
Deployment and Configuration of
Component-based Distributed

Applications Specification

June 2003
Draft Adopted Specification

ptc/03-07-02

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2002-2003, Fraunhofer FOKUS
Copyright © 2002-2003, Mercury Computer Systems, Inc.
Copyright © 2002-2003, Rockwell Collins

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF

MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
1. Introduction . 1-1

1.1 Component-Based Applications . 1-2

1.2 The Target Environment . 1-3

1.3 The Deployment Process . 1-3
1.3.1 Preconditions for the Process of Deployment . 1-4
1.3.2 Installation . 1-4
1.3.3 Configuration . 1-4
1.3.4 Planning . 1-4
1.3.5 Preparation . 1-5
1.3.6 Launch . 1-5
1.3.7 All at Once, or Step by Step 1-5

1.4 Relationship to the MDA . 1-5

2. Platform Independent Model . 2-1
2.1 Segmentation of the Model . 2-1

2.1.1 Dimension #1: Data Models vs. Management
(or Runtime) Models . 2- 2

2.1.2 Dimension #2: Component Software vs.
Target vs. Execution . 2-2

2.1.3 Summary of Model Segmentation Dimensions 2-4

2.2 Model Diagram Conventions . 2-5

2.3 Component Data Model . 2-8
2.3.1 Component Data Model Overview 2-8
2.3.2 PackageConfiguration 2-10
2.3.3 ComponentPackageDescription 2-11
2.3.4 ComponentImplementationDescription 2-13
June 2003 D & C Draft Adopted Specification i

2.3.5 ComponentAssemblyDescription 2-14
2.3.6 SubcomponentInstantiationDescription 2-15
2.3.7 ComponentPackageReference 2-16
2.3.8 AssemblyConnectionDescription 2-17
2.3.9 ComponentExternalPortEndpoint 2-18
2.3.10 SubcomponentPortEndpoint 2-19
2.3.11 ExternalReferenceEndpoint 2-20
2.3.12 AssemblyPropertyMapping 2-21
2.3.13 SubcomponentPropertyReference 2-21
2.3.14 MonolithicImplementationDescription 2-22
2.3.15 ImplementationArtifactDescription 2-23
2.3.16 ImplementationArtifact 2-24
2.3.17 ComponentInterfaceDescription 2-25
2.3.18 ComponentPortDescription 2-26
2.3.19 ComponentPropertyDescription 2-27
2.3.20 Capability . 2-28

2.4 Component Management Model 2-29
2.4.1 RepositoryManager . 2-29

2.5 Target Data Model . 2-31
2.5.1 Domain . 2-32
2.5.2 Node . 2-33
2.5.3 Interconnect . 2-34
2.5.4 Bridge . 2-35
2.5.5 Resource . 2-36
2.5.6 SharedResource . 2-37

2.6 Target Management Model . 2-37
2.6.1 TargetManager . 2-38
2.6.2 DomainUpdateKind . 2-39

2.7 Execution Data Model . 2-40
2.7.1 DeploymentPlan . 2-41
2.7.2 ArtifactDeploymentDescription 2-43
2.7.3 MonolithicDeploymentDescription 2-44
2.7.4 InstanceDeploymentDescription 2-45
2.7.5 PlanConnectionDescription 2-46
2.7.6 PlanSubcomponentPortEndpoint 2-47
2.7.7 PlanPropertyMapping 2-48
2.7.8 PlanSubcomponentPropertyReference 2-49
2.7.9 Execution Management Model 2-49
2.7.10 Execution Management Model Overview 2-50
2.7.11 ExecutionManager . 2-51
ii D & C Draft Adopted Specification June 2003

2.7.12 NodeManager . 2-53
2.7.13 ApplicationManager . 2-55
2.7.14 DomainApplicationManager 2-56
2.7.15 NodeApplicationManager 2-57
2.7.16 Application . 2-58
2.7.17 DomainApplication . 2-59
2.7.18 NodeApplication . 2-60
2.7.19 Logger . 2-60
2.7.20 Connection . 2-61
2.7.21 Endpoint . 2-61

2.8 Common Elements . 2-62
2.8.1 RequirementSatisfier . 2-62
2.8.2 SatisfierProperty . 2-63
2.8.3 SatisfierPropertyKind . 2-64
2.8.4 Requirement . 2-65
2.8.5 Property . 2-66
2.8.6 DataType . 2-66
2.8.7 Any . 2-67

2.9 Exceptions . 2-67
2.9.1 PackageError . 2-68
2.9.2 NameExists . 2-68
2.9.3 NoSuchName . 2-69
2.9.4 LastConfiguration . 2-70
2.9.5 ResourceNotAvailable 2-70
2.9.6 PlanError . 2-71
2.9.7 StartError . 2-72
2.9.8 StopError . 2-73
2.9.9 InvalidProperty . 2-73
2.9.10 InvalidConnection . 2-74
2.9.11 InvalidReference. 2- 75

2.10 Relations to Other Standards . 2-75

3. Actor . 3-1
3.1 Development Actors Overview . 3-2

3.2 Specifier . 3-3

3.3 Developer . 3-3

3.4 Assembler . 3-4

3.5 Packager . 3-4

3.6 Domain Administrator . 3-5

3.7 Deployment Actors Overview . 3-6
June 2003 D & C Draft Adopted Specification iii

3.8 Repository Administrator . 3-6

3.9 Planner . 3-7
3.9.1 Finding Valid Deployments 3-7
3.9.2 Matching Selection Requirements 3-9
3.9.3 Matching Implementation Requirements 3-9
3.9.4 Matching Connection Requirements 3-9
3.9.5 Matching a Resource against a Requirement . . 3-10

3.10 Executor . 3-10

4. UML Profile for D+C Tool Support 4-1
4.1 Structure of the Profile . 4-2

4.2 Package Components . 4-4
4.2.1 Capability . 4-6
4.2.2 Component (Stereotype) 4-7
4.2.3 ComponentAssembly (Stereotype) 4-8
4.2.4 ComponentImplementation (Stereotype) 4-9
4.2.5 ExternalReference (Stereotype) 4-10
4.2.6 PortConnector (Stereotype) 4-10
4.2.7 Constraints . 4-10
4.2.8 PropertyConnector (Stereotype) 4-11
4.2.9 MonolithicImplementation (Stereotype) 4-12
4.2.10 Port (Stereotype) . 4-12
4.2.11 Property (Stereotype) . 4-13
4.2.12 Requirement . 4-13

4.3 Package Targets . 4-14
4.3.1 Bridge (Stereotype) . 4-15
4.3.2 CommunicationPath (Stereotype) 4-16
4.3.3 Domain (Stereotype) . 4-16
4.3.4 Interconnect (Stereotype) 4-17
4.3.5 Node (Stereotype) . 4-18
4.3.6 Resource (Stereotype) 4-18
4.3.7 SharedResource (Stereotype) 4-19

5. PSM for CCM . 5-1

5.1 Introduction . 5-1

5.2 Definition of Meta-Concepts . 5-3
5.2.1 Component . 5-3
5.2.2 ImplementationArtifact 5-4
5.2.3 Package . 5-4

5.3 PIM to PIM for CCM Transformation 5-4
5.3.1 ComponentInterfaceDescription 5-4
iv D & C Draft Adopted Specification June 2003

5.3.2 PlanSubcomponentPortEndpoint 5-5
5.3.3 Application . 5-6
5.3.4 RepositoryManager . 5-6
5.3.5 SatisfierProperty . 5-6

5.4 PIM for CCM to PSM for CCM for IDL Transformation 5-6
5.4.1 Generic Transformation Rules 5-7
5.4.2 Special Transformation Rules 5-8
5.4.3 Mapping to IDL . 5-10

5.5 PIM for CCM to PSM for CCM for XML Transformation 5-10
5.5.1 Generic Transformation Rules 5-10
5.5.2 Special Transformation Rules 5-11
5.5.3 Transformation Exceptions and Extensions . . . 5-13
5.5.4 Mapping to XML . 5-14

5.6 Mapping Discussion . 5-14
5.6.1 Component Data Model 5-14
5.6.2 Component Management Model 5-15
5.6.3 Target Data Model . 5-15
5.6.4 Target Management Model 5-16
5.6.5 Execution Data Model 5-16
5.6.6 Execution Management Model 5-16

5.7 Miscellaneous . 5-16
5.7.1 Entry Points . 5-16
5.7.2 Homes . 5-17
5.7.3 Valuetype Factories . 5-18
5.7.4 Discovery and Initialization 5-18
5.7.5 Location . 5-19
5.7.6 Segmentation . 5-19

5.8 Impact on the CCM Specification 5-20

5.9 Migration Issues . 5-20
5.9.1 Component Implementations 5-20
5.9.2 Component and Assembly Packages

and Metadata . 5-20
5.9.3 Component Deployment Systems 5-21

5.10 Metadata Vocabulary . 5-21
5.10.1 Implementation Selection Requirements 5-21
5.10.2 Monolithic Implementation Resource

Requirements . 5-21
June 2003 D & C Draft Adopted Specification v

6. Mapping to XML Schema . 6-1

7. Conformance Points . 7-1
7.1 Summary of optional versus mandatory interfaces 7-1

7.2 Proposed conformance points . 7-1

7.3 Changes or extensions required to adopted
OMG specifications . 7-2

7.4 Complete IDL definitions . 7-2

Appendix A - References . A-1

Appendix B - IDL for CCM . B-1

Appendix C - XML Schema for CCM C-1
vi D & C Draft Adopted Specification June 2003

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group’s answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
June 2003 Deployment & Configuration of Component Based Distributed Applications Draft Adopted Specification vii

Specification Overview

The purpose of the Deployment and Configuration (D&C) specification is to define the
mechanisms by which component-based distributed applications are deployed.
Deployment is defined as the processes between acquisition of software and execution
of software. We define the software deployer as the agent that acquires software, and
performs the activities that prepare for, and possibly perform the eventual execution of
the software. This requires specifications for:

• Describing the deployment requirements of the software.

• Packaging the software and associated metadata for delivery between the software
producer and the deployer.

• Receiving and configuring the software into the deployer’s environment before
deployment decisions are made.

• Describing the facilities of the targeted distributed execution infrastructure.

• Planning (making decisions for) how the software will be deployed onto the
targeted distributed execution infrastructure.

• Performing the actual preparation of the application for execution, e.g., moving
parts of the software to their location of execution.

• Launching, monitoring, and terminating the application.

This specification defines a Platform Independent Model (PIM) to address the above
issues, which introduces a conceptual basis for deployment systems independent of
technology platform. This specification also defines a Platform Specific Model for
deployment and configuration for the CORBA Component Model (CCM). Although a
PSM was considered for the Software Communication Architecture (SCA), it is not in
this specification due to its dependencies on other standards efforts that are in progress.
It will be addressed when these efforts can be synchronized.

The scope of this specification defines information models (and implied formats),
interfaces and associated semantics for the basic machinery of deployment to enable
deployment tools to be written against a standard infrastructure. This will enable tools
with varying capabilities, from multiple vendors, to be written and supplied separately
from the implementers of the runtime infrastructure for deployment and execution.
This specification further defines interfaces between elements of the infrastructure to
enable interoperable implementations of parts of a deployment infrastructure.

Design Rationale

This specification defines models sufficient to define an interchange between creators
of component-based distributed software, and deployers of that software. Furthermore,
this specification provides models to enable a variety of tools to be written to
interoperate with different deployment infrastructures. The deployment interfaces
based on the models represent a set of building blocks for tools rather than a single
model for how such tools should operate to their users.
viii Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

The scope of this specification defines interfaces to the distributed infrastructure as a
whole, and also defines infrastructure interfaces internal to the distributed
infrastructure to enable interoperable implementations between the whole/centralized
deployment system and the part of that system that runs on specific target computers.

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org
June 2003 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification ix

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Acknowledgments

The following companies submitted and/or supported this specification:

• 88solutions Corporation

• Carleton University

• Deutsche Telekom

• France Telekom

• Fraunhofer FOKUS

• Humboldt Universität Berlin

• Laboratoire d'Informatique Fondamentale de Lille

• Mercury Computer Systems

• MITRE Corporation
x Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

Introduction 1
Contents

This chapter includes the following topics.

"A component represents a modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment. A component defines its
behavior in terms of provided and required interfaces. Larger pieces of a system's
functionality may be assembled by reusing components as parts in an encompassing
component or assembly of components, and wiring together their required and
provided ports." [UML2]

In short, the idea of component-based development is to divide an application into
small reusable components that can be connected to other components via ports, or,
speaking the other way around, to compose applications by reusing and interconnecting
existing components. An important idea is recursion, that an assembly — a set of
interconnected components — can be seen as a component in itself, and therefore be
reused the same way: an assembly always “implements” a specific component
interface. Within an assembly, connections must be made between its subcomponents,
and arrangements must be made for the assembly's external ports — ports of the
component interface that the assembly is implementing — to delegate their behavior to
subcomponent ports.

Topic Page

“Component-Based Applications” 1-2

“The Target Environment” 1-3

“The Deployment Process” 1-3

“Relationship to the MDA” 1-5
June 2003 Deployment & Configuration Draft Adopted Specification 1-1

1

In order to instantiate, or deploy, a component-based application, instances of each
subcomponent must first be created, then interconnected and configured. This
specification deals with the deployment and configuration of component-based
applications onto distributed systems, anticipating that subcomponents might be
distributed among a set of independent, interconnected nodes called domain.

In this specification, an “application” is nothing special; an application is just a
component that is assumed to be independently useful. As before, this component can
be implemented directly (by a monolithic implementation), or it can be implemented
by an assembly, where the implementations for its subcomponents can again be either
monolithic or assemblies. Ultimately, any application can be decomposed into
components that have monolithic implementations. At deployment time, decisions
must be made about which implementations to deploy (execute) where.

1.1 Component-Based Applications

In this specification, software components can have implementations that are either:

• compiled code (called monolithic implementations) or

• assemblies of other components (assembly implementations, providing a recursive
definition)

An assembly is defined as a set of components and interconnections that implement a
component. There is no special “top level assembly,” since assemblies are simply a
method of specifying component implementations. To actually execute a component
whose implementation is an assembly of lower level components, there must
eventually be monolithic implementations at the “leaves” of the hierarchical
implementation.

This definition of assembly means that the “application being deployed” is in fact a
component. Its interface is defined as any component interface is defined. There is no
special distinguished interface for “components that can be deployed as applications.”
Launching a component-based application results in an object that satisfies the
interface of the component interface of the “application.” Thus this specification has no
need to treat the “thing being deployed” differently than a component, and enables
implementation alternatives to be either monolithic compiled code artifacts or a
hierarchical description of other components. This also means that any
implementation, whether monolithic or assembly based, is reusable inside a larger
application, without being touched.

A component package is a set of metadata and compiled code modules that contains
implementations of a component interface. The implementations in a package can be a
mix of monolithic and assembly implementations, with either or both present at any
level of the hierarchy. Thus the creator of a component-based application produces a
component package whose top level component interface represents the interface of the
application.

Assemblies can consist of subcomponents whose implementations are inside the same
package of software, or they can reference component packages that must exist in the
environment outside the package containing the assembly. This not only allows
1-2 Deployment & Configuration Draft Adopted Specification June 2003

1

packages from different vendors to be used together, but also allows dependent
packages to be replaced without changing the other package or its configuration. No
on-line update functionality is implied here.

To support heterogeneous systems, a package can contain more than one
implementation, so that there is a choice at deployment time to find the implementation
that best matches the target environment. For example, a package might contain
implementations of the same component for Windows, Linux or Java.

Monolithic component implementations express requirements that must be fulfilled by
properties of the system on which they will be executed, e.g. the CPU type, or
available hardware. The requirements of an assembly based implementation are
implied by the requirements of its subcomponents, plus additional requirements on the
connections between them.

1.2 The Target Environment

The target environment is termed a domain. Domains are composed of nodes,
interconnects and bridges. Nodes have computational capabilities and are a target for
executing component implementations; this definition encompasses personal computers
as well as SMP systems, DSPs or FPGAs. Interconnects provide a direct shared
connection between nodes, e.g. representing an ethernet cable or a RapidIO fabric.
Bridges route between interconnects, representing both routers and switches.

Nodes, interconnects and bridges have resources that define their features, resources
and capacities. For a node, this might be the operating system type, memory or
available special hardware; an interconnect might describe its bandwidth as a resource.
The platform independent model does not define types of resources, it just introduces
the concept. Platform specific models or domain profiles may list concrete types of
resources that are relevant to the platform or the domain.

An important aspect of the target environment is that the software that supports
component execution on a particular node, must be able to be implemented
independently of the deployment service as a whole. This interoperability boundary
allows those interested in or knowledgeable of specific types of nodes to implement
deployment support for those nodes without touching the overall deployment system
for the target environment.

1.3 The Deployment Process

The model in this specification is based on a process definition of deployment. The
process starts after the software is developed, packaged and published by a software
provider, and is acquired by the software owner, who deploys it. We call the owner at
this point the deployer.
June 2003 D+C Draft Adopted Spec: The Target Environment 1-3

1

1.3.1 Preconditions for the Process of Deployment

Prior to deployment, the software has been packaged according to this specification, by
the producer of the software, such that the metadata describing the software, and the
binary compiled code artifacts, are combined into a package.

The package is published and somehow made available to the deployer, e.g. via a
CDROM or web URL at an FTP site.

There is a target environment, consisting of a distributed system infrastructure
(computers, networks, services), on which the software will ultimately run. There is a
repository, which, at a minimum, is a staging area where the packaged software is
captured prior to decisions about how it will run in the target environment.

1.3.2 Installation

We define installation as the act of taking the published software package and bringing
it into a component software repository under the deployer’s control, but the location
(computer, file system, database) of this repository is not necessarily related to where
the software will actually execute. It is a staging area where various policies of the
deployer, such as security authentication, can be applied to the software prior to
activities related to execution of the software. In the process defined here, installation
is not related to moving software to the computers on which it will actually execute.
Repositories do not necessarily need to be persistent, and they do not necessarily need
to store or copy the software or metadata. Deep copy and shallow copy of the software
are both supported under this specification.

1.3.3 Configuration

When the software is “in-house”, in a repository, it can be functionally configured as to
various default configuration options for later execution. An example would be: when
this spreadsheet runs, the background color should be blue. Various configurations of a
software package could be created. Configuration is not intended to capture the
deployment decisions as to which implementation will be used or where the parts of
the application will execute, but only functional configuration.

1.3.4 Planning

Planning how and where the software will run in the target environment is an activity
that takes the requirements of the software to be deployed, along with the resources of
the target environment on which the software will be executed, and decides which
implementation and how and where the software will be run in that environment. We
take care to separate this decision making step from actually acting on the decisions
since there are important use cases for “advanced planning” that have no immediate
effect on the target environment.

Advanced planning also allows for faster ultimate execution since all decisions can be
made in advance (in cases where resource availability is not changing). Advanced
planning can be done with an offline tool does not interact with the actual runtime
1-4 Deployment & Configuration Draft Adopted Specification June 2003

1

environment at all, but merely “keeps score” of how it is using up the resources known
to be in the target environment. Of course there are also important use cases for “just-
in-time” planning, where execution follows immediately after making planning
decisions based on current dynamic resource availability in the target environment.

Planning results in a deployment plan specific to both the software being deployed and
the target environment being deployed on.

1.3.5 Preparation

Given that we define planning as deciding how and where the software will run, we
define preparation as performing work in the target environment to be ready to execute
the software, such as moving binary files to the specific computers in the target
environment on which the software will execute. This work is reusable if the software
is executed more than once based on the same plan. Doing this work in advance
reduces the startup time when the software is actually run. Just like planning,
preparation can be done “just in time”, as part of an automated scenario where the
entire process happens at once.

1.3.6 Launch

Launching the application brings the application to an executing state, taking all
resources that are known to be required based on the metadata in the packages.
Component-based applications are launched by instantiating components, as planned,
on nodes in the target environment. Launching includes interconnecting and
configuring component instances, as well as starting execution. In this executing state,
the application runs until it completes or is terminated via the same infrastructure that
launched it.

1.3.7 All at Once, or Step by Step

This process model supports use cases where various combinations of these steps are
done at different times using different tools. Of course there is the completely
monolithic and automated case where a single deployment tool takes a web URL for a
component package and executes it.

1.4 Relationship to the MDA

This specification is compliant with the Model Driven Architecture (MDA) defined by
the OMG. It is composed of four main levels of models:

• A D&C Platform Independent Model (PIM), which constitutes the core of the
specification. The D&C PIM defines the set of concepts and classes that are relevant
for the implementation of the specification.

The D&C PIM is explicitly independent of distributed component middleware
technology (e.g. CORBA or J2EE), information formatting technology (e.g. XML
DTD and XML), and programming languages (e.g. C++ and Java). Mappings to
CORBA and XML are possible at the PSM level.
June 2003 D+C Draft Adopted Spec: Relationship to the MDA 1-5

1

• A D&C UML profile designed to enhance the D&C PIM’s readability and to
facilitate the PIM-to-PSM mapping.

• A set of D&C Platform Specific Models which constitute realizations of the D&C
PIM on concrete platforms. A required CCM PSM constitutes an integral part of
this specification.

A PIM-to-PSM mapping is explicitly defined for each PSM.

