) = { immediate consequences for K and P }

Note: T_P is monotone

Fixpoint semantics – continued

P(I) is a fixpoint of $T_P - That$ is: $T_P(P(I)) \subseteq P(I)$ Indeed, P(I) is the least fixpoint of T_P containing I

Yields a means of computing P(I)

 $I \subseteq T_{p}(I) \subseteq T_{p}^{2}(I) \subseteq \dots \subseteq T_{p}^{i}(I) = T_{p}^{i+1}(I) = P(I) \subseteq B(I,P)$

Proof theory

- Proof technique: SLD resolution
- A fact A is in P(I) iff there exists a proof of A

Static analysis

Hard

- Deciding containment ($P \subseteq P'$) is undecidable
- Deciding equivalence is undecidable
- Deciding boundedness is undecidable
 - There exists k such that for any I, the fixpoint converges in less than k stages
- So, optimization is hard

Datalog evaluation by example

More complicated example: Reverse same generation

up		flat		down			
а	е	g	f	Ι	f		
а	f	m	n	m	f		
f	m	m	0	g	b		
g	n	р	m	h	С		
h	n			i	d		
i	0			р	k		
j	0						
$sg(x,y) \leftarrow flat(x,y)$							
$sg(x,y) \leftarrow up(x,x1), rsg(y1,x1), down(y1,y)$							

4/29/2013

18

Naive algorithm

Fixpoint $rsg_0 = \emptyset$ $rsg_{i+1} = flat \cup rsg_i \cup \pi_{16}(\sigma_{2=4}(\sigma_{3=5}(up \times rsg_i \times down)))$ Program rsg := \emptyset ; repeat rsg := flat \cup rsg $\cup \pi_{16}(\sigma_{2=4}(\sigma_{3=5}(up \times rsg \times down)))$ until fixpoint

Semi-naive

 $\begin{array}{ll} \Delta_1(\mathbf{x},\mathbf{y}) &\leftarrow \operatorname{flat}(\mathbf{x},\mathbf{y}) \\ \Delta_{i+1}(\mathbf{x},\mathbf{y}) \leftarrow up(\mathbf{x},\mathbf{x1}), \Delta_i(\mathbf{y1},\mathbf{x1}), \operatorname{down}(\mathbf{y1},\mathbf{y}) \\ \operatorname{Compute} U\Delta_1 \end{array}$

Program

- Converges to the answer
- Not recursive & not a datalog program
- Still redundant to avoid it:

 $\Delta_{i+1}(x, y) \leftarrow up(x, x1), \Delta_i(y1, x1), down(y1, y), \neg \Delta_i(x, y)$

Semi-naïve (end)

More complicated if the rules are not linear $T(x, y) \leftarrow G(x, y)$ $T(x, y) \leftarrow T(x, z), T(z, y)$

- $\Delta_1(x, y) \leftarrow G(x, y)$
- anc1 := $\Delta 1$
- tempi+1(x, y) $\leftarrow \Delta i(x, z)$, anci(z, y)
- tempi+1(x, y) \leftarrow anci(x, z), $\Delta i(z, y)$
- $\Delta^{i+1} := temp^{i+1} anc^i$
- anci+1 := anci $\cup \Delta^{i+1}$

And beyond

Start from a program and a query

 $rsg(x,y) \leftarrow flat(x,y)$

 $rsg(x,y) \leftarrow up(x,x1), rsg(y1,x1), down(y1,y)$

query(y) \leftarrow rsg(a, y)

Optimize to avoid deriving useless facts

Two competing techniques that are roughly equivalent

- Query-Sub-Query
- Magic Sets

Magic Set

```
rsg^{bf}(x, y) \leftarrow input_{rsg^{bf}}(x), flat(x, y)
     rsgfb(x, y) \leftarrow input_{rsg}^{fb}(y), flat(x, y)
    sup31(x, x1) \leftarrow input_rsg^{bf}(x), up(x, x1)
    sup32(x, y1) \leftarrow sup31(x, x1), rsg^{fb}(y1, x1)
    rsg^{bf}(x, y) \leftarrow sup 32(x, y1), down(y1, y)
    sup41(y, y1) \leftarrow input_rsg^{fb}(y), down(y1, y)
    sup42(y, x1) \leftarrow sup41(y, y1), rsg^{bf}(y1, x1)
     rsg^{fb}(x, y) \leftarrow sup42(y, x1), up(x, x1)
    input_rsg<sup>bf</sup>(x1) \leftarrow sup31(x, x1)
     input_rsg<sup>fb</sup>(y1) \leftarrow sup41(y, y1)
Seed input_rsg<sup>bf</sup>(a) ←
Query query(y) \leftarrow rsg<sup>bf</sup>(a, y)
```


Datalog[¬] by example

Accept negative literal in body Complement of transitive closure $CompG(x,y) \leftarrow \neg G(x,y)$

More complicated

Some T_P are not monotone

Some T_P have no fixpoint containing I

$$- \mathsf{P}_1 = \{\mathsf{p} \leftarrow \neg \mathsf{p}\}$$

$$- \varnothing \to \{\mathsf{p}\} \to \varnothing \to \{\mathsf{p}\} \to \dots$$

- Some T_P have several minimal fixpoints containing I
 - $P_2 = \{p \leftarrow \neg q, q \leftarrow \neg p\}$
 - Two minimal fixpoints: {p} and {q}.

