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Datalog history 

Started in 77: logic and database workshop 

Simple idea: add recursion to positive FO queries 

Blooming in the 80th 
– Logic programming was hot 

Industry was not interested: 
– “No practical applications of recursive query theory … have been 

found to date.” Hellerstein and Stonebraker (Readings in DB Systems) 

Quasi dead except local resistance [e.g., A.,Gottlob] 

 

Revival  in this century 
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Datalog 
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Limitation of relational calculus 
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G a graph: G(0,1), G(1,2), G(2,3), … G(10,11) 

Is there a path from 0 to 11  in the graph? 

 

  

 

 

 

k-path ∃x1… xk ( G(0,x1)∧G(x1,x2)∧…∧G(xk-1,xk) ∧G(xk,11) ) 

Path of unbounded length: infinite formula  

∨k=1 to ∞  k-path 

2 3 6 7 

5 

10 11 

0 1 4 8 9 



Datalog 

G(2,3)                    fact 

T(x, y) ← G(x, z), T(z, y)     rule 

 

datalog rule : R1(u1) ← R2(u2), . . . ,Rn(un) for n  1 
 

 

– Each ui is a vector of terms  

– Safe: each variable occurring in head must occur in body  

– Intentional relation: occurs in the head 

– Extensional relation: does not  
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head                                           body 

Datalog program = set 
of datalog rules 

Term = constant or 
variable 



Datalog program 

1. G(0,1), G(1,2), G(2,3), … G(10,11) edb(P) = {G}  

2. T(x, y) ← G(x, y)     idb(P)  = {T,Ok} 

3. T(x, y) ← G(x, z), T(z, y)     program P 

4. Ok()    ← T(0, 11) 
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Datalog program 

1. G(0,1), G(1,2), G(2,3), … G(10,11)   

2. T(x, y) ← G(x, y)       

3. T(x, y) ← G(x, z), T(z, y) 

4. Ok()    ← T(0, 11) 

  

Rule 2: v(x)=10 & v(y) = 11   ☞ T(10,11) 

Rule 3: v(x)=9, v(z)=10 & v(y)=11  ☞ T(9,11) 

… 

Rule 3: v(x)=0, v(z)=1 & v(y)=11  ☞ T(0,11) 

Rule 4: v(x)=0, v(y)=11   ☞ Ok() 
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T(10, 11) ← G(10, 11)  

T(9, 11) ← G(9,10), T(10, 11)  T(0, 11) ← G(0,1), T(1, 11)  

Ok()    ← T(0, 11) 



Model semantics 

View P as a first-order sentence P describing the answer 
– Associate a formula to each rule  

 R1(u1) ← R2(u2), . . . ,Rn(un) : 

 x1, . . . , xm( R2(u2) ∧ . . . ∧ Rn(un) R1(u1) ) 

 where x1, . . . , xm are the variables occurring in the rule 

P = {r1, ..., rn}, P = r1 ∧ ... ∧ rn 

 

The semantics of P for a database I, denoted P(I), is the 
minimum model of P containing I 

Does it always exist? 

How can it be computed? 
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Example: Transitive closure 

G(0,1), G(1,2), G(2,3)  

T(x,y) ← G(x,y) 

T(x,y) ← G(x,z), T(z,y)    
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G       P 
----    ---- 
0 1    0 1 
1 2    1 2 
2 3    2 3 
          0 2 
           1 3 
           0 3 

G       P 
----    ---- 
0 1    0 1 
1 2    1 2 
2 3    2 3 
          0 2 
           1 3 

            

G        P 
----    ---- 
0 1    0 1 
1 2    1 2 
2 3    2 3 
          0 2 
           1 3 
           0 3 
           6 3 

Model  but not 
minimal 

Not a model   
of the formula 

Minimum 
model  

containing I 

G       P 
----    ---- 
0 1    0 1 
1 2    1 2 
          0 2 

            
            

Does not 
contain I 



Existence of P(I) 

There exists at least one such model: the largest instance 
one can build with the constants occurring in I and P is 
a model of P that includes I – B(I,P) 

 

P(I) always exists: it is the intersection of all models of P 
that include I over the constants occurring in I and P 

 

How can it be computed? 
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Fixpoint semantics 

A fact A is an immediate consequence for K and P if 

1. A is an extensional fact in K, or  

2. for some instantiation  A ← A1, . . . , An of a rule in P, 
each Ai is in K 

Immediate consequence operator:  

TP(K) = { immediate consequences for K and P } 

 

Note: TP is monotone 
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Fixpoint semantics – continued  

P(I) is a fixpoint of TP – That is: TP(P(I))⊆ P(I) 

Indeed, P(I) is the least fixpoint of TP containing I 

 

Yields a means of computing P(I) 

 

I ⊆ TP(I)⊆ TP
2(I)⊆ ... ⊆ Tp

i(I) = Tp
i+1(I) = P(I)     ⊆ B(I,P) 
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Proof theory 

• Proof technique: SLD resolution 

• A fact A is in P(I) iff there exists a proof of A 
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Static analysis 