• A D&C Tool-Support Profile. This profile is closely related to the D&C PIM. The
D&C PIM, in effect, defines the abstract syntax of a language for specifying the
deployment and configuration of distributed components. The D&C Tool Support
Profile defines, in effect, a concrete, UML-based syntax for this language. This
concrete syntax can be employed using generic UML tools. The use of these
stereotypes enables the automatic generation of D&C classes and descriptors from
Deployment and Configuration UML models.

Based on the current requirements of the D&C RFP, there is no need to extend the
UML metamodel at the M2 level. The use of profiles and stereotypes is sufficient to
support the concepts defined in the D&C specification.

While not an explicit part of the current specification, it is also possible that different
profiles of the D&C specification will be defined to satisfy the needs of different
application domains, e.g. a D&C profile for web-based systems and a D&C profile for
embedded systems. Because of the compatibility of the current D&C specification with
the MOF 1.4, D&C profiles can be defined using the profiling mechanisms provided by
UML. Such profiles would, most likely, extend the profiles defined in this
specification.
1-6 Deployment & Configuration Draft Adopted Specification June 2003

Platform Independent Model 2
Contents

This chapter includes the following topics.

2.1 Segmentation of the Model

The Platform Independent Model (PIM) is segmented in two dimensions. This breaks
down the overall model in a modular way such that interdependencies and complexity
are minimized. The breakdown effectively creates six top level diagrams with a modest
number of “external” dependencies between diagrams. The dependencies and
relationships between these model segments are depicted on separate diagrams at the
end of the model.

Topic Page

“Segmentation of the Model” 2-1

“Model Diagram Conventions” 2-5

“Component Data Model” 2-8

“Component Management Model” 2-29

“Target Data Model” 2-31

“Target Management Model” 2-37

“Execution Data Model” 2-40

“Common Elements” 2-62

“Exceptions” 2-67

“Relations to Other Standards” 2-75
June 2003 Deployment & Configuration Draft Adopted Specification 2-1

2

2.1.1 Dimension #1: Data Models vs. Management (or Runtime) Models.

This distinction is between a model of descriptive information, vs. the model of
runtime entities that process, create, provide or store that information. In general, data
models can be used to generate XML Schemas for storing and interchanging the data,
and also to generate IDL data (or value) types and structures for the purpose of using
the modeled data as parameters in the runtime interfaces. We use the word
“management” in the sense of an active runtime entity that is dealing with (managing)
the data. In general, data models are “leaves” in that they do not have intrinsic
dependencies on the management/runtime models, whereas it is common for the
runtime models to refer to the data models to describe parameter types in the
interfaces.

In the PSMs, the IDL data structures and/or XML Schemas can be generated from the
data models based on rules.

2.1.2 Dimension #2: Component Software vs. Target vs. Execution

In creating this PIM for the D&C of components, it is useful to segment the model
elements according to the deployment process defined above. This should allow the
different segments to be isolated according to usage (“need to know”) by actors, and
then introduce (minimal) linkages or relationships between the elements as required in
the different segments. This segmentation is roughly based on the process of
deployment. It partitions the model with reduced/minimized interdependencies.

Component Software — output of the development, packaging, publishing
processes

Component software models are about packaged component software, created by the
component software development process, mostly independent of the specific target
system(s) on which it will be deployed, although some requirements of the target are
obviously included (compiled binary types, OS, etc.). Component software (all the
packaged metadata and compiled code artifacts) is installed in a repository, configured
and used for deployment planning. It exists independent of any specific target system
since the planning process (and the results of the planning process) is the bridge
between this information and the ultimate execution on the target.

Target Environment — where the software will run

Target models are about the computing resource environment in which a component-
based application will be executed. There is static basic configuration information as
well as dynamic resource (and availability) information. This is the basic “platform” on
which component based applications are run, including the:

• nodes where software artifacts are loaded and used to instantiate components, and

• interconnects among nodes, to which inter-component software connections are
mapped, to allow the instantiated components to intercommunicate, and

• bridges among interconnects. While interconnects provide a direct connection
between nodes, bridges provide a routing capability between interconnects.
2-2 Deployment & Configuration Draft Adopted Specification June 2003

2

Interconnects are like networks or busses that multiple nodes could be attached to, and
similarly, a node might be attached to multiple interconnects (like a multi-homing
network host). Nodes, interconnects and bridges are collected into a domain,
representing a particular target environment.

Execution — how the software is prepared to run, and executed based on its
configuration

Execution models result from using component software models and target models to
then express how component based applications will be run on a target. After creating
and acquiring software, and after defining and using target information, there is
planning and execution. Execution data models capture the results of planning — how
the software will execute in the target environment (which implementations, running
where). Execution management models use this planning information to actually
prepare and launch applications. This execution happens at two levels: the whole
application executing in the target environment, and the parts of the application that
run on each node.
June 2003 D+C Draft Adopted Spec: Segmentation of the Model 2-3

2

2.1.3 Summary of Model Segmentation Dimensions

Below is a table that summarizes the Data vs. Management/Runtime dimension as well
as the Component Software vs. Target vs. Execution dimension. Thus the result of this
segmentation can be thought of as 6 different “pages” of the model. The table below
(which is not normative) summarizes the segments that are described in the next
sections. PIM and PSM distinctions are weak in this summary.

Table 2-1 D&C Model Segmentation Summary

Data Model
In PSMs, can
generate XML
Schemas and IDL
data definitions

Management/Runtime Model
Can imply interface IDL that may use data IDL
derived from Data model. “Manager” applied to
class names for consistency.

Deployment Process Usage
How/when are the models used in the
deployment process. “Tool” is used here for
the client that performs and controls the
process.

Component
Software

Component Data
Model of
deployable
component
software, including
descriptors for
packages,
interfaces,
configurations,
assemblies and
implementations.
The top-level
element is the
Package-
Configuration.

Component Management Model:
The RepositoryManager interface, which
manages descriptive information about
Component Software. Key operations include:
• Install Package from URL into Repository,

with name and label
• Configure package, with name and label
• Retrieve package configuration info by name

or top level interface UUID
Repository parses Component Software XML,
and may be trivial in-memory (with data in IDL
form only), file system based, database based.
Repository can store data in persistent-IDL,
XML, or private form. XML parsing can be
early or late.

The software is produced and packaged
according to this data model, and made
available to the deployer. Installation tool
supplies URL/location of the package to the
RepositoryManager, which stores the package,
possibly parsing, validating, authenticating
etc., and creates a default configuration for the
package in the repository.
Configuration tool stores settings referring to
a package, optionally after retrieving package
information for config property validation.
Planning tool retrieves information in IDL
data form for decision making. Repository
provides URL/location of binary artifacts so
that plan need not reference repository.

Target Target Data
Model of the target
domain, including
nodes,
interconnects,
bridges and
resources. The top
level collection of
this information is
the Domain.

Target Management Model:
The TargetManager interface manages Domain
information, either offline (simply parsed from
private XML) or online. It needs to allow for
efficient static vs. dynamic information. Key
methods:
• Get base info (to allow planning tool to do

preprocessing/caching of static data).
• Get current info (to plan based on dynamic

resource information).
• Commit resources (to commit resources that

are used up in the plan).

Target configuration tools can provide user
interfaces to build and emit target data model
XML.
Planning tool obtains target information (in
IDL data form) and creates plans. An online
TargetManager would know and supply
dynamic information collected from nodes. A
TargetManager would initially read provided
target description from XML files, and then
provide the information using the data model.
The TargetManager can be told about changed
or new domain elements at run time.

Execution Execution Data
Model of decisions
configuring and
connecting and
locating component
software on a
target.
This is the
DeploymentPlan.

Target Execution Model:
The ExecutionManager is the runtime entity for
execution of component software on the target
according to the plan. Key methods:
• Prepare for execution, using plan, returning

“factory” reference (Application Manager)
• Launch based on factory, returning

Application reference.
• Lifecycle control, using Application ref
NodeManager performs the subset of execution
on each node.

Preparation tool may parse plan XML (if not
bundled with planning tool), and deliver plan
in IDL-data form to Execution Manager. Thus
an all-in-one tool would only have the plan in
memory.
Launch tools simply use the factory reference
(Application Manager) to launch application,
possibly managing the lifecycle.
2-4 Deployment & Configuration Draft Adopted Specification June 2003

2

The table above introduces the main elements of the platform independent model for
deployment and configuration. The first column lists the three top-level data elements
<ClassName>PackageConfiguration, <ClassName>Domain and
<ClassName>DeploymentPlan. The second column lists the three top-level
management interfaces, <ClassName>RepositoryManager,
<ClassName>TargetManager and
<ClassName>ExecutionManager/<ClassName>NodeManager. Each of these classes is
elaborated in the upcoming sections. The third column lists use cases that are
supported by this model: Installation, Configuration, Planning, Preparation and
Launch. Use cases imply actors that enact them: an Administrator enacts Installation
and Configuration, a Planner does the Planning, and an Executor enacts Preparation
and Launch.

While the component, target and execution models are self-contained and passive,
actors are the glue between them. Actors actively interface with the various
management models and exchange information using the various data models. All
behavior of deployment and configuration is defined by actors, as elaborated in the
next chapter.

2.2 Model Diagram Conventions

This specification uses UML diagrams to show classes and their relationships. All
classes are part of the Deployment and Configuration package, which contains the
Components, Target, Execution, Common and Exceptions subpackages.

The Deployment and Configuration package is restricted to the MOF 1.4 subset of
UML. Some non-normative diagrams from other packages are shown for explanatory
purposes.

If, in a UML diagram, a class's attribute and operation compartments are suppressed,
then this class is elaborated elsewhere. In this case, the diagram might also not show
all of the class' associations. However, if a class is shown to have only an attribute or
an operation compartment, then this signifies that the not-shown compartment is
empty. I.e. if a class is shown with an attribute but no operation compartment, then the
class does not have any operations.

Role names on associations are made explicit wherever they are expected to appear in
generated code, e.g. as an interface's attribute name. In some places, role names were
added to derived associations for illustrative purposes.

Role names at the navigable end of a derived association are suppressed. Therefore, if
the role name at the navigable end of an association is suppressed, the association is
derived.

D e p lo ym e n t a n d
C o n fig u ra tio n
June 2003 D+C Draft Adopted Spec: Model Diagram Conventions 2-5

2

If a role names is suppressed at an end of an association, the name of the type at the
association end, starting with a lowercase character, is used as a role name.

If an association name is suppressed, the name of the class at the source plus the name
of the navigable end is used as the name of the association.

Unless otherwise mentioned, the multiplicity on the near end of navigable associations
is zero to many, and the multiplicity on the near end of compositions is one to one.

This specification is aligned with MOF 1.4, which allows operation parameters to
express multiplicities. However, parameter multiplicities cannot be modelled with the
current version of Rational Rose. As a workaround, the Sequence metatype is
introduced as above. An instance of the Sequence metatype, using the notation
Sequence(containedType), defines a concrete data type with no attributes but a
composite navigable association to an unbounded number of elements of the contained
type with the role name “element.” For simplicity, the Sequence metaclass does not
provide user-defined bounds.

Note – Instances of the Sequence metaclass are used to denote sequences of elements
of the same type that are to be passed to an operation as a single parameter, or returned
from an operation as a single return value, or to model multiplicities in attributes. The
“element” role name is introduced to make the elements accessible to OCL
expressions. The UML 2 Partners submission to the UML 2 RFP adds a notation to
express multiplicities of parameters and return values (by putting the multiplicity in
brackets). If this feature is added to UML 2.0, then this specification will be updated to
the UML 2 notation, removing the Sequence kludge above.

Standard attributes are used as needed on classes for readability and identity purposes.
The standard attribute names are

• label: A human-readable label that is not evaluated by the deployment system. It
can be used to annotate classes with a user-defined string. Content is optional.

• UUID: A machine-readable identifier that uniquely identifies a “work product.” If
UUIDs compare equal, then the elements in question are considered identical. For
example, if two implementation artifacts have identical UUIDs, then the deployment

DataType
(from Core)

S equence

Class ifier
(from Core)

1

+co ntainedTy pe

1

2-6 Deployment & Configuration Draft Adopted Specification June 2003

2

system can assume that it needs to be loaded onto a node only once. UUID content
is optional: a blank UUID (the empty string) is considered non-equal to any other
UUID. Thus users are not required to generate proper UUIDs for internal purposes
(e.g. during testing). If a UUID field is non-blank, then it must comply to the URI
syntax, in alignment with MOF 2.0 identifiers.

• name: Names are both human-readable and machine-readable. Names are
mandatory, and they must be unique within their container or context. For example,
in the case of a node, the node’s name must be unique within the domain.

• location: references an entity outside of the model. The location attribute is of type
String, its value must comply to the URI syntax.

• specificType: identifies the most specific type of an interface. Components or ports
with equal specificType are type equivalent. The specificType attribute is of type
String; consequently, string comparison is used to compare them. PSMs define the
format.

• supportedType: identifies all types that an interface can support. The type of this
attribute is a sequence of Strings. A component or port can satisfy a requirement on
any of the types listed among the supported types. The supportedType attribute
includes the most specific type (from the specificType attribute) and all directly or
indirectly inherited types in no particular order.

To enhance readability, in the PIM below we annotate classes with stereotypes that
define two orthogonal dimensions to the class structure and relationships in the model.
The first follows the Data Model vs. Management/Runtime Model dimension in the
segmentation discussion above. We will use the «Description» and «Manager»
stereotypes to make this distinction.

In general, «Description» classes generate data structures and schema, and «Manager»
classes generate runtime interfaces.

The second annotation dimension is to identify, for «Description» classes, the actor in
the development process for which this class a work product. These stereotypes are
essentially an annotation that highlights authorship (and inherits from «Description»,
without introducing extra relationship detail in the diagrams).

Although these development actors are defined in detail later, we will briefly introduce
them here:

• The «Specifier» specifies the interface and functional contract for components’
implementations.

• The «Implementer» creates concrete (monolithic, coded) implementations of
components including their metadata.

• The «Packager» creates packages (bundles) of component implementations.

• The «Planner» makes decisions about deployment based on target capabilities and
component requirements.

• The «DomainAdministrator» prepares information about the target environment.

The «Implementer» is in fact inherited by two derived stereotypes:
June 2003 D+C Draft Adopted Spec: Model Diagram Conventions 2-7

2

• The «Developer» creates monolithic (e.g., source coded/compiled) implementations.

• The «Assembler» creates assembly-based implementations of components.

Classes that are the work product of more than one actor are annotated with the generic
«Description» stereotype. The creating actor can be inferred from context.

The «Exception» stereotype is used for exceptions that are raised by operations of
management classes.

These stereotypes are represented by the “profile” diagram:

2.3 Component Data Model

The following classes are part of the Component Data Model. They are placed in the
Component subpackage of the Deployment and Configuration package.

2.3.1 Component Data Model Overview

A component has an interface composed of operations, attributes and ports that may be
connected to other components. A component may have a concrete (monolithic)
implementation contained in an artifact (e.g., an executable file or library), or it may be
recursively implemented by an assembly: a set of interconnected sub-components.

Class
(f ro m Core)

<<metaclass>>
Manager

<<stereotype>>

Description
<<stereotype>>

Implementer
<<stereotype>>

<<stereotype>>

Specifier
<<stereotype>>

Developer
<<stereotype>>

Packager
<<stereotype>>

Planner
<<stereoty pe>>

DomainAdministrator
<<stereotype>>

Assembler
<<stereotype>>

Exception
<<stereoty pe>><<stereotype>><<stereotype>>
2-8 Deployment & Configuration Draft Adopted Specification June 2003

2

A component package contains multiple implementations of the same component. This
allows distribution of a set of implementations with different properties (e.g., for
different operating systems) or different hierarchies, to be distributed in a single
package. Packages are installed into a repository, where they may be configured (e.g.,
overriding default property values) prior to deployment.

The above is an overview of the Component Data Model and represents the
information about installed and configured packages provided by the
<ClassName>RepositoryManager. Details about each class will be presented in the
following sections.

{sam e interface or
base type}

{xor}

{xor}

PackageConfiguration
<<Description>>

0..1

+specializedConfig

0..1

ComponentA ssem bly Des cription
<<Assembler>>

ComponentP ackageDescription
<<Packager>>

1..*1..*0..1+basePackage 0..1

ComponentInterfaceDescription
<<Specifier>>1

+real izes

1

ComponentImplementationDescription
<<Im plementer>>

0..1
+assemblyImpl

0..1

1..*

+implementation

1..*

1

+implements

1

MonolithicImplementationDescription
<<Developer>>

0..1
+monolithicImpl

0..1

ImplementationArtifactDescription
<<Developer>> *

+dependsOn

*

1..*+primaryArtifact 1..*
June 2003 D+C Draft Adopted Spec: Component Data Model 2-9

2

2.3.2 PackageConfiguration

Description

A <ClassName>PackageConfiguration describes one configuration of a component
package. It either specializes another <ClassName>PackageConfiguration or is directly
based on a ComponentPackageDescription. A <ClassName>PackageConfiguration has a
name, a label and two sets of properties. Configuration properties are used to configure
the application's properties; their names and types must match the component's
external properties. Selection requirements are used to influence deployment decisions
by matching them against implementation capabilities in the
ComponentImplementationDescription.

Attributes

name: String Unique name for this <ClassName>PackageConfiguration.
label: String An optional human-readable label.

Associations

specializedConfig: <ClassName>PackageConfiguration [0..1]
Links to a <ClassName>PackageConfiguration that is specialized
by this <ClassName>PackageConfiguration.

basePackage: ComponentPackageDescription [0..1]
Links to a ComponentPackageDescription that this <Class-
Name>PackageConfiguration is based on.

selectRequirement: <ClassName>Requirement [*]
During planning, selection requirements in a <ClassName>Pack-
ageConfiguration are matched against capabilities in the
ComponentImplementationDescription.

configProperty: <ClassName>Property [*] Properties to configure the application component with.
Overrides default values in the ComponentPackageDescription.

PackageConfiguration
<<Description>>

name : String
label : String

{xor}

ComponentPackageDescription
<<Pac kager>>

Requirement
<<Description>>

0..1

+specializedConfig

0..1

0..1+basePackage 0..1

*

+selectRequirement

*

Property
<<Description>>

*

+configProperty

*

2-10 Deployment & Configuration Draft Adopted Specification June 2003

2

Constraints

A <ClassName>PackageConfiguration must either specialize another
<ClassName>PackageConfiguration or be based on a ComponentPackageDescription,
but not both.

context PackageConfiguration inv:
self.basePackage->size() = 1 xor
self.specializedConfig->size() = 1

The name must be unique in the repository.

context PackageConfiguration inv:
PackageConfiguration.allInstances->forAll (p1, p2 |

p1.name = p2.name implies p1 = p2)

Semantics

A <ClassName>PackageConfiguration that specializes another
<ClassName>PackageConfiguration extends and overrides the base configuration’s
selection requirements and configuration properties. The complete set of selection
requirements and configuration properties is the sum of all selection requirements and
configuration properties, respectively, in the chain of
<ClassName>PackageConfiguration instances, with duplicates removed.

2.3.3 ComponentPackageDescription

Description

A ComponentPackageDescription describes multiple alternative implementations of the
same component interface. It references the interface description for the component
and contains a number of configuration properties to configure the running components
(which may override implementation-defined properties and which may be overridden
by a <ClassName>PackageConfiguration). These configuration properties enable the
packager to define default values for a component's properties regardless of which
implementation for that component is chosen at deployment (planning) time.

ComponentImplementationDescription
<<Implementer>>

ComponentInterfaceDescription
<<Specifier>>

Property
<<Description>>

ComponentPackageDescription
<<Pac kager>>

label : String
UUID : String

1..*

+implementation

1..*

1

+real izes

1

*+configProperty *
June 2003 D+C Draft Adopted Spec: Component Data Model 2-11

2

Attributes

label: String An optional human-readable label for the package.
UUID: String An optional unique identifier for this package.

Associations

realizes: <ClassName>ComponentInterfaceDescription [1]
A ComponentPackageDescription describes implementations that re-
alize a certain component interface.

implementation: ComponentImplementationDescription [1..*]
A ComponentPackageDescription describes multiple implementa-
tions.

configProperty: <ClassName>Property [*] These configuration properties are used to configure the
component once instantiated. This allows the definition of configu-
ration properties in a package regardless of which implementation is
chosen.

Constraints

All implementations referenced by this ComponentPackageDescription must implement
the same interface as realized by the package, or a derived interface.

context ComponentPackageDescription inv:
self.implementation->forAll (

implements.supportedType->includes (self.realizes.primaryType))

If the UUID attribute is not the empty string, then it must contain a unique identifier for
the package; packages with the same non-empty UUID must be identical.

context ComponentPackageDescription inv:
self.UUID <> “” implies

ComponentPackageDescription.allInstances->forAll (p |
p.UUID = self.UUID implies p = self)

Semantics

Configuration properties can be overridden in a <ClassName>PackageConfiguration.
All implementations in the package are considered equally suitable for deployment,
pending compatibility between implementation artifact requirements and node
resources, and selection properties required by a <ClassName>PackageConfiguration.
2-12 Deployment & Configuration Draft Adopted Specification June 2003

2

2.3.4 ComponentImplementationDescription

Description

A ComponentImplementationDescription describes a specific implementation of a
component interface. This implementation can be either assembly based or monolithic.
The ComponentImplementationDescription may contain configuration properties that are
used to configure each component instance (“default values”). Implementations may be
tagged with user-defined capabilities. Administrators can then select among
implementations using selection requirements in a
<ClassName>PackageConfiguration; Assemblers can place requirements on
implementations in a SubcomponentInstantiationDescription.

