
Datalog Revival

Serge Abiteboul

INRIA Saclay & ENS Cachan

4/29/2013 1 4/29/2013 1 4/29/2013 1

Datalog history

Started in 77: logic and database workshop

Simple idea: add recursion to positive FO queries

Blooming in the 80th
– Logic programming was hot

Industry was not interested:
– “No practical applications of recursive query theory … have been

found to date.” Hellerstein and Stonebraker (Readings in DB Systems)

Quasi dead except local resistance [e.g., A.,Gottlob]

Revival in this century

4/29/2013 2

FO+

FO datalog

datalog¬

¬
loop

Organization

• Datalog

• Datalog evaluation

• Datalog with negation

• Datalog revival

• Conclusion

4/29/2013 3

Datalog

4/29/2013 4

Limitation of relational calculus

4/29/2013 5

G a graph: G(0,1), G(1,2), G(2,3), … G(10,11)

Is there a path from 0 to 11 in the graph?

k-path ∃x1… xk (G(0,x1)∧G(x1,x2)∧…∧G(xk-1,xk) ∧G(xk,11))

Path of unbounded length: infinite formula

∨k=1 to ∞ k-path

2 3 6 7

5

10 11

0 1 4 8 9

Datalog

G(2,3) fact

T(x, y) ← G(x, z), T(z, y) rule

datalog rule : R1(u1) ← R2(u2), . . . ,Rn(un) for n  1

– Each ui is a vector of terms

– Safe: each variable occurring in head must occur in body

– Intentional relation: occurs in the head

– Extensional relation: does not

4/29/2013 6

head body

Datalog program = set
of datalog rules

Term = constant or
variable

Datalog program

1. G(0,1), G(1,2), G(2,3), … G(10,11) edb(P) = {G}

2. T(x, y) ← G(x, y) idb(P) = {T,Ok}

3. T(x, y) ← G(x, z), T(z, y) program P

4. Ok() ← T(0, 11)

4/29/2013 7

Datalog program

1. G(0,1), G(1,2), G(2,3), … G(10,11)

2. T(x, y) ← G(x, y)

3. T(x, y) ← G(x, z), T(z, y)

4. Ok() ← T(0, 11)

Rule 2: v(x)=10 & v(y) = 11 ☞ T(10,11)

Rule 3: v(x)=9, v(z)=10 & v(y)=11 ☞ T(9,11)

…

Rule 3: v(x)=0, v(z)=1 & v(y)=11 ☞ T(0,11)

Rule 4: v(x)=0, v(y)=11 ☞ Ok()

4/29/2013 8

T(10, 11) ← G(10, 11)

T(9, 11) ← G(9,10), T(10, 11) T(0, 11) ← G(0,1), T(1, 11)

Ok() ← T(0, 11)

Model semantics

View P as a first-order sentence P describing the answer
– Associate a formula to each rule

 R1(u1) ← R2(u2), . . . ,Rn(un) :

 x1, . . . , xm(R2(u2) ∧ . . . ∧ Rn(un) R1(u1))

 where x1, . . . , xm are the variables occurring in the rule

P = {r1, ..., rn}, P = r1 ∧ ... ∧ rn

The semantics of P for a database I, denoted P(I), is the
minimum model of P containing I

Does it always exist?

How can it be computed?

4/29/2013 9

Example: Transitive closure

G(0,1), G(1,2), G(2,3)

T(x,y) ← G(x,y)

T(x,y) ← G(x,z), T(z,y)

4/29/2013 10

G P
---- ----
0 1 0 1
1 2 1 2
2 3 2 3
 0 2
 1 3
 0 3

G P
---- ----
0 1 0 1
1 2 1 2
2 3 2 3
 0 2
 1 3

G P
---- ----
0 1 0 1
1 2 1 2
2 3 2 3
 0 2
 1 3
 0 3
 6 3

Model but not
minimal

Not a model
of the formula

Minimum
model

containing I

G P
---- ----
0 1 0 1
1 2 1 2
 0 2

Does not
contain I

Existence of P(I)

There exists at least one such model: the largest instance
one can build with the constants occurring in I and P is
a model of P that includes I – B(I,P)

P(I) always exists: it is the intersection of all models of P
that include I over the constants occurring in I and P

How can it be computed?