Hard  

 

• Deciding containment (P  P’) is undecidable 

• Deciding equivalence is undecidable 

• Deciding boundedness is undecidable 
– There exists k such that for any I, the fixpoint converges in less than k 

stages 

 

• So, optimization is hard 
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Datalog evaluation by example 
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More complicated example: 
Reverse same generation 

     up    flat    down    

 a  e   g  f   l  f   

 a  f   m  n   m  f   

 f  m   m  o   g  b   

 g  n   p  m   h  c   

 h  n      i  d   

 i  o      p  k   

 j  o         

rsg(x,y) ← flat(x,y)   

rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y)   

 
4/29/2013 17 



rsg(x,y) ← flat(x,y)   
rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y) 
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e f g h i j k 

b c d 

l m n o p 

a 

u u u u u 

u u 

d d d 

d d d 

f 

f 

f 

rsg 

rsg 

 g    f 
 m   n 
 m   o 
 p    m 
 a    b 
 h    f 
 i     f 
 j     f  
 f     k 
 a    c 
 a    d 

f 



Naive algorithm 

Fixpoint 

rsg0 =  

rsgi+1 = flat  rsgi    16(2=4(3=5(up × rsgii  × down))) 

Program 

rsg :=  ; 

repeat 

 rsg := flat  rsg  16(2=4(3=5(up × rsg × down))) 

until fixpoint 
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Semi-naive 

1(x, y)   ← flat(x, y) 

i+1(x, y) ← up(x, x1), i(y1, x1), down(y1, y) 

Compute ∪I 

 

Program  

– Converges to the answer  

– Not recursive & not a datalog program 

– Still redundant – to avoid it: 

i+1(x, y) ← up(x, x1), i(y1, x1), down(y1, y), i(x, y) 
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rsg(x,y) ← flat(x,y)   
rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y) 
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e f g h i j k 
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l m n o p 
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Semi-naïve (end) 

More complicated if the rules are not linear 

T(x, y) ← G(x, y) 
T(x, y) ← T(x, z), T(z, y) 

 
• 1(x, y) ← G(x, y) 
• anc1 := 1 

 
• tempi+1(x, y) ← i(x, z), anci(z, y) 
• tempi+1(x, y) ← anci(x, z), i(z, y) 
• i+1  := tempi+1  anci 

• anci+1 := anci  i+1 
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And beyond 

Start from a program and a query 

rsg(x,y) ← flat(x,y)   

rsg(x,y) ← up(x,x1),rsg(y1,x1),down(y1,y) 

query(y) ← rsg(a, y) 

Optimize to avoid deriving useless facts 

Two competing techniques that are roughly equivalent 

– Query-Sub-Query 

– Magic Sets 
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Magic Set 

rsgbf(x, y) ←input_rsgbf(x), flat(x, y) 
rsgfb(x, y) ←input_rsgfb(y), flat(x, y) 
sup31(x, x1) ←input_rsgbf(x), up(x, x1) 
sup32(x, y1) ←sup31(x, x1), rsgfb(y1, x1) 
rsgbf(x, y) ←sup32(x, y1), down(y1, y) 
sup41(y, y1) ←input_rsgfb(y), down(y1, y) 
sup42(y, x1) ←sup41(y, y1), rsgbf(y1, x1) 
rsgfb(x, y) ←sup42(y, x1), up(x, x1) 
input_rsgbf(x1) ←sup31(x, x1) 
input_rsgfb(y1)←sup41(y, y1) 

Seed input_rsgbf(a) ← 
Query query(y) ←rsgbf(a, y) 
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QSQ at work 
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rsgbf(x,y) 
 

up(x,x1),  rsgfb(y1,x1), down(y1,y)  
 

sup0(x)   sup1(x,x1)  sup2(x,y1)   sup3(x,y) 

rsgfb(x,y) 
 

down(y1,y), rsgbf(y1,x1), up(x,x1) 
 

sup0(y)   sup1(y,y1)  sup2(y,x1)   sup3(x,y) 

rsgbf(x,y) 
 

flat(x,y)  
 

sup0(x)   sup1(x,y) 

rsgfb(x,y) 
 

flat(x,y)  
 

sup0(y)   sup1(x,y) 

input-rsgbf                    input-rsgfb               ans-rsgbf                 ans-rsgfb 

a 

a 

a a  e 

a  f 

e 

f 

e 

f 
e 

f 

g   f 

g   f 

a   g a   b 

a   b 

Subqueries  
rsgfb(y1,e) 
rsgfb(y1,f) 



Datalog¬ by example 

Accept negative literal in body 

Complement of transitive closure 

CompG(x,y) ← G(x,y) 

4/29/2013 27 



More complicated 

Some TP are not monotone 
 

Some TP have no fixpoint 
containing I 

– P1 = {p ←  ¬p} 

–  → {p} →  → {p} → … 

 

Some TP have several minimal 
fixpoints containing I 

– P2 = {p ←  ¬q, q ←  ¬p} 

– Two minimal fixpoints: 
 {p} and {q}. 