Attributes

label: String An optional human-readable label for the implementation.
UUID: String An optional unique identifier for this implementation.

Associations

implements: <ClassName>ComponentInterfaceDescription [1]
The component interface implemented by this implementation.

assemblyImpl: ComponentAssemblyDescription [0..1]
In case of an assembly based implementation, this describes the as-
sembly.

monolithicImpl: <ClassName>MonolithicImplementationDescription [0..1]
In case of a monolithic implementation, this describes the monolith-
ic implementation.

configProperty: <ClassName>Property [*] These are implementation specific configuration proper-
ties that are used to configure the component once instantiated.

capability: <ClassName>Capability [*] These are tags that a <ClassName>PackageConfiguration
can match against to discriminate between implementations.

dependsOn: ComponentPackageReference [*]
Expresses a dependency on other packages; Implementations of ref-
erenced packages must be deployed in the target environment before
this package can be deployed.

{xor}

ComponentAssemblyDescription
<<Assembler>>

MonolithicImplementationDescription
<<Developer>>

ComponentInterfaceDescript ion
<<Specifier>>

Capabili ty
<<Description>>

Property
<<Des cription>>ComponentImplementationDescription

<<Implementer>>

label : String
UUID : String

0..1

+assembly Im pl

0..1
0..1

+monolithicImpl
0..1

1

+implements

1

*

+capability

*

*

+configProperty

*

ComponentPackageReference
<<Description>>

*

+dependsOn

*

June 2003 D+C Draft Adopted Spec: Component Data Model 2-13

2

Constraints

An implementation is either assembly based or monolithic, consequently there must be
either a ComponentAssemblyDescription or a
<ClassName>MonolithicImplementationDescription, but not both.

context ComponentImplementationDescription inv:
self.assemblyImpl.size() = 1 xor
self.monolithicImpl.size() = 1

If the UUID attribute is not the empty string, then it must contain a unique identifier for
the implementation; implementations with the same non-empty UUID must be
identical.

context ComponentImplementationDescription inv:
self.UUID <> “” implies

ComponentImplementationDescription.allInstances->forAll (i |
i.UUID = self.UUID implies i = self)

Semantics

Configuration properties can be overridden in a ComponentPackageDescription or in a
<ClassName>PackageConfiguration.

2.3.5 ComponentAssemblyDescription

Description

In the case of an assembly based implementation, the ComponentAssemblyDescription
contains information about sub-component instances
(SubcomponentInstantiationDescription), connections among ports
(<ClassName>AssemblyConnectionDescription), and about the mapping of the
assembly's properties (i.e. of the component that the assembly is implementing) to
properties of its subcomponents.

AssemblyConnectionDescription
<<Assembler>>

ComponentAssemblyDescription
<<Assembler>>

*+connect ion *

SubcomponentInstantiat ionDescription
<<Ass embler>>

1..*
+instance

1..*

1..*1..*

As semblyP ropert yMapping
<<Assembler>>

*+externalProperty *

1..*1..*
2-14 Deployment & Configuration Draft Adopted Specification June 2003

2

Attributes

No attributes.

Associations

instance: SubcomponentInstantiationDescription [1..*]
Describes instances of subcomponents.

connection: <ClassName>AssemblyConnectionDescription [*]
Describes connections between ports.

externalProperty: <ClassName>AssemblyPropertyMapping [*]
Maps the external properties of the component that is implemented
by the assembly to properties of subcomponent instances.

Constraints

No constraints.

Semantics

An assembly is composed of components and itself implements a component, as
implied by the ComponentImplementationDescription that this
ComponentAssemblyDescription is contained in. The component being implemented by
the assembly is referred to as the “external component” of the assembly. Connections
exist among the subcomponents’ ports and the external component’s ports, similar to a
wiring diagram in circuit design, where a circuit is designed by wiring chips among
themselves and wiring them to external pins.

2.3.6 SubcomponentInstantiationDescription

Description

In an assembly based implementation, the SubcomponentInstantiationDescription
describes one instance of a sub-component.

The SubcomponentInstantiationDescription links to a package that provides
implementations for the sub-component that is to be instantiated. There is either a link
to a ComponentPackageDescription in case a package recursively contains packages for

ComponentPackageReference
<<Description>>

requiredType : String

{xor}

ComponentP ackageDescription
<<Packager>>

Requirement
<<Description>>

Property
<<Description>>SubcomponentInstantiationDescription

<<Assembler>>

label : String

0..1
+package

0..10..1
+reference

0..1

*
+selectRequirement

*

*

+configProperty

*

June 2003 D+C Draft Adopted Spec: Component Data Model 2-15

2

its sub-components, or there is a link to a ComponentPackageReference that contains
the requiredType of a component interface. Users of the Component Data Model will
have to contact a repository (possibly via a search path) in order to find a package that
implements this interface.

Attributes

label: String An optional human-readable label for the subcomponent.

Associations

package: ComponentPackageDescription [0..1]
Describes a package that provides an implementation for this sub-
component instance.

reference: ComponentPackageReference [0..1]
References an outside package that provides an implementation for
this subcomponent instance.

configProperty: <ClassName>Property [*] Configuration properties that are used to configure the
subcomponent instance when the assembly is instantiated.

Constraints

There can be either a package or a reference, but not both.

context SubcomponentInstantiationDescription inv:
self.reference->size() = 1 xor
self.package->size() = 1

Semantics

The planner will consider the implementations in the package that is either contained
or referenced and select the implementation that is used to instantiate the
subcomponent based on compatibility and preferences. Configuration properties for
subcomponents are final, they can only be overridden if mapped to an external port of
the component that this assembly is implementing. A
SubcomponentInstantiationDescription does not have any deployment requirements of its
own, since a specific implementation for the subcomponent will be selected by the
planner.

2.3.7 ComponentPackageReference

Description

References an outside package that provides an implementation for this subcomponent
instance.

Attributes

requiredType: String Identifies a required component interface by type. The implementa-
tion that is chosen to satisfy the reference must support this type.
2-16 Deployment & Configuration Draft Adopted Specification June 2003

2

Associations

No associations.

Constraints

No constraints.

Semantics

The planner will use the requiredType to search repositories for appropriate package
configurations and then select an implementation from that package to instantiate a
subcomponent from.

2.3.8 AssemblyConnectionDescription

Description

An <ClassName>AssemblyConnectionDescription element describes a connection that
is to be made among ports within an assembly. A connection can be thought of as a
single path in a circuit wiring diagram with multiple endpoints. In this analogy, a
signal that is sent onto the path is received by all receiving endpoints. There are three
different types of endpoints, the most obvious being the
<ClassName>SubcomponentPortEndpoint, which reflects a connection to the port of a
subcomponent within the assembly. The <ClassName>ComponentExternalPortEndpoint
reflects a connection to an external port of the component that is implemented by the
assembly. The <ClassName>ExternalReferenceEndpoint reflects a connection to a
location outside the assembly by URL (e.g., using a corbaname reference).

Some deployment requirements may be associated with the connection information;
these requirements must be satisfied by the interconnect(s) in the target model over
which the connection is routed at deployment time. PSMs and domain specific profiles
will define a vocabulary for deployment requirements.

A label can optionally be associated with the
<ClassName>AssemblyConnectionDescription. Assembly design tools might use this
label to visualize the connection.

AssemblyConnectionDescription
<<Assembler>>

label : String

ComponentExternalPortEndpoint
<<Description>>

ExternalReferenceE ndpoint
<<Des cription>>

Requirement
<<Description>>

*

+externalEndpoint

* *
+externalReference

*

*

+deployRequirement

*

SubcomponentPortEndpoint
<<Description>>

*
+internalEndpoint

*

June 2003 D+C Draft Adopted Spec: Component Data Model 2-17

2

Attributes

label: String An optional human-readable identifier for this connection. May be
used by visual design tools.

Associations

deployRequirement: <ClassName>Requirement [*]
These connection requirements must be satisfied by the intercon-
nects over which the connection is routed.

internalEndpoint: <ClassName>SubcomponentPortEndpoint [*]
Identifies a port of a component within the assembly as an endpoint
of this connection.

externalEndpoint: <ClassName>ComponentExternalPortEndpoint [*]
Identifies a port of the component that is implemented by the assem-
bly as an endpoint of this connection.

externalReference: <ClassName>ExternalReferenceEndpoint [*]
Identifies a location outside the assembly as an endpoint of this con-
nection.

Constraints

The number of endpoints to a connection must be at least two.

context AssemblyConnectionDescription inv:
Set{self.externalEndpoint,
 self.internalEndpoint,
 self.externalReference}->size() >= 2

Semantics

At assembly design time, the compatibility of the endpoints can be verified based on
the information known about the endpoints, e.g., appropriate user, provider, multiplex
semantics. At planning time, compatibility of the connection’s requirements with the
resources of the interconnects that the connection is routed over will be verified. At
execution time, connections between the endpoints will be established.

2.3.9 ComponentExternalPortEndpoint

Description

Identifies a port of the external component as an endpoint of the connection described
by the <ClassName>AssemblyConnectionDescription that this element is contained in.

Com ponentExternalPortEndpoint
<<Description>>

portNam e : String
2-18 Deployment & Configuration Draft Adopted Specification June 2003

2

Attributes

portName: String The name of the port of the external component.

Associations

No associations.

Constraints

The port name must be valid for the external component.

context ComponentExternalPortEndpoint inv:
let if = self.assemblyConnectionDescription.

componentAssemblyDescription.
componentImplementationDescription.
implements

if.port->exists (p | p.name = self.portName)

Semantics

See above.

2.3.10 SubcomponentPortEndpoint

Description

Identifies a port of a component within the assembly as an endpoint of the connection
described by the <ClassName>AssemblyConnectionDescription that this element is
contained in.

Attributes

portName: String The name of the port of the associated subcomponent instance that
is to be an endpoint of this connection.

Associations

instance: SubcomponentInstantiationDescription [1]
The associated subcomponent instance.

SubcomponentPortEndpoint
<<As sembler> >

portName : String

Subcomponent Instantiat ionDescription
<<As sembler> >

1+instance 1
June 2003 D+C Draft Adopted Spec: Component Data Model 2-19

2

Constraints

The port name must be valid for the referenced component.

context SubcomponentPortEndpoint inv:
self.instance.package->size() = 1 implies
 self.instance.package.interface.port.exists (name = self.portName)

If the SubcomponentInstantiationDescription references a package instead of containing it
(i.e., if it contains a ComponentPackageReference), then the constraint cannot be
expressed within the repository but must be checked by the Planner.

Semantics

See above.

2.3.11 ExternalReferenceEndpoint

Description

Identifies a location outside the assembly as an endpoint of the connection described
by an <ClassName>AssemblyConnectionDescription.

Attributes

location: String References a port outside of the assembly that is to be an endpoint
of this connection, which is resolved at execution time.

Associations

No associations.

Constraints

No constraints.

Semantics

The location is to be an endpoint to this connection in the assembly. Whether the
endpoint is a provider or user port is implied by the URL, and its type is assumed to be
compatible with the connection.

ExternalReferenceEndpoint
<<Description>>

location : String
2-20 Deployment & Configuration Draft Adopted Specification June 2003

2

2.3.12 AssemblyPropertyMapping

Description

<ClassName>AssemblyPropertyMapping is part of the ComponentAssemblyDescription.
It identifies a property of the external component and the subcomponents' properties
that it delegates to.

Attributes

label: String An optional human-readlable label for this mapping.
externalName: String The name of a property of the external component.

Associations

delegatesTo: <ClassName>SubcomponentPropertyReference [1..*]
References ports of subcomponents within the assembly that the
property is delegated (or propagated) to.

Constraints

The externalName must match the name of a property of the external component.

Semantics

If the component’s property is configured, the configuration value will be delegated
(propagated) to the specified subcomponent ports in the assembly.

2.3.13 SubcomponentPropertyReference

Description

Identifies a property of a component within the assembly or deployment plan that an
property of the external component delegates to.

AssemblyPropertyMapping
<<Assembler>>

label : String
externalName : String

SubcomponentInstantiationDescription
<<Assembler>>

SubcomponentPropertyReference
<<Description>>

propertyName : String

1..*+delegatesTo 1..*

11+instance
June 2003 D+C Draft Adopted Spec: Component Data Model 2-21

2

Attributes

propertyName: String The name of the property of that subcomponent instance that the ex-
ternal property is delegated to.

Associations

instance: SubcomponentInstantiationDescription [1]
The associated subcomponent instance.

Constraints

The propertyName must match the name of a property of the referenced
subcomponent.

Semantics

No semantics.

2.3.14 MonolithicImplementationDescription

Description

In the case of a monolithic implementation, the
<ClassName>MonolithicImplementationDescription describes the artifacts that are
involved in this implementation. It references primary implementation artifacts (that
may then depend on other supporting implementation artifacts). There may be some
requirements associated with the monolithic implementation that are matched against
node resources during deployment. The author of the implementation may associate
some execution parameter properties with the implementation as hints to the target
environment about the instantiation of the component (e.g., search path settings,
environment variables). Some execution parameters may also relate to primary artifacts
(e.g., entry points).

ImplementationArtifactDescription
<<Developer>>

Requirement
<<Description>>

MonolithicImplementationDescription
<<Developer>>

1.. *+primaryArtifact 1.. *

*
+deployRequirement

*

Property
<<Description>>

*
+execParameter

*

2-22 Deployment & Configuration Draft Adopted Specification June 2003

2

Attributes

No attributes.

Associations

execParameter: <ClassName>Property [*] Execution parameters that are passed to the target envi-
ronment.

deployRequirement: <ClassName>Requirement [*]
Requirements that are matched against node resources during plan-
ning.

primaryArtifact: <ClassName>ImplementationArtifactDescription [1..*]
The primary implementation artifacts.

Constraints

No constraints.

Semantics

Execution parameters are evaluated by the target environment and may include hints
about how to instantiate a component from the implementation artifacts.

2.3.15 ImplementationArtifactDescription

Description

The <ClassName>ImplementationArtifactDescription describes an implementation
artifact that is associated with a monolithic component implementation. It contains an
reference to the location of the implementation artifact and may refer to other
<ClassName>ImplementationArtifactDescription elements that this implementation
artifact depends on (e.g., shared libraries or support files). The
<ClassName>ImplementationArtifactDescription may contain deployment
requirements that must be matched by a node's resources during deployment. The
<ClassName>ImplementationArtifactDescription also contains execution parameters
that are relevant to the target node's infrastructure (e.g., command line parameters).

Im plementationArt ifact
<<Developer>>

Requirement
<<Description>>

Property
<<Description>>

ImplementationArtifactDescription
<<Developer>>

label : String
UUID : String
locat ion : S tring

*

+dependsOn

*

*

+deploy Requirement

*

<<describes>>

*
+execParameter

*

June 2003 D+C Draft Adopted Spec: Component Data Model 2-23

2

Attributes

label: String An optional human-readable label.
UUID: String An optional unique identifier for this artifact.
location: String The location of the implementation artifact.

Associations

dependsOn: <ClassName>ImplementationArtifactDescription [*]
References other <ClassName>ImplementationArtifactDescrip-
tion elements for implementation artifacts that this implementation
artifact depends on.

execParameter: <ClassName>Property [*] Execution parameters with hints to the target environ-
ment about the execution of this implementation artifact.

deployRequirement: <ClassName>Requirement [*]
Requirements that are matched against node resources.

Constraints

If the UUID field is non-empty, then it must contain a unique identifier for the artifact;
artifacts with the same non-empty UUID must be identical.

context ImplementationArtifactDescription inv:
self.UUID <> “” implies

ImplementationArtifactDescription.allInstances->forAll (i |
i.UUID = self.UUID implies i = self)

Semantics

All dependent implementation artifacts have to be installed on (or available to) a node
before a component can be instantiated from them.

2.3.16 ImplementationArtifact

Description

An <ClassName>ImplementationArtifact is a (potentially complete) piece of a
concrete component implementation. An <ClassName>ImplementationArtifact is
opaque to the deployment process and can only be evaluated in the context of a target

ImplementationArtifact
<<Developer>>

ImplementationArt ifactDescription
<<Developer>> *

+dependsOn

*

*
+dependsOn

*

<<describes>>
2-24 Deployment & Configuration Draft Adopted Specification June 2003

2

environment (e.g., for execution). The
<ClassName>ImplementationArtifactDescription captures the properties of an
<ClassName>ImplementationArtifact that are relevant to the deployment process.

Attributes

No attributes.

Associations

No associations.

Constraints

No constraints.

Semantics

The dependency relationship between <ClassName>ImplementationArtifactDescription
elements reflects the dependency between implementation artifacts (e.g., executables
depending on shared libraries) in the data model.

2.3.17 ComponentInterfaceDescription

Description

<ClassName>ComponentInterfaceDescription describes a component’s interface. This
information can be used by e.g. an assembly tool to verify interface compatibility. The
component interface is identified by a unique identifier. A component has properties
and ports.

Attributes

label: String An optional human-readable label for this interface.
UUID: String An optional unique identifier for this interface.
specificType: String The most specific type supported by this component interface.
supportedType: Sequence(String)

Component interface types supported by this interface (e.g., by in-
heritance).

ComponentPortDescrip tion
<<Specifier>>

Property
<<Description>>

ComponentPropertyDescription
<<Specifier>>

ComponentInterfaceDescription
<<Specifier>>

label : String
UUID : String
specificType : String
supportedType : Sequence(String)

*
+port

*

*

+configProperty

*

* +property*
June 2003 D+C Draft Adopted Spec: Component Data Model 2-25

2

Associations

port: <ClassName>ComponentPortDescription [*]
Describes the ports of this component interface.

property: <ClassName>ComponentPropertyDescription [*]
Identifies the configurable properties of a component interface.

configProperty: <ClassName>Property [*]Optional default values for properties.

Constraints

The supported types must include the specific type.

context ComponentInterfaceDescription inv:
self.supportedType->includes (self.specificType)

If the UUID field is non-empty, then it must contain a unique identifier for the
interface; interfaces with the same non-empty UUID must be identical.

context ComponentInterfaceDescription inv:
self.UUID <> “” implies

ComponentInterfaceDescription.allInstances->forAll (i |
i.UUID = self.UUID implies i = self)

Semantics

Default configuration values can be overridden by assemblies, implementations,
packages or package configurations.

2.3.18 ComponentPortDescription

Description

<ClassName>ComponentPortDescription describes a port within a component
interface. Tools can use this information to e.g., verify port compatibility in
connections.

Attributes

name: String The name of the port.
specificType: String The most specific type supported by the port.
supportedType: sequence(String)

All types supported by this port, including the specific and inherited

ComponentPortDescription
<<Specifier>>

name : String
specificType : String
supportedType : Sequence(String)
provider : Boolean
exclusiveProvider : Boolean
exclusiveUser : Boolean
optional : Boolean
2-26 Deployment & Configuration Draft Adopted Specification June 2003

2

types. All of the types listed in this attribute are acceptable for a con-
nection.

provider: Boolean Identifies whether the port acts in the role of provider or user, for any
connection attached to it.

exclusiveProvider: Boolean If set to true, then this port expects that there is at most one provider
on the connection that it is an endpoint to.

exclusiveUser: Boolean If set to true, then this port expects that there is at most one user on
the connection that it is an endpoint to.

optional: Boolean Identifies whether connecting this port is optional or mandatory.

Associations

No associations.

Constraints

The supported types must include the specific type.

context ComponentPortDescription inv:
self.supportedType->includes (self.specificType)

Semantics

Ports that are endpoints of a connection must support the same type (protocol).
Endpoints to a connection can act in the role of either provide or user. For user or
provider ports, if exclusiveProvider is true, then the connection may not have more
than one provider port as an endpoint; if exclusiveUser is true, then at most one user
port may be an endpoint. For both provider and user ports, if optional is true, then it is
not mandatory to use this port as an endpoint to any connection. Thus any
implementations would have to function when there was no connection.

2.3.19 ComponentPropertyDescription

Description

<ClassName>ComponentPropertyDescription describes a component property.

Attributes

name: String The name of the property.

ComponentPropertyDescription
<<Specifier>>

name : String

DataType

1+type 1
June 2003 D+C Draft Adopted Spec: Component Data Model 2-27

2

Associations

type: <ClassName>DataType [1] The data type of this property.

Constraints

No constraints.

Semantics

If this property is configured, the value must conform to the type.

2.3.20 Capability

Description

<ClassName>Capability is used within the ComponentImplementationDescription to
describe an implementation’s capabilities, which are matched against selection
requirements in SubcomponentInstantiationDescription or
<ClassName>PackageConfiguration. It extends the <ClassName>RequirementSatisfier
class, but does not add any attributes or associations.

Attributes

No additional attributes.

Associations

No additional associations.