4/29/2013 11

Fixpoint semantics

A fact A is an immediate consequence for K and P if

1. A is an extensional fact in K, or

2. for some instantiation A ← A1, . . . , An of a rule in P,
each Ai is in K

Immediate consequence operator:

TP(K) = { immediate consequences for K and P }

Note: TP is monotone

4/29/2013 12

Fixpoint semantics – continued

P(I) is a fixpoint of TP – That is: TP(P(I))⊆ P(I)

Indeed, P(I) is the least fixpoint of TP containing I

Yields a means of computing P(I)

I ⊆ TP(I)⊆ TP
2(I)⊆ ... ⊆ Tp

i(I) = Tp
i+1(I) = P(I) ⊆ B(I,P)

4/29/2013 13

Proof theory

• Proof technique: SLD resolution

• A fact A is in P(I) iff there exists a proof of A

4/29/2013 14

Static analysis

Hard

• Deciding containment (P  P’) is undecidable

• Deciding equivalence is undecidable

• Deciding boundedness is undecidable
– There exists k such that for any I, the fixpoint converges in less than k

stages

• So, optimization is hard

4/29/2013 15

Datalog evaluation by example

4/29/2013 16

More complicated example:
Reverse same generation

 up flat down

 a e g f l f

 a f m n m f

 f m m o g b

 g n p m h c

 h n i d

 i o p k

 j o

rsg(x,y) ← flat(x,y)

rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y)

4/29/2013 17

rsg(x,y) ← flat(x,y)
rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y)

4/29/2013 18

e f g h i j k

b c d

l m n o p

a

u u u u u

u u

d d d

d d d

f

f

f

rsg

rsg

 g f
 m n
 m o
 p m
 a b
 h f
 i f
 j f
 f k
 a c
 a d

f

Naive algorithm

Fixpoint

rsg0 = 

rsgi+1 = flat  rsgi   16(2=4(3=5(up × rsgii × down)))

Program

rsg :=  ;

repeat

 rsg := flat  rsg  16(2=4(3=5(up × rsg × down)))

until fixpoint

4/29/2013 19

Semi-naive

1(x, y) ← flat(x, y)

i+1(x, y) ← up(x, x1), i(y1, x1), down(y1, y)

Compute ∪I

Program

– Converges to the answer

– Not recursive & not a datalog program

– Still redundant – to avoid it:

i+1(x, y) ← up(x, x1), i(y1, x1), down(y1, y), i(x, y)

4/29/2013 20

rsg(x,y) ← flat(x,y)
rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y)

4/29/2013 21

e f g h i j k

b c d

l m n o p

a

u u u u u

u u

d d d

d d d

f

f

f

 g f
 m n
 m o
 p m
 a b
 h f
 i f
 j f
 f k
 a c
 a d

f
1

2

3

Semi-naïve (end)

More complicated if the rules are not linear

T(x, y) ← G(x, y)
T(x, y) ← T(x, z), T(z, y)

• 1(x, y) ← G(x, y)
• anc1 := 1

• tempi+1(x, y) ← i(x, z), anci(z, y)
• tempi+1(x, y) ← anci(x, z), i(z, y)
• i+1 := tempi+1  anci

• anci+1 := anci  i+1

4/29/2013 22

And beyond

Start from a program and a query

rsg(x,y) ← flat(x,y)

rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y)

query(y) ← rsg(a, y)

Optimize to avoid deriving useless facts

Two competing techniques that are roughly equivalent

– Query-Sub-Query

– Magic Sets

4/29/2013 23

Magic Set

rsgbf(x, y) ←input_rsgbf(x), flat(x, y)
rsgfb(x, y) ←input_rsgfb(y), flat(x, y)
sup31(x, x1) ←input_rsgbf(x), up(x, x1)
sup32(x, y1) ←sup31(x, x1), rsgfb(y1, x1)
rsgbf(x, y) ←sup32(x, y1), down(y1, y)
sup41(y, y1) ←input_rsgfb(y), down(y1, y)
sup42(y, x1) ←sup41(y, y1), rsgbf(y1, x1)
rsgfb(x, y) ←sup42(y, x1), up(x, x1)
input_rsgbf(x1) ←sup31(x, x1)
input_rsgfb(y1)←sup41(y, y1)

Seed input_rsgbf(a) ←
Query query(y) ←rsgbf(a, y)

4/29/2013 24

QSQ at work

4/29/2013 25

rsgbf(x,y)

up(x,x1), rsgfb(y1,x1), down(y1,y)

sup0(x) sup1(x,x1) sup2(x,y1) sup3(x,y)

rsgfb(x,y)

down(y1,y), rsgbf(y1,x1), up(x,x1)

sup0(y) sup1(y,y1) sup2(y,x1) sup3(x,y)

rsgbf(x,y)

flat(x,y)

sup0(x) sup1(x,y)

rsgfb(x,y)

flat(x,y)

sup0(y) sup1(x,y)

input-rsgbf input-rsgfb ans-rsgbf ans-rsgfb

a

a

a a e

a f

e

f

e

f
e

f

g f

g f

a g a b

a b

Subqueries
rsgfb(y1,e)
rsgfb(y1,f)

Datalog¬ by example

Accept negative literal in body

Complement of transitive closure

CompG(x,y) ← G(x,y)

4/29/2013 27

More complicated

Some TP are not monotone

Some TP have no fixpoint
containing I

– P1 = {p ← ¬p}

–  → {p} →  → {p} → …

Some TP have several minimal
fixpoints containing I

– P2 = {p ← ¬q, q ← ¬p}

– Two minimal fixpoints:
 {p} and {q}.