 

Some TP have a least fixpoint but 
sequence diverges 

– P3 = {p ← ¬r ; r ← ¬p; p ← ¬p, r} 

– alternates between  and {p, r} 

– But {p} is a least fixpoint 

 

Model semantics 
– Some programs have no model 

containing I 

– Some program have several 
minimal models containing  
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First fix: stratification 

Impose condition on the syntax 
– Stratified programs 

 

 

 

 

 

 

Consider more complex semantics 
– Many such proposals 

– Well-founded semantics based on 3-valued logic 

4/29/2013 29 

datalog 

datalog 

datalog 

datalog 

 

  

 



Well-founded by example:  
2-player game 

 

move graph: 

(relation K) 

 

 

 

There is a pebble in a node 

2 players alternate playing 

A player moves the pebble following an edge 

A player who cannot move loses 
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c 

a 

b 

d f 

e 

g 

e, g are 
loosing 



Winning position 

 

move graph: 

(relation K) 

 

 

 

There is a pebble in a node 

2 players alternate playing 

A player moves the pebble following an edge 

A player who cannot move loses 
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c 

a 

b 

d f 

e 

g 

d,f are 
winning 



No winner no looser 

 

move graph: 

(relation K) 

 

 

 

There is a pebble in a node 

2 players alternate playing 

A player moves the pebble following an edge 

A player who cannot move loses 
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c 

a 

b 

d f 

e 

g 1 

1 2 

2 

a, b, c 
unknown 



Program to specify  
the winning/loosing positions 

win(x) ←  move(x, y),¬win(y) 

 

Well-founded semantics: find the instance J that 

 agrees with K on move and  

 satisfies the formula corresponding to the rule 

Instance J    – three-valued instance 

 win(d),win(f )  are true 

 win(e),win(g)  are false 

 win(a),win(b),win(c) are unknown 

 

Fixpoint semantics  based on 3-valued logic 
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Fixpoint computation 

• win(x) ←  move(x, y),¬win(y) 

 

 

 

 

 

• I0: win is always false 

• I1: win: a, b, c, d, f 

• I2: win: d, f 

• I3: win: a, b, c, d, f 

• I4: win: d, f  
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Complexity and expressivity 

• Datalog and Datalog¬ evaluations are  easy 

• Datalog⊂ Ptime 
– In the data 

– Inclusion in ptime: polynomial number of stages; each stage in ptime 

– Strict: Expresses only monotone queries;  

– But does not even express all PTIME monotone queries 

 

• Datalog¬  with well-founded semantics = fixpoint ⊂ Ptime  
– In the data  

– On ordered databases, it is exactly PTIME 
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Datalog revival 
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Datalog revival 

Datalog needs to be extended to be useful 

 Updates, value creation, nondeterminism  

    [e.g. A., Vianu] 

 Skolem   [e.g. Gottlob] 

 Constraints  [e.g. Revesz] 

 Time   [e.g. Chomicki] 

 Distribution  [e.g. ActiveXML] 

 Trees     [e.g. ActiveXML]  

 Aggregations  [e.g. Consens and Mendelzon] 

 Delegation  [e.g.  Webdamlog] 
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Datalog revival: different domains 

Declarative networking   [e.g.  Lou et al] 

Data integration and exchange  [e.g.  Clio, Orchestra] 

Program verification    [e.g.  Semmle] 

Data extraction from the Web  [e.g.  Gottlob, Lixto] 

Knowledge representation  [e.g.  Gottlob] 

 

Artifact and workflows   [e.g.  ActiveXML]     ☚ 

Web data management   [e.g.  Webdamlog]    ☛ 
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Declarative networking 

Traditional vs. declarative 
Network state  Distributed database 

Network protocol  Datalog program 

Messages   Messages 

Series of languages/systems from Hellerstein groups in Berkeley 
– Overlog, bloom, dedalus, bud… 

– Performance: scalability 

Many systems have been developed 
Internet routing 

Overlay networks 

Sensor networks 

… 

 

4/29/2013 39 



Data integration 

∀Eid, Name, Addr  

  ( employee(Eid, Name, Addr)   

  ∃ Ssn ( name(Ssn, Name) ∧ address(Ssn, Addr) ) ) 

 

Use “inverse” rules with Skolem 
name(ssn(Name, Addr), Name)  ← employee(X, Name, Addr) 

address(ssn(Name, Addr), Addr)  ← employee(X, Name, Addr) 

 

Possibly infinite chase and  issues with termination 
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Program analysis 

Analyze the possible runs of a program 

Recursion  

Lots of possible runs – lots of data 
– Optimization techniques are essential 

– Semi-naïve, Magic Sets, Typed-based optimization 
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Data extraction 

• Georg’s talk next 

4/29/2013 42 



Conclusion 
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Issues 

Give precise semantics to the extensions  

 

Some challenges for the Web 

• Scaling to large volumes  Berkeley’s works 

• Datalog with distribution   

• Datalog with uncertainty  

• Datalog with inconsistencies 
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Webdamlog  ☛ 
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Merci ! 
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