SatisfierProperty
<<Descrip ti on>>

RequirementSatisfier
<<Descrip ti on>>

name : String
resourceType : Sequence (String)

*+property *

Capability
<<Descrip ti on>>
2-28 Deployment & Configuration Draft Adopted Specification June 2003

2

Constraints

Capabilities are not consumable. <ClassName>SatisfierProperty elements that are part
of <ClassName>Capability cannot use the “Quantity” or
“Capacity”<ClassName>SatisfierPropertyKind kinds.

context Capacity inv:
self.property->forAll (

kind <> SatisfierPropertyKind::Quantity and
kind <> SatisfierPropertyKind::Capacity)

Semantics

Same as for <ClassName>RequirementSatisfier.

2.4 Component Management Model

The <ClassName>RepositoryManager class is placed in the Component subpackage of
the Deployment and Configuration package.

2.4.1 RepositoryManager

Description

A <ClassName>RepositoryManager manages component data. It maintains a collection
of <ClassName>PackageConfiguration elements. Package installation results in a new
ComponentPackageDescription represented by a <ClassName>PackageConfiguration
with an empty set of properties. <ClassName>PackageConfigurations are identified by
labels that are unique within the repository. The <ClassName>RepositoryManager can
provide a list of all package configuration labels that support a given component
interface's UID, and a list of all UIDs. <ClassName>PackageConfiguration elements
can be created based on (specializing) existing package configurations or by installing
a new package. After creation, package configurations can be updated.

PackageConfiguration
<<Description>>

RepositoryManager
<<Manager>>

installPackage()
findConfigurationByName()
getAllNames()
findNamesByType()
getAllTypes()
createConfiguration()
updateConfiguration()
deleteConfiguration()

*+package *
June 2003 D+C Draft Adopted Spec: Component Management Model 2-29

2

Operations

installPackage (name: String, label: String, location: String)
Installs a package in the repository, assigning the given name and la-
bel to the new <ClassName>PackageConfiguration. Raises the
<ClassName>NameExists exception if a configuration by this name
already exists. Raises the <ClassName>PackageError exception if
an internal error is detected in the package.

findConfigurationByName (name: String): <ClassName>PackageConfiguration
Locates a <ClassName>PackageConfiguration by name. Raises the
<ClassName>NoSuchName exception if the name does not exist.

getAllNames (): Sequence(String)

Returns a list of all package configuration names.
findNamesByType (type: String): Sequence(String)

Finds all configurations of packages that support the given interface
type. Returns a sequence of names.

getAllTypes (): Sequence(String)

Returns a sequence of all interface types for which packages are
available.

createConfiguration (nname: String, bname: String, cp: Sequence(<ClassName>Property),

sr: Sequence(<ClassName>Requirement))
Creates a new <ClassName>PackageConfiguration based on an ex-
isting configuration, extending and overriding the base’s selection
requirements and configuration properties. Raises the <Clas-
sName>NoSuchName exception if the base name does not exist.
Raises the <ClassName>NameExists exception if the new name al-
ready exists.

updateConfiguration (name: String, cp: Sequence(<ClassName>Property),
sr: Sequence(<ClassName>Requirement))
Updates an existing <ClassName>PackageConfiguration, extend-
ing and replacing its selection requirements and configuration prop-
erties. Raises the <ClassName>NoSuchName exception if the name
does not exist.

deleteConfiguration (name: String, deletePackage: Boolean)
Deletes the <ClassName>PackageConfiguration that is referenced
by name and all other <ClassName>PackageConfiguration ele-
ments that are based on it. If this is the last <ClassName>Package-
Configuration for a component package, and if the deletePackage
parameter is set to true, then the package is also removed from the
repsoitory. Raises the <ClassName>LastConfiguration exception if
this is the last <ClassName>PackageConfiguration for a component
package and the deletePackage parameter is false. Raises the <Clas-
sName>NoSuchName exception if the name does not exist.

Associations

package: <ClassName>PackageConfiguration [*]
A <ClassName>RepositoryManager manages a number of package
configurations.
2-30 Deployment & Configuration Draft Adopted Specification June 2003

2

Constraints

No constraints.

Semantics

No additional semantics.

2.5 Target Data Model

The following classes are part of the Target Data Model. They are placed in the Target
subpackage of the Deployment and Configuration package.

Bridge . Page 35
Domain . Page 32
Interconnect . Page 34
Node . Page 33
Resource . Page 36
SharedResource . Page 37

The Target Model describes and manages information about the domain into which
applications can be deployed. A domain is a set of interconnected nodes with bridges
routing between interconnects. Shared resources are logically contained in the domain
itself.

The top-level entity of target information is the <ClassName>Domain. A
<ClassName>Domain is composed of <ClassName>Node, <ClassName>Interconnect,
<ClassName>Bridge and <ClassName>SharedResource elements. Nodes have
computational capabilities and are targets for the execution of component instances.
Nodes may have resources and be associated with shared resources. While resources

SharedResource
<<DomainAdministrator>>

Node
<<DomainAdministrator>>

*

1..*

+sharedResource*

+node
1..*

Interconnect
<<DomainAdministrator>>

1..*

*+connect

1..* +connection

*

Domain
<<DomainAdministrator>>

UUID : String
label : String

*

+sharedResource

*

* +interconnect*
1..*
+node
1..*

Resource
<<DomainAdministrator>>

*

+resource

**

+resource

*

Bridge
<<DomainAdministrator>>*

1..* +connection

*+connect

1..*

*
+bridge

*

*

+resource

*

June 2003 D+C Draft Adopted Spec: Target Data Model 2-31

2

belong to the node, a shared resource may be shared between nodes. Artifact
requirements must be satisfied by the resources and shared resources of the node that it
is to be installed on.

Interconnects provide direct connections among nodes. They have resources but no
shared resources. Interconnects are targets for the deployment of connections between
components. Connection requirements must be satisfied by the interconnect's
resources. Bridges route between interconnects and therefore provide indirect
connections between nodes. Connections use some combination of the resources of
interconnects and bridges to accomplish the communication between connected ports
of instances.

The above is an overview of the Target Data Model. Details about each class in the
Target Data Model will be presented in the following sections.

2.5.1 Domain

Description

The <ClassName>Domain is the container that wraps information about its
<ClassName>Node, <ClassName>Interconnect, <ClassName>Bridge, and
<ClassName>SharedResource elements. It represents the entire target environment.

Attributes

label: String An optional human-readable label for the domain.
UUID: String An optional unique identifier for this domain.

Associations

node: <ClassName>Node [1..*] <ClassName>Node elements that belong to the domain.
interconnect: <ClassName>Interconnect [*]<ClassName>Interconnect elements that provide direct

connections between nodes.
bridge: <ClassName>Bridge [*] <ClassName>Bridge elements route between interconnects and

therefore provide indirect connections between nodes.
sharedResource: <ClassName>SharedResource [*]

Shared resources that belong to the domain.

Constraints

The top-level elements in a domain all have name attributes. These names must be
unique within the domain.

context Domain inv:
let elements = Set {self.node, self.interconnect,
 self.bridge, self.sharedResource}
elements->forAll (e1, e2 | e1.name = e2.name implies e1 = e2)
2-32 Deployment & Configuration Draft Adopted Specification June 2003

2

Semantics

No additional semantics.

2.5.2 Node

Description

Nodes are connected to zero or more interconnects that enable components that are
instantiated on this node to communicate with components on other nodes. Nodes may
own resources and may have access to shared resources that are shared between nodes.

Attributes

name: String The node’s name.
label: String An optional human readable label for the node.

Associations

connection: <ClassName>Interconnect [*] A node may be connected to interconnects.
resource: <ClassName>Resource [*] A node may have resources.
sharedResource: <ClassName>SharedResource [*]

A node may have access to shared resources.

Constraints

The name of the <ClassName>Node must be unique within the <ClassName>Domain
(see above).

Semantics

A node’s resources and shared resources are matched against implementation
requirements.

SharedResource
<<DomainAdministrator>>

Interconnect
<<DomainAdministrator>>Node

<<DomainAdministrator>>

name : String
label : String

*

1..*

+sharedResource*

+node
1..*

1..*

*+connect

1..* +connect ion

*

Resource
<<DomainAdministrator>>

*
+resource

*

June 2003 D+C Draft Adopted Spec: Target Data Model 2-33

2

2.5.3 Interconnect

Description

An <ClassName>Interconnect provides a shared direct connection between one or
more nodes. It has resources, but no shared resources. Resources are matched against a
connection's requirements (from the <ClassName>AssemblyConnectionDescription) at
deployment time.

An <ClassName>Interconnect that is attached to only a single node can be used to
describe the loopback connection. A loopback connection is implicit; components can
always be interconnected locally. Sometimes, it may be useful or necessary to describe
the type(s) of available loopback connections (e.g., “shared memory”), or their
resources or capabilities (e.g., latency).

Attributes

name: String The interconnect’s name.
label: String An optional human-readable label for the interconnect.

Associations

connect: <ClassName>Node [1..*] The nodes that this interconnect provides a connection in be-
tween.

connection: <ClassName>Bridge [*] The bridges that provide connectivity to other interconnects.
resource: <ClassName>Resource [*] Interconnects have resources.

Constraints

The name must be unique within the domain (see above).

Semantics

An interconnect’s resources are matched against connection requirements.

Interconnect
<<DomainAdministrator>>

name : String
label : String

Node
<<DomainAdministrator>>

Resource
<<DomainAdministrator>>

Bridge
<<DomainAdministrator>>

1..*

*+connect

1..* +connection

*

*
+resource

*

*

1..* +connection

*+connect

1..*
2-34 Deployment & Configuration Draft Adopted Specification June 2003

2

2.5.4 Bridge

Description

A <ClassName>Bridge exists between interconnects to describe an indirect
communication path between nodes. If a connection is to be deployed between
components that are instantiated on nodes that are not directly connected, therefore
requiring bridging, the connection's requirements must be satisfied by the resources of
each interconnect and bridge in between.

Attributes

name: String The bridge’s name.
label: String An optional human-readable label for this bridge.

Associations

connect: <ClassName>Interconnect [1..*] The interconnects that this bridge provides connectivity
between.

resource: <ClassName>Resource [*] Bridges have resources.

Constraints

The name must be unique within the domain (see above).

Semantics

A bridge’s resources are matched against connection requirements.

Bridge
<<DomainAdministrator>>

name : String
label : String

Interconnect
<<DomainAdministrator>> *

1..* +connection

*+connect

1..*

Resource
<<DomainAdministrator>>

*

+resource

*

June 2003 D+C Draft Adopted Spec: Target Data Model 2-35

2

2.5.5 Resource

Description

<ClassName>Resource elements express <ClassName>Node,
<ClassName>Interconnect and <ClassName>Bridge features within the target
environment. They are matched against implementation requirements at planning time.
<ClassName>Resource extends the <ClassName>RequirementSatisfier class, but does
not add any attributes or associations.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

The name of a resource must be unique within the container.

Semantics

Same as for <ClassName>RequirementSatisfier.

Res ource
<<DomainAdministrator>>

SatisfierProperty
<<Descrip tion>>

RequirementSatisfier
<<Descrip tion>>

name : String
resourceType : Sequence (String)

*+property *
2-36 Deployment & Configuration Draft Adopted Specification June 2003

2

2.5.6 SharedResource

Description

Shared resources are resources that are shared between nodes. They are semantically
equivalent to “normal” resources; however, the planner must make sure that a shared
resource is not exhausted by using it from multiple nodes in parallel.

Attributes

No additional attributes.

Associations

nodes: <ClassName>Node [1..*] The nodes that have access to this <ClassName>SharedResource.

Constraints

The name of the <ClassName>SharedResource must be unique within the domain (see
above).

Semantics

Same as for <ClassName>Resource and for <ClassName>RequirementSatisfier.

2.6 Target Management Model

The <ClassName>TargetManager and <ClassName>DomainUpdateKind classes are
placed in the Target subpackage of the Deployment and Configuration package.

SharedResource
<<DomainAdministrator>>

Resource
<<DomainAdministrator>>

Node
<<DomainAdministrator>>

*

1..*

+sharedResource*

+node
1..*
June 2003 D+C Draft Adopted Spec: Target Management Model 2-37

2

2.6.1 TargetManager

Description

The <ClassName>TargetManager provides information about the
<ClassName>Domain using the Target Data Model and tracks resource usage within
the domain. Note that this specification limits the features of the
<ClassName>TargetManager to those related to deployment. While domains and nodes
may have properties, exposing an interface to configure them is out of the scope of this
specification.

Operations

getAllResources (): <ClassName>Domain
Returns static information about the domain, with resources at their
full capacity.

getAvailableResources (): <ClassName>Domain
Returns online information about the domain; resources will reflect
their remaining capacity.

commitResources (plan: <ClassName>DeploymentPlan)
Commits resources that are used by the instantiation of an applica-
tion from a deployment plan. Raises the <ClassName>ResourceNo-
tAvailable exception if one of the requirements cannot be satisfied.
Raises the <ClassName>PlanError exception if the plan cannot be
processed due to an inconsistency.

releaseResources (plan: <ClassName>DeploymentPlan)
Releases resources that are used by the instantiation of an applica-
tion from a deployment plan. Raises the <ClassName>PlanError ex-
ception if the plan cannot be processed due to an inconsistency.

updateDomain (elements: Sequence(String), domainSubset: <ClassName>Domain,
updateKind: <ClassName>DomainUpdateKind)
Updates <ClassName>Domain information within the <Clas-
sName>TargetManager. The elements parameter identifies the
names of nodes, interconnects, bridges and shared resources to be
updated. The domainSubset contains information about the ele-

Domain
<<Domain Adm inis trator>>

Targe tM anager
<<Manager>>

getA llResources()
getAvailableResources()
com mitResources()
releaseResources()
updateDom ain()

1

1

+m anagedInformation1

+ informationM anager 1
2-38 Deployment & Configuration Draft Adopted Specification June 2003

2

ments and their associations. The updateKind identifies whether
the elements are to be added, deleted or updated.

Associations

managedInformation: <ClassName>Domain [1]
A <ClassName>TargetManager manages information about a sin-
gle <ClassName>Domain.

Constraints

No constraints

Semantics

Resources are centrally managed by the <ClassName>TargetManager, it is assumed
that the <ClassName>TargetManager has complete knowledge of available resources.
This implies worst-case resource allocation (implementations may not use any more
resources than declared), and that resources may not be used by processes outside of
this specification.

Planning for deployment can happen “online” or “offline.” In the online case, the
planner considers the presently available resources that are returned from
getAvailableResources. In offline planning, the planner considers all available resources
in order to plan for an application that is to be deployed into an “empty” target
environment.

It may be necessary to serialize access to resource information and planning using
means beyond the scope of this specification, in order to avoid race conditions in
online planning – otherwise resources might be committed elsewhere while planning,
or multiple plans might end up competing for the same resources.

2.6.2 DomainUpdateKind

Description

The <ClassName>DomainUpdateKind is an enumeration used as a parameter to the
updateDomain operation of the <ClassName>TargetManager to describe how
<ClassName>Domain information is to be updated.

Attributes

No attributes.

DomainUpdateKind
<<enumeration>>

Add
Delete
UpdateAll
UpdateAvailable
June 2003 D+C Draft Adopted Spec: Target Management Model 2-39

2

Associations

No associations.

Constraints

No constraints.

Semantics

If the Add kind is used, then information about nodes, interconnects, bridges and shared
resources is added to the <ClassName>Domain. In case of Delete, information is
removed. In case of UpdateAll, existing information about the full capacity of
resources is updated. In case of UpdateAvailable, information about the available
capacity of resources is updated.

2.7 Execution Data Model

The following classes are part of the Execution Data Model. They are placed in the
Execution subpackage of the Deployment and Configuration package.

2ArtifactDeploymentDescription Page 43
ComponentInterfaceDescription Page 25
ComponentExternalPortEndpoint Page 18
DeploymentPlan . Page 41
ExternalReferenceEndpoint. Page 20
InstanceDeploymentDescription Page 45
MonolithicDeploymentDescription Page 44
PlanConnectionDescription. Page 46
PlanPropertyMapping. Page 48
PlanSubcomponentPortEndpoint Page 47
PlanSubcomponentPropertyReference Page 49

Before deployment can occur, decisions must be made about the implementations to
select (if multiple implementations exist in a package) and where to deploy each
monolithic component implementation. All information about an application's
deployment is collected in a <ClassName>DeploymentPlan. This plan can be used
transiently (i.e., executed right away), or it may be stored to avoid the overhead of
planning in the future. The <ClassName>DeploymentPlan can be used by an
<ClassName>ExecutionManager to create a specific factory object for the application.
A <ClassName>DeploymentPlan is “standalone” in that it does not necessarily refer to
a repository, only to artifacts, which, depending on the implementation, may or may
not reside in the repository.

Details about each class in the Execution Data Model will be presented in the
following sections.
2-40 Deployment & Configuration Draft Adopted Specification June 2003

2

2.7.1 DeploymentPlan

Description

The <ClassName>DeploymentPlan contains information about artifacts that are part of
the deployment (<ClassName>ArtifactDeploymentDescription), how to create
component instances from artifacts (<ClassName>MonolithicDeploymentDescription),
and where to instantiate them (<ClassName>InstanceDeploymentDescription). It then
contains information about connections between them
(<ClassName>AssemblyConnectionDescription) and about the mapping of external
properties. It finally contains information about the component interface that is realized
by the application. The <ClassName>DeploymentPlan is analogous to the
ComponentAssemblyDescription in the Component Data Model. In fact, the
<ClassName>DeploymentPlan can be seen as a flattened assembly (without recursion).
In the plan, all assemblies have been recursively replaced by their white-box
representation, and concrete implementations have been chosen for each
subcomponent. All that remains are the leaf nodes, i.e. components that have a
monolithic implementation.

To avoid redundancy, a Planner can compare the identity of artifacts and component
implementations for identity (using their UUID attributes) and then share
<ClassName>ArtifactDeploymentDescription and
<ClassName>MonolithicDeploymentDescription elements.

Attributes

label: String Users may optionally assign a human readable label to a <Class-
Name>DeploymentPlan.

PlanConnectionDescript ion
<<Planner>>

Arti factDeploymentDescription
<<Planner>>

MonolithicDeploymentDescription
<<Planner>>

1.. *+artifact 1.. *

InstanceDeploymentDescription
<<Planner>>

1..*1..*
11

PlanPropertyMapping
<<Planner>>

1.. *1.. *

ComponentInterfaceDescription
<<Specifier>>

DeploymentPlan
<<Planner>>

label : String

*
+connection

*

*

+artifact

*

*
+im plementation

*

*
+instance

*

*
+externalProperty

*

1
+realizes

1

ComponentPackageReference
<<Description>>

*
+dependsOn
*

June 2003 D+C Draft Adopted Spec: Execution Data Model 2-41

2

Associations

artifact: <ClassName>ArtifactDeploymentDescription [*]
Implementation artifacts related to the deployment.

implementation: <ClassName>MonolithicDeploymentDescription
Component implementations used in the deployment.

instance: <ClassName>InstanceDeploymentDescription [*]
Component instances that are to be created.

connection: <ClassName>PlanConnectionDescription [*]
Connections that are to be made between the component instances,
the application’s external ports, or external locations.

externalProperty: <ClassName>PlanPropertyMapping [*]
Maps the application’s external properties to properties of compo-
nent instances.

realizes: <ClassName>ComponentInterfaceDescription [1]
The component interface implemented by the application.

dependsOn: ComponentPackageReference [*]
Implementations of these interfaces must be executing in the target
environment before deploying this plan is possible. Copied from the
ComponentImplementationDescription element.

Constraints

No constraints.

Semantics

The <ClassName>DeploymentPlan is a self-contained piece of information that
contains all necessary data about the deployment of an application to a specific target
environment.

The deployment engine that is part of the <ClassName>ExecutionManager or
<ClassName>ApplicationManager traverses the instances; for each instance, it
determines the implementation and its artifacts, which need to be installed on a target
node prior to component instantiation. All artifacts used in this process are marked.
The deployment engine then traverses the artifacts and processes all “leftover”
<ClassName>ArtifactDeploymentDescription elements; these may be additional
artifacts included by the Planner to take care of special conditions in the target
environment.

The deployment engine then proceeds to create the component instances and
interconnects them.

The interface information is used so that the application can present this interface to
the user. (This is detailed by platform specific models.) Default values for properties
(the configProperty elements of the <ClassName>ComponentInterfaceDescription) are
not needed in the plan and ignored by the deployment engine; a Planner may decide
not to copy them into the plan.
2-42 Deployment & Configuration Draft Adopted Specification June 2003

2

2.7.2 ArtifactDeploymentDescription

Description

<ClassName>ArtifactDeploymentDescription describes an artifact that is to be
deployed as part of the plan. It mirrors the
<ClassName>ImplementationArtifactDescription from the component data model. To
avoid redundancy, this element can be shared among
<ClassName>InstanceDeploymentDescription elements, should component instances
use the same artifact more than once. A Planner can compare artifacts for identity
using the UUID attribute of the <ClassName>ImplementationArtifactDescription
element. <ClassName>ArtifactDeploymentDescription describes the installation of a
single implementation artifact on a node as part of component instantiation. It contains
an URL pointing to the <ClassName>ImplementationArtifact. Execution parameters
and deployment requirements are copied from the
<ClassName>ImplementationArtifactDescription.

