Visualising Symbolic Objects

VSTAR
Monique Noirhomme-Fraiture

Institut d’Informatique
FUNDP
(université de Namur)
mno@info.fundp.ac.be

ASSO Workshop, Lisbon, 26 January 2004

Plan

* Visualising SO
* VSTAR
* Demo

ASSO Workshop, Lisbon, 26 January 2004
Zoom Star Representation

Need to represent

- multivariate (or hypervariate data)
- mix of qualitative/quantitative variables
 - quantitative: in interval
 - categorical: weighted or multivariate values
 +
- hierarchical taxonomy of value
- logical dependencies

ASSO Workshop, Lisbon, 26 January 2004

Existing solutions for multivariate data visualisation (1/2)

- **Cartesian representation**

two by two

 inside a matrix: Hyperslice, Hyperbox
 hierarchically: Hierarchical Axis, Dimension Stacking, Worlds within World

ASSO Workshop, Lisbon, 26 January 2004
Existing solutions for multivariate data visualisation (2/2)

• Non cartesian representation
 Parallel Coordinates Method (Inselberg):
 allow visualisation of correlation between quantitative variables.
 Circle Segment Method (Ankerst, Keim & Kriegel):
 over time, large number of observations

Iconic techniques
 stick figure icon, autoglyph, colour icon,
 variables of the same type

Meet the need: Zoom Star, Symbolic Cube

ASSO Workshop, Lisbon, 26 January 2004

Visualisation

Visualisation of the input

Visualisation of the output

ASSO Workshop, Lisbon, 26 January 2004
ASSO Workshop, Lisbon, 26 January 2004
Zoom Star

Principles

- One graphic for each SO
- Radial graph (Kiviat diagram)
- Global information first
- More information given interactively
- Complete description if required
- All types of variables
- 2D/3D

ASSO Workshop, Lisbon, 26 January 2004

Graphical convention for the axes

<table>
<thead>
<tr>
<th>Variable type</th>
<th>Axis description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative</td>
<td>Graduated axis</td>
</tr>
<tr>
<td>Categorical</td>
<td>Dots equally distributed on the axis</td>
</tr>
<tr>
<td>Categ.: Not Weighted</td>
<td>Axis drawn in one colour</td>
</tr>
<tr>
<td>Categ.: Weighted</td>
<td>Axis drawn in another colour</td>
</tr>
<tr>
<td>Missing value</td>
<td>Axis drawn in grey</td>
</tr>
</tbody>
</table>

ASSO Workshop, Lisbon, 26 January 2004
2D Zoom Star

quantitative variable
- limits of the interval

categorical variable
- not weighted: equal dots for different values
- weighted: with size proportional to the weight

- To join extremities of interval or dot of higher weight
- To colour the internal surface
- Complete distribution given when clicking on the axis

ASSO Workshop, Lisbon, 26 January 2004

Example

SO1 =

- Day = Mon (0.06), Tue (0.06), Wed (0.06), Thu (0.06), Fri (0.06), Sat (0.35), Sun (0.35)
- And Origin = Local
- And LicAge = [15.00 : 80.00]
- And Age = [35.00 : 50.00]
- And Sex = M
- And Action = Bend, ConLoss
- And Cause = Other (0.25), Speed (0.25), Alcohol (0.50)
- And Collision = Not Applicable
- And Place = Rural (0.30), Urban (0.70)
- And Road = Sec
- And Hour = Morn (0.20), After (0.20), Even (0.25), Night (0.35)
- And Month = Not Applicable
- And Speed Level = [120.00 : 150.00]

ASSO Workshop, Lisbon, 26 January 2004
ASSO Workshop, Lisbon, 26 January 2004

Histogram for Zoom Star in 2D
Convention chosen to link axes

<table>
<thead>
<tr>
<th>Variable value</th>
<th>Link type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>The current value is linked</td>
</tr>
<tr>
<td>Multiple</td>
<td>All values are linked</td>
</tr>
<tr>
<td>Interval</td>
<td>The limits are both linked and the whole surface is filled</td>
</tr>
<tr>
<td>Weighted values</td>
<td>The value with the highest weight is the only one to be linked</td>
</tr>
</tbody>
</table>

ASSO Workshop, Lisbon, 26 January 2004

3D Zoom Star

- histograms on the axes
- animation features: the star can turn around a vertical axis or an horizontal one
- Example

ASSO Workshop, Lisbon, 26 January 2004
Dependencies and taxonomies representation

Information only at demand

Dependencies: supplementary linked axis

Taxonomy: in a separate window

exp: NACE

Example
Example of professional careers of retired persons in Luxembourg in 1991 who have complete 40 years of work.

Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birthdate</td>
<td>Categorical with weights</td>
<td>Birth date</td>
</tr>
<tr>
<td>Salary51</td>
<td>Quantitative with intervals</td>
<td>Salary received in 1951</td>
</tr>
<tr>
<td>Salary60</td>
<td>Quantitative with intervals</td>
<td>Salary received in 1960</td>
</tr>
<tr>
<td>Salary70</td>
<td>Quantitative with intervals</td>
<td>Salary received in 1970</td>
</tr>
<tr>
<td>Salary80</td>
<td>Quantitative with intervals</td>
<td>Salary received in 1980</td>
</tr>
<tr>
<td>Salary90</td>
<td>Quantitative with intervals</td>
<td>Salary received in 1990</td>
</tr>
<tr>
<td>Alloc90</td>
<td>Quantitative with intervals</td>
<td>Sickness Allocation received in 1990</td>
</tr>
<tr>
<td>Pension</td>
<td>Quantitative with intervals</td>
<td>Monthly pension allocation</td>
</tr>
<tr>
<td>FUND</td>
<td>Categorical with weights</td>
<td>Pension fund</td>
</tr>
<tr>
<td>Gender</td>
<td>Categorical with weights</td>
<td>Sex</td>
</tr>
</tbody>
</table>

Carrier data

\[
\text{NPS} = \text{Birthday} = '26 (0.19), '27 (0.03), '28 (0.05), '29 (0.06), '30 (0.15), '31 (0.30), '32 (0.07), '33 (0.07), '34 (0.08) \\
\text{Gender} = \text{Female} (0.21), \text{Male} (0.79) \\
\text{FUND} = \text{AVI} (0.81), \text{CPEP} (0.19) \\
\text{Pension} = [6.00 : 19.00] \\
\text{Alloc90} = [0.00 : 781.00] \\
\text{Salary90} = [5.00 : 1494.00] \\
\text{Salary80} = [145.00 : 920.00] \\
\text{Salary70} = [0.00 : 340.00] \\
\text{Salary60} = [0.00 : 188.00] \\
\text{Salary51} = [0.00 : 119.00]
\]
Non profit sector 2D

Non profit sector 3D

ASSO Workshop, Lisbon, 26 January 2004
Agriculture with different scale 2D

ASSO Workshop, Lisbon, 26 January 2004

Comparison of several SO

Wholesale business sector Manufacturing industries sector

ASSO Workshop, Lisbon, 26 January 2004
Comparison of several SO

Health care Building and civil engineering

ASSO Workshop, Lisbon, 26 January 2004

Superimposition
Breakdown

Table

<table>
<thead>
<tr>
<th>Soil</th>
<th>RF-Parent</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>littorale</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>desert</td>
<td>2100.00</td>
<td>0.00</td>
</tr>
<tr>
<td>basalt</td>
<td>0.00</td>
<td>20000.00</td>
</tr>
<tr>
<td>eri</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>nubata</td>
<td>5000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>rupia</td>
<td>0.00</td>
<td>10000.00</td>
</tr>
<tr>
<td>soliset</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>solagri</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>solidom</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>sololi</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>solincis</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>solagric</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Diagram

[Diagram showing various factors affecting breakdown]
Breakdown

An example: Environmental Attitudes Survey 2000

From Statistics Finland

Sampling survey

Sample size: 2500

Non response: 30 %

Response size: 1 746

Cross classification: gender - age group - collapsed education level (2)

ASSO Workshop, Lisbon, 26 January 2004
Socio-demographic variables

Gender: 1 = Male, 2 = Female

Age group: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74

Education level: 2 = Primary, 3 = Lower Secondary, 4 = Higher Secondary, 5 = Lower University, 6 = University