Some T_P have a least fixpoint but sequence diverges

- $P_3 = \{p \leftarrow \neg r ; r \leftarrow \neg p; p \leftarrow \neg p, r\}$
- alternates between \varnothing and {p, r}
- But {p} is a least fixpoint

Model semantics

- Some programs have no model containing I
- Some program have several minimal models containing

First fix: stratification

Impose condition on the syntax

Stratified programs

Consider more complex semantics

- Many such proposals
- Well-founded semantics based on 3-valued logic

Well-founded by example: 2-player game

e, g are loosing

move graph: (relation K)

There is a pebble in a node

- 2 players alternate playing
- A player moves the pebble following an edge
- A player who cannot move loses

Winning position

move graph: (relation K)

There is a pebble in a node2 players alternate playingA player moves the pebble following an edgeA player who cannot move loses

There is a pebble in a node2 players alternate playingA player moves the pebble following an edgeA player who cannot move loses

Program to specify the winning/loosing positions

win(x) \leftarrow move(x, y),¬win(y)

Well-founded semantics: find the instance J that agrees with K on move and satisfies the formula corresponding to the rule Instance J – three-valued instance win(d),win(f) are true win(e),win(g) are false win(a),win(b),win(c) are unknown

Fixpoint semantics based on 3-valued logic

4/29/2013

Fixpoint computation

а

C

yes

win(x) ← move(x, y),¬win(y)
 c b

maybe

- I₀: win is always false
- I₁: win: a, b, c, d, f
- I₂: win: d, f
- I₃: win: a, b, c, d, f
- I₄: win: d, f

g

e

No

Complexity and expressivity

- Datalog and Datalog evaluations are easy
- Datalog⊂ Ptime
 - In the data
 - Inclusion in ptime: polynomial number of stages; each stage in ptime
 - Strict: Expresses only monotone queries;
 - But does not even express all PTIME monotone queries
- Datalog[¬] with well-founded semantics = fixpoint ⊂ Ptime
 - In the data
 - On ordered databases, it is exactly PTIME

Datalog revival

Datalog revival

 $\begin{bmatrix} \rho \sigma & \Lambda \end{bmatrix}$

Datalog needs to be extended to be useful Updates, value creation, nondeterminism

Skolem	[e.g. Gottlob]
Constraints	[e.g. Revesz]
Time	[e.g. Chomicki]
Distribution	[e.g. ActiveXML]
Trees	[e.g. ActiveXML]
Aggregations	[e.g. Consens and Mendelzon]
Delegation	[e.g. Webdamlog]

Datalog revival: different domains

Declarative networking Data integration and exchange Program verification Data extraction from the Web Knowledge representation

Artifact and workflows Web data management

- [e.g. Lou et al]
- [e.g. Clio, Orchestra]
- [e.g. Semmle]
- [e.g. Gottlob, Lixto]
- [e.g. Gottlob]
- [e.g. ActiveXML] [e.g. Webdamlog]

Declarative networking

Traditional vs. declarative

Network state	Distributed database
Network protocol	Datalog program
Messages	Messages

Series of languages/systems from Hellerstein groups in Berkeley

- Overlog, bloom, dedalus, bud...
- Performance: scalability

Many systems have been developed

Internet routing

Overlay networks

Sensor networks

• • •

Data integration

∀Eid, Name, Addr

(employee(Eid, Name, Addr) \Rightarrow

∃ Ssn (name(Ssn, Name) ∧ address(Ssn, Addr)))

Use "inverse" rules with Skolem name(ssn(Name, Addr), Name) address(ssn(Name, Addr), Addr)

← employee(X, Name, Addr)

← employee(X, Name, Addr)

Possibly infinite chase and issues with termination

Program analysis

Analyze the possible runs of a program

Recursion

Lots of possible runs – lots of data

- Optimization techniques are essential
- Semi-naïve, Magic Sets, Typed-based optimization

Data extraction

• Georg's talk next

Conclusion

50

Issues

Give precise semantics to the extensions

Some challenges for the Web

- Scaling to large volumes
- Datalog with distribution
- Datalog with uncertainty
- Datalog with inconsistencies

Berkeley's works

Webdamlog 🖝