Attributes

location: String The location where the artifact can be loaded from. Copied from the
<ClassName>ImplementationArtifactDescription.

label: String An optional human readable label identifying the artifact.
node: String The name of the node where the artifact is to be installed. If blank,

the node is implied by the <ClassName>InstanceDeploymentDe-
scription parent.

Associations

execParameter: <ClassName>Property [*] Execution parameters, copied from the <Class-
Name>ImplementationArtifactDescription.

deployRequirement: <ClassName>Requirement [*]
Deployment requirements, copied from the <ClassName>Imple-
mentationArtifactDescription.

Constraints

No constraints.

Requirement
<<Description>>

ArtifactDeploymentDescription
<<Planner>>

location : St ring
label : String
node : St ring

*

+deployRequirem ent

*

Property
<<Description>>

*

+execParameter

*

June 2003 D+C Draft Adopted Spec: Execution Data Model 2-43

2

Semantics

The deployment requirements carry information about the resources used by this
implementation artifact, so that they can be committed by the
<ClassName>TargetManager (presumably via the <ClassName>ExecutionManager).

Usually, the node attribute is the empty string, so that artifacts will be deployed on the
node where a component is to be instantiated as implied by the
<ClassName>InstanceDeploymentDescription. The attributed is included here for the
exotic case that special artifacts need to be installed in the target environment. In that
case, the Planner would add <ClassName>ArtifactDeploymentDescription elements to
the plan that are unrelated to component instances.

A Planner can generate a human readable label attribute from the label attributes
of packages, implementations, assembly subcomponents and
<ClassName>ImplementationArtifactDescription elements, i.e. a “path” describing the
origin of this artifact. In case of an error, a user can then use this label to identify the
source of a problem.

2.7.3 MonolithicDeploymentDescription

Description

<ClassName>MonolithicDeploymentDescription describes the deployment of a
component as part of the plan. It mirrors the
<ClassName>MonolithicImplementationDescription from the component data model.
If the same component instance is deployed more than once, a
<ClassName>MonolithicDeploymentDescription can be shared by multiple
<ClassName>InstanceDeploymentDescription elements. A Planner can compare
monolithic implementations for identity using the UUID attribute of the
ComponentImplementationDescription. The
<ClassName>MonolithicDeploymentDescription contains a human-readable label and
references <ClassName>ArtifactDeploymentDescription elements for all artifacts that
are part of the deployment. The execution parameters and deployment requirements are
copied from the <ClassName>MonolithicImplementationDescription.

ArtifactDeploymentDescription
<<Planner>>

Property
<<Description>>

MonolithicDeploymentDescription
<<Planner>>

label : String

1..*

**

+execParameter

Requirement
<<Description>>

**

+deployRequirement+art ifact
1..*

{ordered}
2-44 Deployment & Configuration Draft Adopted Specification June 2003

2

Attributes

label: String An optional human readable label identifying the component imple-
mentation.

Associations

artifact: <ClassName>ArtifactDeploymentDescription [*]
The implementation artifacts that are part of this monolithic compo-
nent implementation.

execParameter: <ClassName>Property [*] Execution parameters, copied from the <Class-
Name>MonolithicImplementationDescription.

deployRequirement: <ClassName>Requirement [*]
Deployment requirements, copied from the <ClassName>Mono-
lithicImplementationDescription.

Constraints

No constraints.

Semantics

The artifacts referenced here represent a depth-first traversal of the primary artifacts
from the <ClassName>MonolithicImplementationDescription and their dependency. A
depth-first traversal ensures that all dependees can be installed before the dependent
artifacts.

A Planner can generate a human readable label from the label attributes of
packages, implementations, assembly subcomponents and
ComponentImplementationDescription elements, i.e. a “path” describing the origin of
this component implementation. In case of an error, a user can then use this label to
identify the source of a problem.
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-45

2

2.7.4 InstanceDeploymentDescription

Description

<ClassName>InstanceDeploymentDescription contains the information that is
necessary in order to deploy a single component instance. It references a
<ClassName>MonolithicDeploymentDescription and includes the name of the node
where the component is to be instantiated. It then contains properties that are used to
configure the component instance.

Attributes

node: String The name of the node where the component is to be instantiated.
label: String A human readable label.

Associations

implementation: <ClassName>MonolithicDeploymentDescription [1]
The component that is to be instantiated.

configProperty: <ClassName>Property [*] Properties to configure the component instance after in-
stantiation.

Constraints

No constraints.

Semantics

A Planner can generate a human readable label from the label attributes of
packages, assembly implementations and assembly subcomponents, i.e. a “path”
describing the origin of this component instance. In case of an error, a user can then
use this label to identify the source of a problem.

Property
<<Description>>

MonolithicDeploymentDescription
<<Planner>>

InstanceDeploymentDescription
<<Planner>>

node : String
label : String

*

+configProperty

*

1
+implementation
1

2-46 Deployment & Configuration Draft Adopted Specification June 2003

2

2.7.5 PlanConnectionDescription

Description

The <ClassName>PlanConnectionDescription describes a connection that is to be
made among ports within the application that is being deployed. It is analogous to the
<ClassName>AssemblyConnectionDescription that describes a connection within an
assembly. The <ClassName>ComponentExternalPortEndpoint and
<ClassName>ExternalReferenceEndpoint elements are reused from the Component
Data Model.

Attributes

label: String A label that uniquely identifies this element of the <ClassName>De-
ploymentPlan.

source: Sequence(String) The labels of all <ClassName>AssemblyConnectionDescription el-
ements that were combined into this <ClassName>PlanConnection-
Description.

Associations

deployRequirement: <ClassName>Requirement [*]
Connection requirements; the sum of all deployment requirements
of all <ClassName>AssemblyConnectionDescription elements that
are involved in this connection.

externalEndpoint: <ClassName>ComponentExternalPortEndpoint [*]
Identifies a port of the component that is implemented by the appli-
cation as an endpoint of this connection.

internalEndpoint: <ClassName>PlanSubcomponentPortEndpoint [*]
Identifies a port of a component within the application as an end-
point of this connection.

externalReference: <ClassName>ExternalReferenceEndpoint [*]
Identifies a location outside the application as an endpoint of this
connection.

Constraints

The number of endpoints must be larger than one.

ComponentExternalPortEndpoint
<<Description>>

PlanSubcomponentPortEndpoint
<<Planner>>

ExternalReferenceEndpoint
<<Description>>

Requirement
<<Description>>PlanConnectionDescription

<<Planner>>

label : String
source : Sequence(String)

*
+externalEndpoint

* *+internalEndpoint * *
+externalReference

*

*

+deployRequirement

*

June 2003 D+C Draft Adopted Spec: Execution Data Model 2-47

2

Semantics

During application launch, a connection between all endpoints will be established.

2.7.6 PlanSubcomponentPortEndpoint

Description

Identifies a port of a component within the application as an endpoint of the
connection described by the <ClassName>PlanConnectionDescription that this element
is contained in.

Attributes

portName: String The name of the port of the associated component instance that is to
be an endpoint of this connection.

provider: String Identifies whether the port is a provider or user port.

Associations

instance: <ClassName>InstanceDeploymentDescription [1]
The associated component instance.

Constraints

The port name must be valid for the referenced component.

Semantics

See above.

PlanSubcomponentPortEndpoint
<<Planner>>

portName : String
provider : Boolean

Inst anceDeploym ent Description
<<Planner>>

1+instanc e 1
2-48 Deployment & Configuration Draft Adopted Specification June 2003

2

2.7.7 PlanPropertyMapping

Description

<ClassName>PlanPropertyMapping is part of the <ClassName>DeploymentPlan. It
identifies a property of the component that this application is implementing and the
subcomponents' properties that it delegates to.

Attributes

label: String A label that uniquely identifies this element of the <ClassName>De-
ploymentPlan.

source: Sequence(String) The labels of all <ClassName>AssemblyPropertyMapping elements
that were combined into this <ClassName>PlanPropertyMapping.

externalName: String The name of a property of the component that the application is im-
plementing.

Associations

delegatesTo: <ClassName>PlanSubcomponentPropertyReference [1..*]
References ports of subcomponents within the application that the
property is delegated (or propagated) to.

Constraints

The externalName must match the name of a property of the component that the
assembly is implementing.

PlanPropertyMapping
<<Planner>>

label : String
s ource : Sequence(String)
externalNam e : S tring

InstanceDeploym entDescription
<<Planner>>

PlanSubcomponentPropertyReference
<<Planner>>

propertyName : String

1..*+delegates To 1..*

1+instance 1
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-49

2

2.7.8 PlanSubcomponentPropertyReference

Description

Identifies a property of a subcomponent within the deployment plan that an external
property of the component that the application implements delegates to.

Attributes

propertyName: String The name of the property of the associated component instance that
the external property is delegated to.

Associations

instance: <ClassName>InstanceDeploymentDescription [1]
The associated component instance.

Constraints

The propertyName must match the name of a property of the associated component.

Semantics

No semantics.

2.8 Execution Management Model

The following classes are part of the Execution Management Model. They are placed
in the Execution subpackage of the Deployment and Configuration package.

Application . Page 58
ApplicationManager . Page 55
Connection . Page 61
DomainApplication. Page 59
DomainApplicationManager Page 56
Endpoint . Page 61
ExecutionManager . Page 51
Logger . Page 60
NodeApplication . Page 60
NodeApplicationManager . Page 57
NodeManager . Page 53
2-50 Deployment & Configuration Draft Adopted Specification June 2003

2

2.8.1 Execution Management Model Overview

After planning, application execution happens in two phases, in a total of three steps.
The first phase is the preparation of the plan for execution using the preparePlan
operation of the <ClassName>ExecutionManager, resulting in an
<ClassName>ApplicationManager factory object, which can be used to put the plan
into action, potentially more than once. The second phase, launching the application, is
divided into two steps. The first step of launching is calling the startLaunch operation
on the <ClassName>ApplicationManager. This causes the <ClassName>Application to
be executed, but not to be started yet. The second step of launching is calling the
finishLaunch operation on the <ClassName>Application. The reason for splitting
application launch into two steps is launch-time configuration and interconnection. The
first step returns references to ports that are provided by the application, the second
step supplies references to ports that are used by the application.

Application execution involves the “domain” level and the “node” level. On the domain
level, the <ClassName>ExecutionManager manages the execution of an application
into the domain. The <ClassName>ExecutionManager separates the “global”
application into “local” sub-applications that execute within a node. This essentially
creates “virtual components” to run entirely within a node, including intra-node
connections. The deployment of virtual components onto a node can be described the
same way as the deployment of the original application, using a
<ClassName>DeploymentPlan, with the limitation that all component instances will be
located on the same node.

The <ClassName>ExecutionManager creates deployment plans for virtual components
to run on each node, so that the complete application is covered. It then passes each
<ClassName>DeploymentPlan to the <ClassName>NodeManager that is responsible
for instantiating components on that node.

Just as the <ClassName>DeploymentPlan structure is the same for the deployment of
both the global application and the local applications, the interfaces for managing
them, <ClassName>ApplicationManager and <ClassName>Application, are the same.
To keep the semantics separate, global and local versions of both interfaces are

Logger
<<Manager>>

TargetManager
<<Manager>>

ExecutionManager
<<Manager>>

0..10..1

11

NodeManager
<<Manager>>

**

DomainApplicationManager
<<Manager>>

**

DomainApplication
<<Manager>>

**

NodeApplicationManager
<<Manager>>

*

+subAppMgr

*

**

NodeApplication
<<Manager>>

*

+subApp

*

**
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-51

2

introduced with the Domain and Node prefixes. During launch and shutdown, global
<ClassName>DomainApplicationManager and <ClassName>DomainApplication
instances delegate management to the local, node-specific
<ClassName>NodeApplicationManager and <ClassName>NodeApplication managers
with the same interface.

The separation between <ClassName>ExecutionManager and
<ClassName>NodeManager serves the purpose of creating a vendor boundary. It
uncouples deployment (implemented by the vendor of the deployment engine) from the
execution of components (implemented by the vendor of the hardware or development
environment). This allows hardware vendors to supply a node-specific
<ClassName>NodeManager, <ClassName>NodeApplicationManager and
<ClassName>NodeApplication implementations that can then interact with any
deployment engine.

2.8.2 ExecutionManager

Description

The <ClassName>ExecutionManager manages the execution of applications from a
<ClassName>DeploymentPlan. It has knowledge of <ClassName>NodeManager
instances that manage nodes within the domain, and will delegate execution of
component instances to relevant <ClassName>NodeManager instances as described by
the plan. The <ClassName>ExecutionManager is also associated with a
<ClassName>TargetManager for resource management, and, optionally, a centralized
logging facility.

Application execution is initiated by preparing a <ClassName>DeploymentPlan using
the preparePlan operation. This creates a new
<ClassName>DomainApplicationManager that can later be used to launch one or more
application instances.

Operations

preparePlan (plan: <ClassName>DeploymentPlan, commitResources: Boolean): <ClassName>Do-
mainApplicationManager
Creates an application manager (factory) from a deployment plan. If
commitResources is true, then resources used by the plan will be

Logger
<<Manager>>

NodeManager
<<Manager>>

TargetManager
<<Manager>>

DomainApplicationManager
<<Manager>>

ExecutionManager
<<Manager>>

preparePlan()
getManagers()
destroyManager()

**

0..10..1
11

**
2-52 Deployment & Configuration Draft Adopted Specification June 2003

2

committed. If false, then it is assumed that resources were already
committed by an online planner. Raises the <ClassName>Resour-
ceNotAvailable exception if commitResources is true, if early re-
source allocation is used, and one of the requested resources is not
available. Raises the <ClassName>StartError exception if a deploy-
ment-related error occurs during preparation. Raises the <Clas-
sName>PlanError exception if there is a problem with the plan.

destroyManager (manager: <ClassName>DomainApplicationManager)
Terminates an application manager and free all associated resources.
All running applications are terminated as well. Raises the <Clas-
sName>StopError exception if a problem occurs terminating or un-
preparing any application. Raises the
<ClassName>InvalidReference exception if the manager is un-
known.

getManagers (): Sequence(<ClassName>DomainApplicationManager)

Returns a list of all active application managers.

Associations

domainApplicationManager: <ClassName>DomainApplicationManager [*]
An <ClassName>ExecutionManager instantiates <Clas-
sName>DomainApplicationManager instances.

targetManager: <ClassName>TargetManager [1]
The <ClassName>TargetManager that will be used for resource
commitments.

logger: <ClassName>Logger [0..1]An optional logging faciltiy.
nodeManager: <ClassName>NodeManager [*]<ClassName>NodeManager references for all nodes

that are part of the domain.

Constraints

No constraints.

Semantics

The semantics of preparation are undefined. Preparation usually involves the
distribution of artifacts to the nodes. However, implementations might decide to delay
this distribution until application launch — or they might, on the other hand, preload
artifacts into memory so that launch can happen as fast as possible.

It is also undefined whether resource commitment (in case the commitResources
parameter to the preparePlan operation is true) happens at preparation or launch time.
Implementations should document their behavior in this respect.

The preparePlan operation takes the deployment plan and prepares “virtual
components” with the subset of the application that is to be executed on each node.
The <ClassName>ExecutionManager then contacts the <ClassName>NodeManager
instances that are responsible for each node, and passes their piece of the application to
their preparePlan operation, using the same <ClassName>DeploymentPlan format. This
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-53

2

results in a “global” level <ClassName>DomainApplicationManager that holds
references to “local,” node-specific <ClassName>NodeApplicationManager instances
for each piece of the application.

The destroyManager operation releases all resources that were allocated during
preparation and launch.

2.8.3 NodeManager

Description

The <ClassName>NodeManager is responsible for managing a partial applications that
is limited to its node. It mirrors the <ClassName>ExecutionManager, but is limited to
one node only.

Operations

joinDomain (domainSubset: <ClassName>Domain, manager: <ClassName>TargetManager, log:
<ClassName>Logger)
Informs the <ClassName>NodeManager that it is now part of a
<ClassName>Domain. The domainSubset contains the resource
availability information that is currently known within the domain.
manager is a reference to the <ClassName>TargetManager to (op-
tionally) send domain updates to. log is an abstract (PSM defined)
class to send log messages to.

leaveDomain () Informs the <ClassName>NodeManager that it is being removed
from the domain, e.g. because of domain shutdown.

preparePlan (plan: <ClassName>DeploymentPlan): <ClassName>NodeApplicationManager
Prepares a partial application. The part of the application that is to
be executed on this node is expressed as a <ClassName>Deploy-
mentPlan that implements a “virtual component” with the subcom-
ponents, connections, external ports and properties. Raises the
<ClassName>StartError exception if a deployment-related error oc-
curs during preparation. Raises the <ClassName>PlanError excep-
tion if there is a problem with the plan.

destroyManager (manager: <ClassName>NodeApplicationManager)
Terminates a <ClassName>NodeApplicationManager and frees all
associated resources. All running applications are terminated. Rais-

TargetManager
<<Manager>>

Logger
<<Manager>>

NodeApplicationManager
<<Manager>>

NodeManager
<<Manager>>

joinDomain()
leaveDomain()
preparePlan()
destroyManager()

11

0..10..1

**
2-54 Deployment & Configuration Draft Adopted Specification June 2003

2

es the <ClassName>StopError exception if an error occurs during
termination. Raises the <ClassName>InvalidReference exception if
the manager reference is unknown.

Associations

targetManager: <ClassName>TargetManager [1]
The <ClassName>TargetManager that <ClassName>Domain up-
dates are sent to if necessary. This is the reference passed as a pa-
rameter to the joinDomain operation.

logger: <ClassName>Logger [0..1]The <ClassName>Logger to send log messages to. If the <Clas-
sName>NodeManager wants to produce log messages, it keeps the
reference passed as a parameter to the joinDomain operation.

nodeApplicationManager: <ClassName>NodeApplicationManager [*]
The node-specific application managers instantiated by this <Clas-
sName>NodeManager via the preparePlan operation.

Constraints

No constraints.

Semantics

The joinDomain operation is called by the <ClassName>ExecutionManager at startup
time or when it is informed of a new node via the updateDomain operation. Both the
joinDomain and leaveDomain operations are called by the
<ClassName>ExecutionManager on user request to add or remove nodes from a
domain.

If the joinDomain operation is called, the <ClassName>NodeManager may optionally
examine the domainSubset, and send an update message to the
<ClassName>TargetManager if discrepancies are found.

The semantics of the leaveDomain operation are undefined. A
<ClassName>NodeManager might shutdown or reset. In particular, the effect on
running applications is also undefined. Behavior of a <ClassName>NodeManager
implementation should be well documented. A <ClassName>NodeManager should not
log any messages after returning from the leaveDomain operation.

The preparePlan operation and destroyApplication operations are called by the
<ClassName>ExecutionManager as a result of a user demand for application
preparation or destruction. The <ClassName>DeploymentPlan that is passed to the
preparePlan operation describes a virtual component that is composed of all
subcomponents and connections that are to be made within the node, plus mappings for
connections and properties that external to that node.
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-55

2

2.8.4 ApplicationManager

Description

An <ClassName>ApplicationManager is used to first launch and later to terminate an
application according to a concrete <ClassName>DeploymentPlan.
<ClassName>ApplicationManager is an abstract class that is specialized by the
<ClassName>DomainApplicationManager, which handles deployment of a “global”
application, and the <ClassName>NodeApplicationManager, which handles
deployment of a locality constrained application onto a single node.

Operations

startLaunch (configProperty: Sequence(Property),
out providedReference: Sequence(<ClassName>Connection)):
<ClassName>Application
Executes the application, but does not start it yet. Users can option-
ally provide launch-time configuration properties to override prop-
erties that are part of the plan. A handle to the application is returned,
as well as connections for the component’s external provider ports.
Raises the <ClassName>InvalidProperty exception if a configura-
tion property is invalid. Raises the <ClassName>StartError excep-
tion if an error occurs during launching. Raises the
<ClassName>ResourceNotAvailable exception if the

DeploymentPlan
<<Planner>>

Application
<<Manager>>

ApplicationManager

startLaunch()
destroyApplication()

<<Manager>>

11

*+runningApp *

TargetManager
<<Manager>>

DomainApplicat ionManager

getApplications()
getPlan()

<<Manager>>

11

NodeApplicationManager
<<Manager>>

*

+subAppMgr

*

2-56 Deployment & Configuration Draft Adopted Specification June 2003

2

commitResources parameter to the prepare operation of the <Clas-
sName>ExecutionManager was true, if late resource allocation is
used, and one of the requested resources is not available.

destroyApplication (app: <ClassName>Application)
Terminates a running application. Raises the <ClassName>StopEr-
ror exception if an error occurs during termination. Raises the
<ClassName>InvalidReference exception if the appliction reference
is unknown.

Associations

runningApp: <ClassName>Application [*]The applications that were launched but not terminated yet.
deploymentPlan: <ClassName>DeploymentPlan [1]

The <ClassName>DeploymentPlan that this <ClassName>Appli-
cationManager is based on, a copy of the plan that was passed to the
preparePlan operation of the <ClassName>ExecutionManager or
<ClassName>NodeManager.

targetManager: <ClassName>TargetManager [1]
The <ClassName>TargetManager that is used to commit resources
if necessary.