Development of the region: 1 = Low, 2 = Low Medium, 3 = High Medium, 4 = High

Earning - Earning level: 1 = very low (often children), 2 = low, 3 = Medium, 4 = High, 5 = Very high

ASSO Workshop, Lisbon, 26 January 2004

Socio-demographic variables

GRID - 1km x 1 km Grid

1 = 1-199 people living, no manufacturing industries
2 = 2000-2999 people living, no manufacturing
3 = 1-199 people living, 1-99 manufacturing jobs
4 = 200-2999 people living, 1-99 manufacturing jobs
5 = 1-2999 people living, 100+ manufacturing jobs
6 = 3000+ people living

ASSO Workshop, Lisbon, 26 January 2004
Attitude factors

Control: believe to the use of control mechanisms

Satisfactory: generally satisfactory to the state of environment

Individual: believe that the role of an individual is essential

Welfare: environmental care is part of welfare

Human: believe that a human being may influence on the decision making etc.

Politician: politicians are responsible, especially

Fear factors

Load: fear on the load of environment and impact on the welfare of humans

Noise: fear on noise and construction

Nature: anxiety on the nature of Finland

Sea: anxiety on the future of seas and oceans

Diversity: fear on the decrease of the diversity of the nature

Waste: fear on waste and bad water

Vehicle: fear on the problems due to vehicles

ASSO Workshop, Lisbon, 26 January 2004
VIEW + VSTAR

DEMO

VSTAR Module

- Menus and menu Items
- Operations available in a Table Window
- Operations available in a Graphic Window (2D or 3D)

ASSO Workshop, Lisbon, 26 January 2004
Menus and menu Items

Figure 1: The main window

ASSO Workshop, Lisbon, 26 January 2004

Figure 2: The File menu

ASSO Workshop, Lisbon, 26 January 2004
Figure 3: The Edit menu

Figure 4: The View menu

ASSO Workshop, Lisbon, 26 January 2004
Menus and menu Items

Figure 5: The Labels dialog box

Figure 6: The Selection menu
Figure 7: The Symbolic objects, Variables, and Categories Selection

Figure 8: The Graphic menu
Menus and menu Items

Figure 9: The Graphic menu

ASSO Workshop, Lisbon, 26 January 2004

Menus and menu Items

Figure 9: An example of Zoom Star with a dependency

ASSO Workshop, Lisbon, 26 January 2004
Figure 10: An example of Zoom Star with *buttons*

ASSO Workshop, Lisbon, 26 January 2004

Figure 11: The *Add Text* dialogue box

ASSO Workshop, Lisbon, 26 January 2004
Menus and menu Items

Figure 12: The *Set Color* dialogue box

ASSO Workshop, Lisbon, 26 January 2004

Menus and menu Items

Figure 13: The *Set Font* dialogue box

ASSO Workshop, Lisbon, 26 January 2004
Figure 14: The *Window* menu

ASSO Workshop, Lisbon, 26 January 2004

Figure 15: An example of windows in *Cascade*

ASSO Workshop, Lisbon, 26 January 2004
Menus and menu Items

ASSO Workshop, Lisbon, 26 January 2004

Figure 17: The Help menu

ASSO Workshop, Lisbon, 26 January 2004
Operations available in a Table Window

Figure 20: The Selection of Lines and Columns

ASSO Workshop, Lisbon, 26 January 2004

VSTAR Module

Operations available in a Graphic Window

Figure 21: Examples of 2D and 3D Zoom Stars

The object name and the variables names can be moved

ASSO Workshop, Lisbon, 26 January 2004
Operations available in a Graphic Window

Figure 22: Visualisation of distributions
Left button click on a weighted variable axis

ASSO Workshop, Lisbon, 26 January 2004

Operations available in a Graphic Window

Figure 23: Visualisation of dependencies
Right button click on a dependency line

ASSO Workshop, Lisbon, 26 January 2004
Figure 24: Visualisation of Taxonomies
Left button click on a taxonomy icon

ASSO Workshop, Lisbon, 26 January 2004

Operations available in a Graphic Window

Figure 25: Scales modification
Left button click on a quantitative variable axis

ASSO Workshop, Lisbon, 26 January 2004