Some TP have a least fixpoint but
sequence diverges

– P3 = {p ← ¬r ; r ← ¬p; p ← ¬p, r}

– alternates between  and {p, r}

– But {p} is a least fixpoint

Model semantics
– Some programs have no model

containing I

– Some program have several
minimal models containing

4/29/2013 28

First fix: stratification

Impose condition on the syntax
– Stratified programs

Consider more complex semantics
– Many such proposals

– Well-founded semantics based on 3-valued logic

4/29/2013 29

datalog

datalog

datalog

datalog



 



Well-founded by example:
2-player game

move graph:

(relation K)

There is a pebble in a node

2 players alternate playing

A player moves the pebble following an edge

A player who cannot move loses

4/29/2013 30

c

a

b

d f

e

g

e, g are
loosing

Winning position

move graph:

(relation K)

There is a pebble in a node

2 players alternate playing

A player moves the pebble following an edge

A player who cannot move loses

4/29/2013 31

c

a

b

d f

e

g

d,f are
winning

No winner no looser

move graph:

(relation K)

There is a pebble in a node

2 players alternate playing

A player moves the pebble following an edge

A player who cannot move loses

4/29/2013 32

c

a

b

d f

e

g 1

1 2

2

a, b, c
unknown

Program to specify
the winning/loosing positions

win(x) ← move(x, y),¬win(y)

Well-founded semantics: find the instance J that

 agrees with K on move and

 satisfies the formula corresponding to the rule

Instance J – three-valued instance

 win(d),win(f) are true

 win(e),win(g) are false

 win(a),win(b),win(c) are unknown

Fixpoint semantics based on 3-valued logic

4/29/2013 33

Fixpoint computation

• win(x) ← move(x, y),¬win(y)

• I0: win is always false

• I1: win: a, b, c, d, f

• I2: win: d, f

• I3: win: a, b, c, d, f

• I4: win: d, f
4/29/2013 34

c

a

b

d f

e

g

yes

maybe
No

Complexity and expressivity

• Datalog and Datalog¬ evaluations are easy

• Datalog⊂ Ptime
– In the data

– Inclusion in ptime: polynomial number of stages; each stage in ptime

– Strict: Expresses only monotone queries;

– But does not even express all PTIME monotone queries

• Datalog¬ with well-founded semantics = fixpoint ⊂ Ptime
– In the data

– On ordered databases, it is exactly PTIME

4/29/2013 35

Datalog revival

4/29/2013 36

Datalog revival

Datalog needs to be extended to be useful

 Updates, value creation, nondeterminism

 [e.g. A., Vianu]

 Skolem [e.g. Gottlob]

 Constraints [e.g. Revesz]

 Time [e.g. Chomicki]

 Distribution [e.g. ActiveXML]

 Trees [e.g. ActiveXML]

 Aggregations [e.g. Consens and Mendelzon]

 Delegation [e.g. Webdamlog]

4/29/2013 37

Datalog revival: different domains

Declarative networking [e.g. Lou et al]

Data integration and exchange [e.g. Clio, Orchestra]

Program verification [e.g. Semmle]

Data extraction from the Web [e.g. Gottlob, Lixto]

Knowledge representation [e.g. Gottlob]

Artifact and workflows [e.g. ActiveXML] ☚

Web data management [e.g. Webdamlog] ☛

4/29/2013 38

Declarative networking

Traditional vs. declarative
Network state Distributed database

Network protocol Datalog program

Messages Messages

Series of languages/systems from Hellerstein groups in Berkeley
– Overlog, bloom, dedalus, bud…

– Performance: scalability

Many systems have been developed
Internet routing

Overlay networks

Sensor networks

…

4/29/2013 39

Data integration

∀Eid, Name, Addr

 (employee(Eid, Name, Addr) 

 ∃ Ssn (name(Ssn, Name) ∧ address(Ssn, Addr)))

Use “inverse” rules with Skolem
name(ssn(Name, Addr), Name) ← employee(X, Name, Addr)

address(ssn(Name, Addr), Addr) ← employee(X, Name, Addr)

Possibly infinite chase and issues with termination

4/29/2013 40

Program analysis

Analyze the possible runs of a program

Recursion

Lots of possible runs – lots of data
– Optimization techniques are essential

– Semi-naïve, Magic Sets, Typed-based optimization

4/29/2013 41

Data extraction

• Georg’s talk next

4/29/2013 42

Conclusion

4/29/2013 43

Issues

Give precise semantics to the extensions

Some challenges for the Web

• Scaling to large volumes Berkeley’s works

• Datalog with distribution

• Datalog with uncertainty

• Datalog with inconsistencies

4/29/2013 44

Webdamlog ☛

4/29/2013 45

Merci !

4/29/2013 45 4/29/2013 45