Constraints

Depending on the plan and whether it was based on static or online resource data,
launching multiple applications from the same <ClassName>ApplicationManager in
parallel might fail because of resource constraints.

Semantics

The behavior of an <ClassName>ApplicationManager is different depending on
whether it is used as a <ClassName>DomainApplicationManager on the “global” level
(if instantiated from an <ClassName>ExecutionManager) or a
<ClassName>NodeApplicationManager on the “local” level (if instantiated from a
<ClassName>NodeManager). Implementations for these two cases are usually
separate. An <ClassName>ExecutionManager implementation has access to
<ClassName>DomainApplicationManager and <ClassName>DomainApplication
implementations, a <ClassName>NodeManager has access to
<ClassName>NodeApplicationManager and <ClassName>NodeApplication
implementations.

2.8.5 DomainApplicationManager

Description

The <ClassName>DomainApplicationManager is responsible for deploying an
application on the domain level, i.e. across nodes. It specializes the
<ClassName>ApplicationManager interface.
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-57

2

Operations

getApplications (): Sequence (<ClassName>Application)

Returns a list of all applications that have been launched from this
<ClassName>ApplicationManager and that are still executing.

getPlan (): <ClassName>DeploymentPlan Returns the <ClassName>DeploymentPlan associated
with this <ClassName>ApplicationManager.

Associations

subAppMgr: <ClassName>NodeApplicationManager [*]
The manager for the pieces of the application that run on each node.

targetManager: <ClassName>TargetManager [1]
The <ClassName>TargetManager that is used to commit resources
if necessary.

Constraints

The targets of the runingApp association (inherited from
<ClassName>ApplicationManager) are instances of <ClassName>DomainApplication.

Semantics

A <ClassName>DomainApplicationManager has references to node-specific
<ClassName>NodeApplicationManager elements as created by the preparePlan
operation of the <ClassName>ExecutionManager. The startLaunch operation then
calls startLaunch on the <ClassName>NodeApplicationManager instances, passing
the relevant properties and collecting the returned connections as determined by the
separation of the “global” <ClassName>DeploymentPlan into node-specific plans. The
same applies to the destroyApplication operation.

2.8.6 NodeApplicationManager

Description

The <ClassName>NodeApplicationManager is responsible for deploying an locality
constrained application onto a node. It specializes the
<ClassName>ApplicationManager interface.

Operations

No additional operations.

Associations

No additional associations.
2-58 Deployment & Configuration Draft Adopted Specification June 2003

2

Constraints

The targets of the runingApp association (inherited from
<ClassName>ApplicationManager) are instances of <ClassName>NodeApplication.

The associated <ClassName>DeploymentPlan (inherited from
<ClassName>ApplicationManager) only contains instance deployments onto the node
that is represented by the <ClassName>NodeManager parent.

Semantics

A <ClassName>NodeApplicationManager is responsible for executing and terminating
component instances on the node that it is part of (as defined by the
<ClassName>NodeManager parent, usually but not necessarily implying co-location).

2.8.7 Application

Description

<ClassName>Application is an abstract class represents a running application. The
<ClassName>Application class may be mapped to different classes in a platform
specific models, potentially allowing navigation to an application’s ports, configuration
or introspection at runtime. <ClassName>Application is specialized by
<ClassName>DomainApplication, which represents a “global” application (i.e. across
nodes), and <ClassName>NodeApplication, which represents a locality constrained
application that is running on a single node.

Operations

finishLaunch (providedReference: Sequence(<ClassName>Connection), start: Boolean)
The second step in launching an application. External references
may be provided to connect to the component’s external user ports.
If the start parameter is true, the application is started as well. Raises
the <ClassName>InvalidConnection if one of the provided referenc-
es is invalid. Raises the <ClassName>StartError exception if
launching or starting the application fails.

start () Starts the application. Raises the <ClassName>StartError exception
if starting the application fails.

Application
<<Manager>>

finishLaunch()
start()

DomainApplication
<<Manager>>

NodeApplication
<<Manager>>

*

+subApp

*

June 2003 D+C Draft Adopted Spec: Execution Data Model 2-59

2

Associations

No associations.

Constraints

No constraints.

Semantics

The finishLaunch operation must be called in order to complete the component’s
configuration.

If clients want to start multiple applications simultaneously, they can set the start
parameter of the finishLaunch operation to false and then call the start operation
separately. If clients want to avoid the additional round-trip, they can set the start
parameter of the finishLaunch operation to true; in that case, the start operation needs
not be called.

The behavior of a <ClassName>Application is different depending on whether it is
used on a “global” level (if its parent is a <ClassName>DomainApplicationManager)
or on a “local” level (if its parent is a <ClassName>NodeApplicationManager).
Implementations for these two cases are usually separate. A
<ClassName>DomainApplicationManager only creates
<ClassName>DomainApplication instances, a <ClassName>NodeApplicationManager
only creates <ClassName>NodeApplication instances.

A node-specific <ClassName>Application represents running component instances on
the node that it is part of (as defined by the <ClassName>NodeManager parent, usually
but not necessarily implying co-location).

2.8.8 DomainApplication

Description

A <ClassName>DomainApplication represents a “global” application that was
deployed across nodes. It has the same interface as <ClassName>Application, but has
different semantics.

Operations

No additional operations.

Associations

subApp: <ClassName>NodeApplication [*]The pieces of the application that run on each node.

Constraints

No constraints.
2-60 Deployment & Configuration Draft Adopted Specification June 2003

2

Semantics

A “global” <ClassName>DomainApplication has references to node-specific
<ClassName>NodeApplication elements as created by the startLaunch operation of
the <ClassName>DomainApplicationManager. The finishLaunch operation then calls
finishLaunch on the node-specific <ClassName>NodeApplication instances, passing
the relevant connections as determined by the separation of the “global”
<ClassName>DeploymentPlan into node-specific plans. The same applies to the
destroyApplication operation.

2.8.9 NodeApplication

Description

<ClassName>NodeApplication represents a piece of an application that is executing
within a single domain.

Operations

No additional operations.

Associations

No additional associations.

Constraints

No constraints.

Semantics

<ClassName>NodeApplication has the same semantics as the
<ClassName>Application base class. It interconnects and starts the piece of the
application that is being launched on the node that is represented by the
<ClassName>NodeManager parent.

2.8.10 Logger

Operations

No operations.

Associations

No associations.

Logger
<<Manager>>
June 2003 D+C Draft Adopted Spec: Execution Data Model 2-61

2

Constraints

No constraints.

Semantics

<ClassName>Logger is an abstract runtime class to facilitate logging within the
domain. It has to be mapped to a concrete type by platform specific models.

2.8.11 Connection

Description

A <ClassName>Connection is used to describe connections from or to a component
port at runtime.

Attributes

name: String The name of the component’s port.

Associations

endpoint: <ClassName>Endpoint [*]The endpoints that are part of the connection.

Constraints

No constraints.

Semantics

No additional semantics.

2.8.12 Endpoint

Attributes

No attributes.

Endpoint
<<Description>>

Connection
<<Description>>

name : String

*+endpoint *
2-62 Deployment & Configuration Draft Adopted Specification June 2003

2

Associations

No associations.

Constraints

No constraints.

Semantics

<ClassName>Endpoint is an abstract class that contains the “address” of an endpoint.
This class needs to be mapped into a concrete platform specific type.

2.9 Common Elements

This section contains common model elements that are shared between multiple
segments. They are placed in the Common subpackage of the Deployment and
Configuration package.

2.9.1 RequirementSatisfier

Description

<ClassName>RequirementSatisfier describes a resource or capability that can satisfy a
requirement.

Attributes

name: String An optional name for the requirement satisfier.
resourceType: Sequence(String) The resource types that can be satisfied by this satisfier.

Associations

property: <ClassName>SatisfierProperty [*] Properties associated with this satisfier.

Constraints

There must be at least one element in the resourceType sequence attribute.

SatisfierProperty
<<Description>>

RequirementSatisfier
<<Description>>

name : String
resourceType : Sequence (String)

+property **
June 2003 D+C Draft Adopted Spec: Common Elements 2-63

2

context RequirementSatisfier inv:
self.resourceType->size() >= 1

Semantics

The type of a <ClassName>Requirement is must match one of the elements in the
resourceType attribute. The requirement’s properties will then be matched against the
satisfier’s properties.

2.9.2 SatisfierProperty

Description

Describes a specific property of a <ClassName>Resource or
<ClassName>SharedResource. It contains a <ClassName>SatisfierPropertyKind that
classifies the <ClassName>SatisfierProperty and has implications on the type of the
value and the comparison between the <ClassName>SatisfierProperty and a required
<ClassName>Property.

Attributes

name: String The name of the property.

Associations

kind: <ClassName>SatisfierPropertyKind [*]The kind of the property.
value: <ClassName>Any [1] The value of the property.

Semantics

<ClassName>SatisfierProperty elements are matched against the
<ClassName>Property elements within a <ClassName>Requirement at planning time.
They describe attributes and capacities of hardware or software. The name attribute of
the <ClassName>SatisfierProperty must match the name attribute of the
<ClassName>Property it is compared against. Matching the values will be discussed as
part of the <ClassName>SatisfierPropertyKind semantics. The type of the value may
be fully or partially implied by the kind.

SatisfierPropertyKind
<<enumeration>>

Quantity
Capacity
Minimum
Maximum
Attribute
Selection

SatisfierProperty
<<Description>>

name : String 1

+kind

1

Any
<<Description>>

11
2-64 Deployment & Configuration Draft Adopted Specification June 2003

2

2.9.3 SatisfierPropertyKind

Description

Classifies a <ClassName>SatisfierProperty. Each <ClassName>SatisfierPropertyKind
identifies a specific way to match requirements against resources. The kind of
<ClassName>SatisfierPropertyKind implies the types of the values contained in
<ClassName>SatisfierProperty and <ClassName>Property, and the algorithm to check
their compatibility.

Attributes

No attributes.

Associations

No associations.

Semantics

The value of this enumeration implies how to check for compatibility between a
required property and a resource’s property, and how to keep track of capacities. In the
following text, “property” refers to the property element of the
<ClassName>SatisfierProperty, and “requirement” refers to the property element of the
<ClassName>Requirement. Both must have matching names.

Quantity This property exists in a certain quantity, but its capacity is not con-
sidered. The value of the property is of integer type. The value of the
requirement is ignored, but each time this property is used, the quan-
tity is decreased by one until zero. To match the requirement, the
property must have a value of at least one. Example: a sound card
with 4 output channels.

Capacity This property has a certain capacity that can be consumed. The value
of the property and the requirement property are both of numerical
type. The value of the requirement is subtracted from the value of the
property. To match the requirement, the property must have a value
that equals or exceeds the value of the requirement. Example: mem-
ory size.

Minimum The property describes a capability with a lower bound. The value
of the property and the requirement are both of a type that supports
ordering. To match, the value of the requirement must equal or ex-
ceed the value of the property. Example: latency – e.g. the resource
can guarantee 30ms latency, the property requires at least 40ms.

Maximum The property describes a capability with an upper bound. The value
of the property and the requirement are both of a type that supports
ordering. To match, the value of the requirement must be equal or
lesser than the value of the property. Example: CPU speed – e.g. the
property has 700MHz, and there is a requirement on at least
500MHz.
June 2003 D+C Draft Adopted Spec: Common Elements 2-65

2

Attribute The value of the property and the requirement are both of a type that
supports equality comparison. To match, the requirement must com-
pare equal to the property. Example: OS type.

Selection The type of the property is a sequence of a type that supports equal-
ity comparison, the requirement is a single value of the same type.
To match, the value of the requirement must compare equal to one
element of the property values.

Platforms have to specify concrete types to be used for the comparison of the
Minimum, Maximum, Attribute and Selection kinds, and define how to order and
compare them.

Domains have to define resource types, their properties, and the kinds to use for each
property.

The Quantity and Attribute kinds are redundant, but included here to account for these
common use cases. (Quantity is equivalent to a Capacity that is required in amounts of
one, and Attribute is a subset of Selection.)

The above list of resource kinds is expected to cover the most common use cases.
Platform specific models and domain specific profiles are allowed to add more kinds if
necessary.

2.9.4 Requirement

Description

<ClassName>Requirement is used in the
<ClassName>MonolithicImplementationDescription,
<ClassName>ImplementationArtifactDescription and the
<ClassName>AssemblyConnectionDescription to express that the implementation
artifact or connection has requirements that must be fulfilled by resources in the target
environment. The resource type must match the type of a resource.

Attributes

resourceType: String Identifies the resource type.

Requirement
<<Descript ion>>

resourceType : String

Propert y
<<Descript ion>>

*+property *
2-66 Deployment & Configuration Draft Adopted Specification June 2003

2

Associations

properties: <ClassName>Property [*] Properties associated with the resource.

Constraints

No constraints.

Semantics

No semantics.

2.9.5 Property

Description

A <ClassName>Property has a name and a value. It is used to carry named and values
in various places.

Attributes

name: String The name of the property.

Associations

value: <ClassName>Any [1] Contains the value.

Constraints

No constraints.

Semantics

No semantics.

Property
<<Description>>

name : String

Any
<<Description>>

1+value 1
June 2003 D+C Draft Adopted Spec: Common Elements 2-67

2

2.9.6 DataType

Attributes

No attributes.

Associations

No associations.

Constraints

No constraints.

Semantics

<ClassName>DataType is an abstract class that describes a data type. This class needs
to be mapped into a concrete platform specific type.

2.9.7 Any

Attributes

No attributes.

Associations

No associations.

Constraints

No constraints.

Semantics

<ClassName>Any is an abstract class that contains a typed value. This class needs to
be mapped into a concrete platform specific type.

DataType
<<Description>>

Any
<<Description>>
2-68 Deployment & Configuration Draft Adopted Specification June 2003

2

2.10 Exceptions

All exceptions are placed in the Exception subpackage of the Deployment and
Configuration package.

2.10.1 PackageError

Description

The <ClassName>PackageError exception is raised by the installPackage operation of
the <ClassName>RepositoryManager if an internal error is detected in the package.
(Potential reasons include the non-existence of a referenced file, or unresolved
subcomponent references in an assembly.)

Attributes

label: Sequence(String) Identifies a location in the package where the error occured.
reason: String A human-readable description of the problem.

Associations

No associations.

Constraints

No constraints.

Semantics

The label attribute contains the label attributes from the elements in the hierarchy
defined by the <ClassName>PackageConfiguration, ComponentPackageDescription,
ComponentImplementationDescription, SubcomponentInstantiationDescription,
<ClassName>AssemblyConnectionDescription,
<ClassName>AssemblyPropertyMapping and
<ClassName>ImplementationArtifactDescription elements to locate the problem as
precisely as possible.

PackageError
<<Except ion>>

label : Sequence(String)
reason : String
June 2003 D+C Draft Adopted Spec: Exceptions 2-69

2

2.10.2 NameExists

Description

The <ClassName>NameExists exception is raised by the installPackage and
createConfiguration operations of the <ClassName>RepositoryManager if a
<ClassName>PackageConfiguration with the to-be-created name already exists in the
repository.

Attributes

No attributes.

Associations

No associations.

Constraints

No constraints.

Semantics

No semantics.

2.10.3 NoSuchName

Description

The <ClassName>NoSuchName exception is raised by the findConfigurationByLabel,
createConfiguration, updateConfiguration and deleteConfiguration operations of
the <ClassName>RepositoryManager if there is no
<ClassName>PackageConfiguration with the requested name in the repository.

Attributes

No attributes.

NameExists
<<Exception>>

NoSuchName
<<Except ion>>
2-70 Deployment & Configuration Draft Adopted Specification June 2003

2

Associations

No associations.

Constraints

No constraints.

Semantics

No semantics.

2.10.4 LastConfiguration

Description

The <ClassName>LastConfiguration exception is raised by the deleteConfiguration
operation of the <ClassName>RepositoryManager if the
<ClassName>PackageConfiguration that is to be deleted is the last configuration for
any package and the deletePackage parameter is false.

Attributes

No attributes.

Associations

No associations.

Constraints

No constraints.

Semantics

No semantics.

LastConfiguration
<<Exception>>
June 2003 D+C Draft Adopted Spec: Exceptions 2-71

2

2.10.5 ResourceNotAvailable

Description

The <ClassName>ResourceNotAvailable exception is raised by the commitResources
operation of the <ClassName>TargetManager, by the preparePlan operation of the
<ClassName>ExecutionManager or by the startLaunch operation of the
<ClassName>ApplicationManager if a resource required by the plan is not available.

Attributes

label: String Identifies the element in the plan whose resource requirement could
not be satisfied.

resourceType: String The type of resource that was requested using a <ClassName>Re-
quirement element.

propertyName: String The name of the property that could not be satisfied.
elementName: String Identifies a <ClassName>Node, <ClassName>Interconnect or

<ClassName>Bridge within the <ClassName>Domain.
resourceName: String The name of a <ClassName>Resource or <ClassName>Share-

dResource within the <ClassName>Node, <ClassName>Intercon-
nect or <ClassName>Bridge that was considered for matching the
requirement.

Associations

No associations.

Constraints

No constraints.

Semantics

The label, resourceType and propertyName uniquely identify a requirement in the
plan. The elementName, resourceName and propertyName uniquely identify a
requirement satisfier in the domain that failed to match the requirement. Note that
resourceName can be the empty string if no <ClassName>RequirementSatisfier was
found to match the resourceType.

ResourceNotAvailable
<<Exception>>

label : String
resourceType : String
propertyName : String
elementName : String
resourceName : String
2-72 Deployment & Configuration Draft Adopted Specification June 2003

2

2.10.6 PlanError

Description

The <ClassName>PlanError exception is raised by the preparePlan operation of the
<ClassName>ExecutionManager if an inconsistency is detected in the plan. (E.g. an
unresolved reference to a non-existent component instance.)

Attributes

label: String Identifies an element of the <ClassName>DeploymentPlan where
the error occured.

reason: String A human-readable reason that describes the error.

Associations

No associations.

Constraints

No constraints.

Semantics

This exception indicates that the plan is erroneous or inconsistent, i.e. the error is
unrelated to the actual deployment.

2.10.7 StartError

Description

The <ClassName>StartError exception is raised if a problem occurred during
deployment, either during preparation by the preparePlan operation of the
<ClassName>ExecutionManager or during launch by the startLaunch operation of the
<ClassName>ApplicationManager.

PlanError
<<Exception>>

label : String
reason : String

StartError
<<Exception>>

label : String
reason : String
June 2003 D+C Draft Adopted Spec: Exceptions 2-73

2

Attributes

label: String Identifies an element of the <ClassName>DeploymentPlan where
the error occured.

reason: String A human-readable reason that describes the error.

Associations

No associations.

Constraints

No constraints.

Semantics

Potential reasons include the inability to upload an artifact to a node or a failure during
component instantiation.

2.10.8 StopError

Description

The <ClassName>StopError exception is raised if a problem occurred while
terminating an application, either during the terminate operation of the
<ClassName>ApplicationManager or during the destroyManager operation of the
<ClassName>ExecutionManager.

Attributes

label: String Identifies an element of the <ClassName>DeploymentPlan where
the error occured.

reason: String A human-readable reason that describes the error.

Associations

No associations.

Constraints

No constraints.

StopError
<<Exception>>

label : String
reason : String
2-74 Deployment & Configuration Draft Adopted Specification June 2003

2

Semantics

This exception is raised if the problem is related to the “undeployment.” Potential
reasons include the failure to stop a component instance.

2.10.9 InvalidProperty

Description

Attributes

name: String The name of the property among the configProperty elements that
caused the problem.

reason: String A human-readable reason that describes the error.

Associations

No associations.

Constraints

No constraints.

Semantics

The <ClassName>InvalidProperty exception is raised if an invalid property is passed to
the startLaunch operation of the <ClassName>ApplicationManager. The problem can
be that either the name does not match any of the component’s properties, or a type
mismatch.

InvalidProperty

name : String
reason : String

<<Exception>>
June 2003 D+C Draft Adopted Spec: Exceptions 2-75

2

2.10.10 InvalidConnection

Description

Attributes

name: String The name of the property among the configProperty elements that
caused the problem.

reason: String A human-readable reason that describes the error.

Associations

No associations.

Constraints

No constraints.

Semantics

The <ClassName>InvalidConnection exception is raised if an invalid connection is
passed to the finishLaunch operation of the <ClassName>Application. The problem
can be that the name does not match any of the component’s ports, a type mismatch, or
a direction mismatch (i.e. an attempt to connect a provider port to another provider
port).

2.10.11 InvalidReference

Description

Attributes

No attributes.

Associations

No associations.

InvalidConnection

name : String
reason : String

<<Exception>>

InvalidReference
<<Exception>>
2-76 Deployment & Configuration Draft Adopted Specification June 2003

2

Constraints

No constraints.

Semantics

The <ClassName>InvalidReference exception is raised by the destroyManager
operations of the <ClassName>ExecutionManager and <ClassName>NodeManager
and the destroyApplication operation of the <ClassName>ApplicationManager if the
<ClassName>ApplicationManager or <ClassName>Application reference is not known
in this context. This may be because the reference was created by a different context,
or because of prior destruction.

2.11 Relations to Other Standards

The <ClassName>ImplementationArtifact is a specialization of the Artifact class in the
UML 2 Partners submission to the UML 2 RFP. It adds a self-relationship to describe
dependencies between Artifact instances.

The <ClassName>ComponentInterfaceDescription describes the features of a
Component features that are relevant to the deployment process, such as property
names and types and port names and types.

Both for Artifact and Component, the relation to the UML 2 Partners submission to the
UML 2 RFP is weak; in both cases, it is through a dependency relationship
(<ClassName>ImplementationArtifact is only referenced by a dependency with the
«describes» stereotype from <ClassName>ImplementationArtifactDescription). Artifact
and Component will therefore not show up in any code that is generated from the
model.

Since UML 2 is not an adopted standard yet, and since neither Artifact nor Component
exist in UML 1.4, the dependencies might need to be updated or removed in sync with
future iterations of UML 2 submissions. Because of the weak dependencies, changes in
UML 2 do not have any impact on the models this document.

ImplementationArtifact
<<Developer>>

Artifact
(from UML2 (UML 2 P))

ComponentInterfaceDescription
<<Specifier>>

Component
(from UML2 (UML 2 P))

<<describes>>
June 2003 D+C Draft Adopted Spec: Relations to Other Standards 2-77

2

2-78 Deployment & Configuration Draft Adopted Specification June 2003

Actor 3
Contents

This chapter includes the following topics.

The previous chapter defined the platform independent model for deployment and
configuration. The data models are used by the management interfaces for data
interchange, but all model elements are passive entities. Actors manipulate the data, are
clients to the interfaces and enact the various phases of deployment. Usually, part of
the actor will be implemented in software tools, aiding a (human) user in development
and deployment of an application.

All actors defined by this specification are abstract. Some behavior is regulated, e.g.
how data is to be processed by them, but the implementation of actors is left undefined.
Some implementations of this specification might combine all actors into a single GUI,

Topic Page

“Development Actors Overview” 3-2

“Specifier” 3-3

“Developer” 3-3

“Assembler” 3-4

“Packager” 3-4

“Domain Administrator” 3-5

“Deployment Actors Overview” 3-6

“Repository Administrator” 3-6

“Planner” 3-7

“Executor” 3-10
June 2003 Deployment & Configuration Draft Adopted Specification 3-1

3

others could provide separate scripts. Some actors might be implicit parts of derived
actors, others might be split across multiple sub-actors. While the deployment system
described by the PIM requires actors acting as clients to perform the work of
deployment and configuration, the descriptions in this section are not normative, but
rather express the expected usage of the capabilities offered by the PIM. In particular,
run time errors can be expected if this anticipated actor behavior is not followed.
Since any bundling or communication or modularity between actors is completely
undefined, constraints cannot be described that insist on the behavior described in this
section.

There are three categories for actors, development, target and deployment, mirroring
the model segmentation presented earlier. Actors in the first category are concerned
with the various phases of implementing a component, starting with an interface design
and eventually creating a component package. Actors in the deployment category take
existing component packages, and deploy them into a target environment in order to
create running applications. The only actor in the target category is the Domain
Administrator.

3.1 Development Actors Overview

The development of a component implementation involves the roles of Specifier,
Developer, Assembler and Packager. The Specifier creates an interface specification.
Developers create a monolithic implementation of that specification, or an Assembler
creates an assembly based implementation from existing subcomponents. The Packager
then wraps up one or more implementations of the component interface into a
component package.

This process is circular, as component packages and/or interface specifications of
subcomponents are inputs to the Assembler.

The above paragraph implies a bottom-up approach to component development, but
that is not necessarily true, the flow of information can be reversed. An Implementer or
Assembler can also work “downwards” from an existing component package in order
to add new implementations to the package. An Assembler might then involve the
Specifier in defining interface specifications for subcomponents.
3-2 Deployment & Configuration Draft Adopted Specification June 2003

3

3.2 Specifier

The Specifier creates an interface specification and generates a
ComponentInterfaceDescription to describe the component interface, including its ports.
Specifiers usually create other documents as well, such as PSM-specific interface
descriptions (e.g. IDL files), behavioral models and system specifications, but the
ComponentInterfaceDescription is the only piece that is captured in this model.

3.3 Developer

The Developer creates a monolithic implementation that satisfies a specific component
interface. The Developer reads the Specifier’s ComponentInterfaceDescription and
creates an implementation contained in one or more implementation artifacts. For each
ImplementationArtifact, the Developer then creates a matching
ImplementationArtifactDescription that describes the artifact and its requirements on the
target environment. The Developer then describes the component implementation as a
whole by creating one MonolithicImplementationDescription and one
ComponentImplementationDescription element.

Specifier

ComponentInterfaceDescription
<<Specifier>>

<<create>>

ComponentInterfaceDescription
<<Specifier>>

Developer

1+implements 1

ComponentImplementationDescription
<<Implementer>>

MonolithicImplementationDescription
<<Developer>>

0..1

+monolithicImpl

0..1

ImplementationArtifactDescription
<<Developer>>

1
+primaryArtifact
1

ImplementationArtifact
<<Developer>>

<<describes>>

1

<<create>>

1

<<create>>

1..*<<create>>

1..*

<<create>>

Creates a monolithic
implementation of a
component interface.
June 2003 D+C Draft Adopted Spec: Specifier 3-3

3

3.4 Assembler

The Assembler creates an assembly based implementation of a specific component
interface, using existing components as building blocks. The Assembler uses either
interface descriptions for subcomponents from ComponentInterfaceDescription elements
(expecting implementations for such interfaces to exist in the repository associated
with the target domain) or concrete implementations for subcomponents from a
ComponentPackageDescription (which implies an interface description). The Assembler
configures subcomponents, interconnects them, and maps external ports and properties
to ports and properties of subcomponents. The Assembler then creates a
ComponentAssemblyDescription element to describe the assembly and a
ComponentImplementationDescription to describe this component implementation.

3.5 Packager

The Packager wraps multiple implementations of the same component interface into a
component package. The ComponentInterfaceDescription and one or more
ComponentImplementationDescription elements are input to the packaging process. The
Packager ensures that the implementations’ component interfaces are compatible with
the desired interface. The Packager then creates a ComponentPackageDescription,

ComponentImplementationDescription
<<Implementer>>

ComponentAssemblyDescription
<<Assembler>>

0..1

+assemblyImpl

0..1

ComponentInterfaceDescription
<<Specifier>>

ComponentPackageDescription
<<Packager>>

Assembler

11
+implements

*

+subcomponentInterfaces

* *

+subcomponentPackages

*

at least one

<<create>>
<<create>>

Creates an assembly
based implementation
from existing
components.

ComponentPackage
<<Packager>>

ComponentPackageDescription
<<Packager>> <<describes>>

ComponentInterfaceDescription
<<Specifier>>

1
+realizes

1

ComponentImplementationDescription
<<Implementer>>1

+implements

1

Packager

<<create>>
<<create>>

1
+interface

1 1..*

+implementation

1..*

Wraps one or more
implementations
into a package.
3-4 Deployment & Configuration Draft Adopted Specification June 2003

3

potentially assigning default values to properties. The Packager then creates a
component package that wraps all relevant descriptors and implementation artifacts.
This component package is then distributed to Repository Administrators.

3.6 Domain Administrator

The Domain Administrator describes the local target environment and all its resources
by creating a Domain element and then initializing a TargetManager with that
information.

Note – In the future, the Domain Administrator role could be refined. Ideally, hardware
providers would deliver descriptions for all pieces of a domain: nodes, interconnects,
bridges, hardware devices etc. The Domain Administrator would then collect that
information and create a specific domain configuration. For the moment, it is safe to
assume that the job of describing a domain’s resources ends up with the Domain
Administrator.

Domain
Adminis trator

Dom ain
<<Domain Adminis trator>>

<<create>>
June 2003 D+C Draft Adopted Spec: Domain Administrator 3-5

3

3.7 Deployment Actors Overview

The overview diagram above shows the three actors that are involved in the
deployment of an application, the Repository Administrator, the Planner and the
Executor. The Repository Administrator receives component packages from the
Packager and installs them in the local repository using the RepositoryManager
interface. The Planner matches an implementation’s requirements against available
resources and creates a specific DeploymentPlan. The Executor uses the DeploymentPlan
and contacts the ExecutionManager in order to execute the deployment and to instantiate
the application. More detail is provided in the upcoming sections.

3.8 Repository Administrator

The Repository Administrator installs a component package into a repository, and then
configures the component packages within the repository.

The Repository Administrator has access to a component package via URL, and to a
RepositoryManager via reference. The Repository Administrator calls the installPackage
operation of the RepositoryManager, passing the URL of the component package. A
user may provide a label for the new PackageConfiguration.

After installing a package in the repository, the configuration for that package may
optionally be updated, or new configurations can be created. In order to update or
create a configuration, the user provides configuration and selection properties, and the
Repository Administrator can then use the createConfiguration or
updateConfiguration operation of the RepositoryManager to effect the update or
creation of a PackageConfiguration.

ComponentPack age
<<Packager>>

Repository
Administrator

1+package 1

Repository Manager
<<Manager>>

1+repository 1

PackageConfiguration
<<Description>>

*+package *

Domain
<<Domain Administrator>>

TargetManager
<<Manager>>

1

1

1

1

Planner
*

+searchPath

*

1

+applic ation

1 1

+resourceData

1

1

+res ourceDataProvider

1

DeploymentPlan
<<Planner>>

<<create>>

ExecutionManager
<<Manager>>

Executor

1+uses 1 1

+targetEnvironment

1

Installs and configures
package in repository.

Plans deployment of application based on
resourceData from resourceDataProvider.
Resolves packages using searchPath.
Produces compatible plan.

Uses p lan. E xecutes it in the
targetEnvironment. (Involves
preparat ion and launch.)
3-6 Deployment & Configuration Draft Adopted Specification June 2003

3

3.9 Planner

The Planner supports planning the deployment of an application.

The Planner has access to a specific PackageConfiguration via a repository reference
and a name: the Planner uses the findConfigurationByName operation of the
RepositoryManager to retrieve the description of the application that is to be deployed.
A user might provide zero or more references to RepositoryManager instances as a
search path to resolve ComponentPackageReference references in the component
package. To resolve such a reference, the Planner passes the specificType from the
ComponentPackageReference to the findLabelsByUID operation of each
RepositoryManager in the search path and selects an appropriate configuration among
all available configurations using implementation defined means. The Planner then
retrieves resource data from a TargetManager using either the getAllResources or
getAvailableResources operation. From this information, the Planner produces a
DeploymentPlan that details a valid deployment of the application into the domain.

The Planner selects a valid DeploymentPlan using implementation defined means.
Usually, there will be many possibilities to deploy an application into a domain, some
of them equivalent – e.g. permutations of distributing component instances among
homogeneous nodes, – some of them can be considered better than others – e.g.
distributing computation-intensive component instances across multiple nodes rather
than executing them on a single node. Selecting plans that are more appropriate than
others in a given context is a quality of implementation issue, possibly influenced by
user input and feedback.

A valid DeploymentPlan describes a deployment of an application using concrete
implementations that match requested selection properties, and an assignment of these
implementations to nodes so that node and interconnection resources match or exceed
the requirements of component and connection instances that are deployed on them.

3.9.1 Finding Valid Deployments

To find a valid deployment, the Planner may have to consider all potential
decompositions of an application, and all potential distributions. One possible
algorithm is to consider a decision tree where inner nodes mark selections of specific
implementations within a component package. The leaves of the tree then represent
decompositions of the application into monolithic implementations. For each
decomposition, the Planner then has to consider all possibilities for distributing
component instances among all nodes until a valid deployment is found. Pseudo code
for this algorithm follows.

1. Initialize a “decision queue” with the top-level package that is to be deployed. This
queue will contain packages for which we still have to decide on an
implementation. Recurse into the algorithm, initializing it with the one-element
decision queue, starting at step 2. If the recursion fails, there is no valid
deployment.

2. Remove the first element from the queue, which identifies a
ComponentPackageDescription.
June 2003 D+C Draft Adopted Spec: Planner 3-7

3

3. For each concrete implementation in the package, go to step 4 to find a valid
deployment. If that fails, backtrack.

4. Match the capabilities of this ComponentImplementationDescription against the
relevant selection requirements (see below). On the top level, i.e. for the
implementations of the top-level component, selection requirements are found in the
PackageConfiguration. On other levels, i.e. for implementations of subcomponents in
an assembly, the selection requirements are found in the
SubcomponentInstantiationDescription. If they are not compatible, return to step 3
and continue iterating over other implementations in this package.

5. If the implementation is assembly-based, then add the packages that provide
implementations for its subcomponents to the decision queue.

6. If the decision queue is not empty, then the application is not fully decomposed yet.
Recurse to step 2. If recursion fails, return to step 3.

7. If the decision queue is empty, then the application has been fully decomposed into
monolithic implementations by the decisions made in step 3. The Planner now has
to consider potential instantiations.

8. Iterate over all permutations of assigning component instances to nodes. For each
permutation, go to step 9 to see whether it identifies a valid deployment. If that
fails, backtrack.

9. For each component instance, consider the node it has been assigned to. Match the
requirements defined by its monolithic implementation against the node’s resources
(see below). If that fails, return to step 8 to consider other permutations.

10. For each connection between component instances, match its connection
requirements against the interconnect and bridge resources that provide the
connection between the nodes that the component instances have been assigned to
(see below). If there is no path between the nodes, or if the interconnects and
bridges are not capable of hosting the connection, return to step 8.

11. Otherwise, the deployment is valid.

This specification does not impose any requirements on the Planner implementation.
The algorithm above is designed to find a valid deployment if one exists. It has been
included for informative purposes and is not normative. Obviously, there are many
techniques for narrowing the search space and for considering more likely
implementations and permutations first, but still, the number of possibilities might be
too large to be practical. Planners are not required to traverse the full search space –
that’s a quality of implementation issue. Planners are also free to either stop after
finding a first valid deployment or to continue searching and to select among valid
deployments – possibly with user feedback.

Steps 4, 9 and 10, the matching of selection properties and the matching of
requirements against resources, are defined in the following sections.
3-8 Deployment & Configuration Draft Adopted Specification June 2003

3

Note – Steps 2, 3 and 5 assume that in order to find a concrete implementation for a
component, only a single package is considered. However, Planner implementations
might consider multiple packages when resolving ComponentPackageReference
elements. Again, this is implementation specific.

3.9.2 Matching Selection Requirements

Both PackageConfiguration and SubcomponentInstantiationDescription define selection
requirements that are matched against implementation capabilities in the
ComponentImplementationDescription for all implementations in the referenced
ComponentPackageDescription.

For each Requirement, the Planner checks whether the
ComponentImplementationDescription has a Capability whose resourceType attribute
includes the resourceType attribute of the Requirement. If not, then the implementation
cannot satisfy the requirements.

The Requirement is then matched against the Resource as described below.

3.9.3 Matching Implementation Requirements

A component instance’s requirements are defined as the sum of all deployment
requirements in its MonolithicImplementationDescription, the
ImplementationArtifactDescription of its primary artifacts and all directly or indirectly
dependent ImplementationArtifactDescription elements (excluding duplicates). The
“sum” of all requirements is the concatenation of all Requirement elements into a single
list.

For each Requirement, the Planner checks whether the Node has a Resource (or
SharedResource – resources and shared resources are treated the same) whose
resourceType attribute includes the resourceType attribute of the Requirement. If not,
then the Node is not capable of hosting the component implementation.

The Requirement is then matched against the Resource as described below.

3.9.4 Matching Connection Requirements

Connection requirements are described as part of an assembly in the deployRequirement
attribute of the AssemblyConnectionDescription. Connections between two component
ports can be made up of multiple segments if the two components belong to different
assemblies, e.g. two segments to connect the components to external ports of their
respective assemblies, and another segment to connect the two components (that are
implemented by the assemblies) in the assembly-based implementation of a
supercomponent. In that case, the requirements for the connection is the sum of all
deployment properties of all its segments. The “sum” of all requirements is the
concatenation of all Requirement elements into a single list.
June 2003 D+C Draft Adopted Spec: Planner 3-9

3

Note – Considering point-to-point connections between two ports is the worst-case
scenario. In some domains, if a connection has more than two endpoints, part or all of
the communication path could be shared – e.g. if events are broadcast using UDP.
Planners that are aware of this situation can account for capacities appropriately.

Connection requirements must be matched against the resources of the interconnects
and bridges that the connection is routed over, as defined by the communication path
between the nodes that the components that are the endpoints to the connection are
instantiated on.

Note – This specification assumes that a single communication path is implied by its
two endpoints.

For each Requirement, the Planner checks whether all Interconnect and Bridge elements
in the communication path have a Resource whose resourceType attribute includes the
resourceType attribute of the Requirement. If not, then routing the connection is not
possible.

The Requirement is then matched against all these Resource elements as described
below. If any match fails, then routing the connection is not possible.

3.9.5 Matching a Resource against a Requirement

For every Property that is part of the Requirement, there must be a SatisfierProperty
among the property elements of the Resource whose name attribute equals the name
attribute of the requirement’s property. If there is no SatisfierProperty of matching
name, then the Resource cannot satisfy the Requirement.

Each Property is then matched against the SatisfierProperty according to the rules set
forth for the kind of SatisfierProperty, as described in the documentation for
SatisfierPropertyKind, to determine if the Resource meets this specific requirement.

The Resource meets the Requirement if and only if the above test succeeds for all
Property elements that are part of the Requirement.

3.10 Executor

The Executor supports preparation of a DeploymentPlan and the launch of the
application, possibly, but not necessarily, in a single step.

For preparation, the Executor reads the DeploymentPlan and passes it to the
preparePlan operation of the ExecutionManager. The Executor stores the
DomainApplicationManager reference that is returned.
3-10 Deployment & Configuration Draft Adopted Specification June 2003

3

To launch an application, the Executor remembers the DomainApplicationManager
reference that was the result of preparation, and calls the startLaunch operation,
passing configuration properties if desired. The DomainApplicationManager returns a
DomainApplication reference and the connections that are provided by the application
on external ports.

The Executor then calls the finishLaunch operation on the DomainApplication, passing
connections to the application’s external ports if desired.

The Executor can either set the start parameter to the finishLaunch operation to true in
order to start the DomainApplication, or it can later call the start operation separately.
June 2003 D+C Draft Adopted Spec: Executor 3-11

3

The above figure shows the sequence of events that are exchanged between the
Executor and the deployment system as well as events within the domain.

 : Executor
 : TargetManager

 : Do ma inA ppl ic at ion Ma nage r

 : DomainApplication

 : NodeMa nager

 :
NodeApplicati onManager

 : No deApp licati on

 : ExecutionManager

preparePlan(DeploymentPlan, Boolean)

preparePl an(Dep loymentPlan)

c alled for e ach
no de in the
plan

startL aunc h(Seque nce(Prope rty), Seq uenc e(Conne ction))

startLaunch(Sequence(Property), Sequence(Connection))

commitResources(DeploymentPlan)

finishLaunch(Sequence(ProvidedReference), Boolean)

called for each
node in the
plan

finishLaunch(Connection, Boolean)

called for each
node in the
plan

Application is
now running

de stro yApp licati on(Appli catio n)

destroyAppl ication(NodeAppl ication)

releaseResources(DeploymentPlan)

destroyMa nage r(Domai nApp li cat ionM an ag...

destroyManager(NodeApplicationManager)
3-12 Deployment & Configuration Draft Adopted Specification June 2003

UML Profile for D+C Tool Support 4
Contents

This chapter includes the following topics.

“Proposals may define textual or graphical notation(s) for the description of software
and hardware infrastructures of distributed execution environments as well as to
express configuration and deployment constraints for components or assemblies of
components. If a proposal does so, it must define the relationship between the models
provided by it and the notation(s) defined.”

The main objectives of the UML Profile for D&C Tool Support are:

• to define the notation necessary to support the component-based application
development process and target environment description, as described in chapter 2

• to enable the automatic generation of D&C descriptors from component assembly
and target models.

The UML Profile for D&C Tool Support provides tool vendors with the foundation
they need to develop UML tools that support the deployment and configuration of
component-based distributed applications. The current D&C specification is composed
of three main parts: Component, Target, and Deployment. This profile addresses the
first two. The description of the deployment infrastructure is outside the scope of the

Topic Page

“Structure of the Profile” 4-2

“Package Components” 4-4

“Package Targets” 4-14
June 2003 Deployment & Configuration Draft Adopted Specification 4-1

4

current UML Profile for D&C Tool Support, and will need to be addressed seperately.
Currently UML allows deployment planners to define an explicit deployment plan by
statically associating component with nodes.

The concepts and notation defined by this profile allows application developers to use
UML to completely model the configuration of components, the assembly of
components from other components, and the target environments into which
components can be deployed.

The development of tools to support the D&C specification, based on the UML Profile
for D&C Tool Support, offers many important advantages:

• enables the integration of model validation techniques that will allow eliminating
errors at the application design stage

• eliminates errors in the production of descriptors

• makes the component and target models independent of the specific format of the
descriptors, which allow changing the format without having to change the models

• enables the integation with existing UML-based MDA tools

4.1 Structure of the Profile

The UML Profile for D&C Tool Support is defined using the profiles mechanism
defined in UML 2.0.

The UML Profile for D&C Tool Support is composed of a set of stereotypes that are
defined as extensions of UML 2.0 metaclasses. In particular, the D&C Profile for Tool
Support extends metaclasses defined in the UML 2.0 Component, Composite
Structures, and Deployment packages. The dependencies between the D&C Profile for
Tool Support and UML 2.0 packages is illustrated in Figure 4-1.
4-2 Deployment & Configuration Draft Adopted Specification June 2003

4

Figure 4-1 Dependencies between the UML Profile for D&C Tool Support and UML 2.0
packages

The set of stereotypes that compose the UML Profile for D&C Tool Support are
grouped in two disctinct packages: Component and Target. The Component package
defines the set of stereotypes that are used to model a component-based distributed
application. The Target package defines the set of stereotypes that are used to model a
distributed deployment target.

The content of these packages is defined in the next two sections (Section 4.2,
“Package Components,” on page 4-4 and Section 4.3, “Package Targets,” on
page 4-14). The dependencies between the Component and Target packages and the
UML 2.0 packages are illustrated in Figure 4-2.

UM LPro fi leForD&C
T oo lSupport

Dep loym en ts

(from UM L)

Com pon ents

(f rom UM L)

Com posi teS tructu res

(from UM L)
June 2003 D+C Draft Adopted Spec: Structure of the Profile 4-3

4

Figure 4-2 Dependencies between the Component and Target packages and UML 2.0 packages

4.2 Package Components

The Component package defines the set of stereotypes that are used to model a
component-based distributed application. The list of stereotypes currently defined in
the Component package includes: Component, ComponentAssembly, Connection, Port,
and Artifact.

This section defines the set of stereotypes contained in the package Components.

Components T arget

Components

(from UML)

Comp osi t eStructu res

(f rom UML)

Deployments

(f rom UML)
4-4 Deployment & Configuration Draft Adopted Specification June 2003

4

Figure 4-3 Components package

Figure 4-4 Component implementation relationships

MonolithicImplementation
<<stereotype>>

Component
(from BasicComponents)

<<metaclass>>

DnCComponents

(from UMLProfileForDnCToolSupport)

Port
<<stereotype>>

Port
(from Ports)

<<metaclass>>

Class
(from Kernel)

<<metaclass>>

<<extension>> <<extensi on>>

Connector
(from BasicComponents)

<<metacl ass>>

Class
(from StructuredClasses)

<<metacl ass>>

{required} {required}

PropertyConnector
<<stereotype>>

Property
<<stereotype>>

Property
(from InternalStructures)

<<extension>>
<<extension>>

ComponentImplementation
<<stereotype>>

Class
(from Kernel)

<<metacl ass>>

<<extensi on>>

Component
<<stereotype>>

<<extension>>

ComponentAssembly
<<stereotype>>

<<extension>>

ExternalReference
<<metaclass>>

PortConnector
<<stereotype>>

<<extension>>

Connectabl eElement
(from InternalStructures)

<<metaclass>>

<<extension>>

ComponentAssembly
<<stereotype>>

Component
<<stereotype>>

0..*

1..*

+assembly

0..*

+containedComponent

1..*
{complete}

MonolithicImplementation
<<stereotype>>

ComponentImplementation
<<stereotype>>

0..*+implementedComponent

+implementation

0..* Property
<<stereotype>>

0..*

+configProperty

0..*
June 2003 D+C Draft Adopted Spec: Package Components 4-5

4

Figure 4-5 ComponentAssembly Stereotype

4.2.1 Capability

Description

Capability is used to describe an implementation’s capabilities, which are matched
against selection requirements.

Attributes

name: String An optional name for the requirement satisfier.
resourceType: Sequence(String) The resource types that can be satisfied by this satisfier.

Associations

No associations

Port
<<stereotype>>

ComponentAssembly
<<stereot yp e>>

1..*
+/ExternalPort

1..*

PropertyConnector
<<stereotype>>

0..*
+ownedPropertyConnector

0..*

{On e o f th e conn ected
Pro perti es must be a Pro perty
of the ComponentAssembly}

Component
<<stereotype>>

1..*

+ownedPort

1..*

1.. *
0..*

+contai nedCom ponen t 1.. *
0..*

Property
<<stereotype>>

0.. *+/assemb lyProp erty 0.. * 0..*+configProperty0..*

2..*
+con nected Pro perty

2..*+co nnector

Compo nent Implementatio n
<<stereotype>>

0..*

+implementation

0..*
+implementedComponent

PortConnector
<<stereotype>>

2..*

+conn ectedPo rt

2..*

+connector

0.. *

+ownedPortConnector

0.. *

ExternalReference
<<metaclass>>

0..*0..*

+externalReference

{A PortConector connects two or more
ConnectableElements, which are either of
type Port or ExternalReference.
Also, at least one of the
ConnectableElements must be of ty...
4-6 Deployment & Configuration Draft Adopted Specification June 2003

4

4.2.2 Component (Stereotype)

Description

The Component metaclass extends the UML Component metaclass (from
UML2.0::Components). In UML 2.0, a component is defined in terms of its set of ports
and has references to its realizations.

The Component stereotype is defined as “required”, which means that every instance
of the Component metaclass must be associated with an instance of the Component
stereotype.

Attributes

label: String An optional human-readable label for the component.
UUID: String An optional unique identifier for this component.

Associations

implementation: ComponentImplementation [0..*]
References the Classifiers of which the Component is an abstraction,
i.e. that realize its behavior. This association renames the “realiza-
tion” association owned by Component (from UML2.0::Compo-
nents::Component).

configProperty: Property [*] Contains the set of configurable properties of the component. These
configuration properties are used to configure the component once
instantiated. This allows the definition of configuration properties in
a package regardless of which implementation is chosen. config-
Property is a subset of the ownedAttribute association of Compo-
nent (inherithed from
UML2.0::CompositeStructures::InternalStructures::StructuredClas-
sifier).

ownedPort: Port [*] Contains the set of ports of the component.These configuration
properties are used to configure the component once instantiated.
This allows the definition of configuration properties in a package
regardless of which implementation is chosen. ownedPort is a re-
naming of the ownedPort association of Component (inherithed
from UML2.0::CompositeStructures::Ports::EncapsulatedClassifi-
er).

Note – Definition. Component (from UML2.0::Components): A component represents
a modular part of a system that encapsulates its contents and whose manifestation is
replaceable within its environment. A component defines its behavior in terms of
provided and required interfaces. As such, a component serves as a type, whose
conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics). One component may therefore be
substituted by another only if the two are type conformant. Larger pieces of a system's
functionality may be assembled by reusing components as parts in an encompassing
component or assembly of components, and wiring together their required and
provided interfaces. A component is modeled throughout the development life cycle
June 2003 D+C Draft Adopted Spec: Package Components 4-7

4

and successively refined into deployment and run-time. A component may be manifest
by one or more artifacts, and in turn, that artifact may be deployed to its execution
environment. A deployment specification may define values that parameterize the
component’s execution.

4.2.3 ComponentAssembly (Stereotype)

Description

In spite of the fact that UML 2.0 allows for the recursive definition of components in
terms of subcomponents (based on the fact that a UML 2.0 Component is a
specialization of UML2.0::StructuredClass::Class), the concept of component
assembly is not explicitely defined in UML 2.0. The ComponentAssembly stereotype
specilizes the UML 2.0 Class metaclass from StructuredClasses
(UML2.0::CompositeStructures::StructuredClasses). It is a subclass of the
ComponentImplementation stereotype.

A ComponentAssembly is a classifier whose behavior is fully described by the
collaboration of a set of components. A ComponentAssembly is defined in terms of a
set of components (subcomponents) and the set of connections that connect
components.

A ComponentAssembly is defined as an implementation of a Component.

A ComponentAssembly also has a two derived attributes: ports, that contains the set of
external ports of the assembly implements, and properties, that contains the set of
properties of the assembly. These two attributes are derived from the component the
assembly implements. The ports and properties of the implemented component must be
allocated to ports and properties of sub-components contained in the
ComponentAssembly.

Attributes

No additional attributes.

Associations

/assemblyProperty: Property [0..*] Contains the set of properties of the assembly. This association is de-
rived from the Component the assembly implements.

/externalPort: Port [0..*] Contains the set of external ports of the assembly. This association
is derived from the Component the assembly implements.

containedComponent: Component [1..*]
Describes the set of Components contained in the Componen-
tAssembly (i.e. subcomponents). This association is a subset of the
“role” association owned by the StructuredClassifier
(UML2.0::CompositeStructures::InternalStructures::Structured-
Classifier).

ownedPortConnector: PortConnector [*]
Describes the set of PortConnectors owned by the Componen-
tAssembly. This association is a subset of the ownedConnector as-
4-8 Deployment & Configuration Draft Adopted Specification June 2003

4

sociation owned by
UML2.0::CompositeStructures::InternalStructures::StructuredClas-
sifier

ownedPropertyConnector: PropertyConnector [*]
Maps the external properties of the component that is implemented
by the assembly to properties of subcomponent instances. Describes
the set of PropertyConnectors owned by the ComponentAssembly.
This association is a subset of the ownedConnector association
owned by UML2.0::CompositeStructures::InternalStruc-
tures::StructuredClassifier

4.2.4 ComponentImplementation (Stereotype)

Description

The ComponentImplementation stereotype is an extension of the UML 2.0 Class
metaclass (from UML2.0::Kernel). A ComponentImplementation is an abstract class
that contains the defines the attributes and associations that are common to the
different types of component implementations (MonolithicImplementation and
ComponentAssembly).

A ComponentImplementation describes a specific implementation of a component
interface. This implementation can be either assembly based or monolithic. The
ComponentImplementation may contain configuration properties that are used to
configure each component instance (“default values”). Implementations may be tagged
with user-defined capabilities. Administrators can then select among implementations
using selection requirements; Assemblers can place requirements on implementations.

Attributes

capacityt: Sequence(Capacity) Tags that can be used to discriminate between implementations.

Associations

deployRequirement: Requirement [1..*]

Requirements that are matched against node resources at deploy-
ment time.

4.2.5 ExternalReference (Stereotype)

Description

The ExternalReference stereotype is an extension of the UML 2.0 ConnectableElement
metaclass (from UML2.0::CompositeStructures::InternalStructures). It identifies a
location outside the assembly as an endpoint of a PortConnector. Whether the endpoint
is a provider or user port is implied by the URL, and its type is assumed to be
compatible with the connection.
June 2003 D+C Draft Adopted Spec: Package Components 4-9

4

Attributes

location: URL References a port outside of the assembly that is to be an endpoint
of this connection, which is resolved at execution time.

Associations

No associations.

4.2.6 PortConnector (Stereotype)

Description

The PortConnector stereotype is an extension of the UML 2.0 Connector metaclass
(from UML2.0::Components::BasicComponents). A PortConnector connects a set of
compatible ports.

Attributes

label: String Optionally identifies this connection within its assembly. May be
used or generated by visual design tools.

Associations

connectedPort: Port [1..*] The set of Ports connected by the PortConnector. This association is
a subset of the “end” association owned by UML2.0::Composite-
Structures::InternalStructures::Connector.

externalReference: externalReference [*]
The set of ExternalReferences connected by the PortConnector. This
association is a subset of the “end” association owned by
UML2.0::CompositeStructures::InternalStructures::Connector.

4.2.7 Constraints

A PortConector connects two or more ConnectableElements, which are either of type
Port or ExternalReference.

Also, at least one of the ConnectableElements must be of type Port.

Note – Definition. Connector (from UML2.0::Components::BasicComponents): The
connector concept is extended in the Components package to include interface based
constraints and notation. A delegation connector is a connector that links the external
contract of a component (as specified by its ports) to the internal realization of that
behavior by the component’s parts. It represents the forwarding of signals (operation
requests and events) : a signal that arrives at a port that has a delegation connector to a
part or to another port will be passed on to that target for handling. An assembly
connector is a connector between two components that defines that one component
4-10 Deployment & Configuration Draft Adopted Specification June 2003

4

provides the services that another component requires. An assembly connector is a
connector that is defined from a required interface or port to a provided interface or
port.

Note – One of the issues in the D&C is that a single connector can at the same time
connect ports of peer components in an assembly and ports of internal components to
external ports, i.e. delegation ports. So according to the UML 2.0 spec, we have
connectors that have both a delegation connector capability and an assembly connector
capability. The D&C concept of PortConnector is based on the ECAD (circuit design,
netlist) model. It fully expresses the idea that a set of ports can be connected together
just like a "signal" (say "the reset signal") can be connected to many "pins" of the
components (chips) of a circuit. This allows the expression of connections that are
point to point (one provider and one user) as well as those with multiple users (line
many clients for one server, many event producers for one consumer), multiple
providers (like a multicast channel), or multiple of both (like a multicast event channel
with multiple listeners). Also, in network systems, you want to talk about a flow that
represents the traffic between a set of users and providers so you can plan, manager,
and configure it as a whole. If the only means of expression is point to point
connections, there is no way to talk about the aggregate "connection". This "richness"
has been used in network, circuit, and chip design systems for decades.

4.2.8 PropertyConnector (Stereotype)

Description

The PropertyConnector stereotype is an extension of the UML 2.0 Connector metaclass
(from UML2.0::Components::BasicComponents). A PropertyConnector connects
properties of a ComponentAssembly to properties of sub-Components.

Attributes

label: String Optionally identifies this connection within its assembly. May be
used or generated by visual design tools.

Associations

connectedProperty: Property [2..*] The set of Properties connected by the PropertyConnector. This as-
sociation is a subset of the “end” association owned by
UML2.0::CompositeStructures::InternalStructures::Connector.

Constraints

One of the connected Properties must be a Property of the ComponentAssembly.

June 2003 D+C Draft Adopted Spec: Package Components 4-11

4

4.2.9 MonolithicImplementation (Stereotype)

Description

The MonolothicImplementation stereotype is an extension of the UML 2.0 Class
metaclass (from UML2.0::Kernel). It is a subclass of the ComponentImplementation
stereotype. A MonolithicImplementation is a class that contains the implementation of
a component.

Attributes

deployRequirement: Requirement [1..*]

Requirements that are matched against node resources at deploy-
ment time.

Associations

No additional associations.

4.2.10 Port (Stereotype)

Description

The Port stereotype is an extension of the UML 2.0 Port metaclass (from
UML2.0::CompositeStructure::Ports).

The Port stereotype is defined as “required”, which means that every instance of the
Port metaclass must be associated with an instance of the Port stereotype.

Attributes

name: String The name of the port.
UID: String The primary type of the port.
supportedType: Sequence(String)All types supported by this port, including the primary and inherited

types. All of the types listed in this attribute are acceptable for a con-
nection.

provider: Boolean Identifies whether the port acts in the role of provider or user, for any
connection attached to it.

exclusiveProvider: Boolean If set to true, then this port expects that there is at most one provider
on the connection that it is an endpoint to.

exclusiveUser: Boolean If set to true, then this port expects that there is at most one user on
the connection that it is an endpoint to.

optional: Boolean Identifies whether connecting this port is optional or mandatory.

Associations

No additional associations.
4-12 Deployment & Configuration Draft Adopted Specification June 2003

4

Note – Restriction. In UML 2.0, a Port can be associated with both required and
provided interfaces. In this D&C specification, a Port is restricted to be associated with
either required interfaces (user Port) or provided interfaces (provider Port). An OCL
constraint could be added to formally express this restriction.

4.2.11 Property (Stereotype)

Description

The Property stereotype is an extension of the UML 2.0 Property metaclass (from
UML2.0::CompositeStructures::InternalStructures). A Property has a name and a typed
value. It is used to carry named and typed values in various places. In the context of
D&C, components have configuration properties.

Attributes

No additional attributes.

Associations

No additional associations.

4.2.12 Requirement

Description

Requirements are used to express the fact that an implementation artifact or connection
has requirements that must be fulfilled by resources in the target environment. The
resource type must match the type of a resource.

Attributes

resourceType: String Identifies the resource type.

Associations

properties: Property [*] Properties associated with the resource.

4.3 Package Targets

The Target package defines the set of stereotypes that are used to model a distributed
deployment target. The list of stereotypes currently defined includes: Bridge,
CommunicationPath, Domain, Interconnect, Node, Resource, and SharedResource.

This section defines the set of stereotypes contained in the package Targets.
June 2003 D+C Draft Adopted Spec: Package Targets 4-13

4

Figure 4-6 Targets package

DnCTarget

(f rom UMLProf ileFo rDnCToolSupport)

Domain
<<stereotype>>

Node
(from Nodes)

<<metaclass>>

CommunicationPath
(from Nodes)

<<metacl ass>>

{required}{required}

Class
(from StructuredClasses)

<<metaclass>>

<<extension>>

Node
<<ste reo type>>

<<extension>>

Resou rce
<<stereotype>>

SharedResource
<<stereotype>>

CommunicationPath
<<stereotype>>

<<extension>>

Bridge
<<stereotype>>

Interconnect
<<ste reo type>>

{all ends of a Bridge are
typed by Interconnects}

AssociationClass
(from AssociationClasses)

<<metaclass>>

<<extension>><<extension>>

{all ends of an Interconnect are
typed by either Node or Bridge}

Class
(from Kernel)

<<metaclass>>

<<extension>> <<extension>>
4-14 Deployment & Configuration Draft Adopted Specification June 2003

4

Figure 4-7 Domain stereotype definition

4.3.1 Bridge (Stereotype)

Description

The Bridge stereotype extends the UML 2.0 AssociationClass metaclass (from
UML2.0::AssociationClasses). A Bridge is a special type of association that connects
two or more interconnects.

A Bridge exists between Interconnects to describe an indirect communication path
between nodes. If a connection is to be deployed between components that are
instantiated on nodes that are not directly connected, therefore requiring bridging, the
connection's requirements must be satisfied by the resources of each interconnect and
bridge in between.

Attributes

name: String The bridge’s name.
label: String An optional human-readable label for this bridge.

Associations

interconnect: Interconnect [1..*] The Interconnects that this Bridge provides connectivity to.
ownedResource: Resource [*] Set of Resources owned by the Bridge.

0..*{Interconnect cannot be
associated with Resources of
type SharedResource}

{A Resource is exclusively
owned by either a Node,
an Interconnect, or a
bridge}

Communi cationPath
<<stereotype>>

Interconnect
<<stereotype>>

1..*

+communicationPath

+interconnect
1..*

Domain
<<stereotype>>

0..*

0..*

+containedCommunicati onPath
0..*

+containingDomain
0..*

SharedResource
<<stereotype>>

0..*

0..*

+domainResource
0..*

+containi ngDomain
0..*

Node
<<stereotype>>

1..*

0..*+/connectedNode

1..* +/communi cationPath

0..*

1..*

0..*

+connectedNode
1..*

+nodeConnector 0..*

1..*

0..*

+contained Node
1..*

+containingDomain
0..*

0..*

0..*+availableSharedResource

0..* +resourceUser
0..*

{A SharedRsource can only be
associ ated with Nodes, not
Interconnect}

Bridge
<<stereotype>>

0..*

+communicationPath

+bridge

0..*1..*

0..*

+interconnect

1..*
+bridge

Resource
<<stereotype>>

0..*
0..1

+ownedResource

0..*

+resourceOwner

0..1

0..*

0..1

+ownedResource
0..*

+resourceOwner
0..1

0..*0..*
+ownedResource

+resourceOwner
June 2003 D+C Draft Adopted Spec: Package Targets 4-15

4

communicationPath: CommunicationPath [1]
Reference the CommunicationPath the Interconnect belongs to.

Constraints

The name must be unique within the domain.

4.3.2 CommunicationPath (Stereotype)

Description

The CommunicationPath stereotype extends the UML 2.0 CommunicationPath
metaclass (from UML2.0::Deployments::Nodes). A CommunicationPath connects two
or more Nodes (as opposed to only two nodes for UML 2.0 Node). A
CommunicationPath may be composed of one or more Interconnects and zero or more
Bridges.

Attributes

No additional attributes.

Associations

interconnect: Interconnect [1..*] Set of Interconnect contained in the CommunicationPath.
bridge: Bridge [*] Set of Bridges contained in the CommunicationPath.
/connectedNode: Node [*] Set of Nodes that uses the sharedResource. This association is de-

rived from the Interconnect::connectedNode association.

4.3.3 Domain (Stereotype)

Description

The Domain stereotype extends the UML 2.0 Class metaclass (from
UML2.0::CompositeStructures::StructuredClasses). A Domain is defined as a set of
Nodes, CommunicationPaths, and SharedResources. In a Domain, Nodes are connected
using CommunicationPaths. It represents the entire target environment.

Attributes

label: String An optional human-readable label for the domain.
UUID: String An optional unique identifier for this domain.

Associations

containedNode: Node [1..*] Node elements that belong to the domain.
containedCommunicationPath: CommunicationPath [*]

CommunicationPaths that provide connections between nodes.
domainResource: SharedResource [*]

Shared resources that belong to the domain.
4-16 Deployment & Configuration Draft Adopted Specification June 2003

4

Constraints

The top-level elements in a domain all have name attributes. These names must be unique within the do-
main.

4.3.4 Interconnect (Stereotype)

Description

The Interconnect stereotype extends the UML 2.0 AssociationClass metaclass (from
UML2.0::AssociationClasses). It establishes connection between a set of Nodes and
Bridges.

An Interconnect provides a shared direct connection between one or more nodes. It can
have resources, but no shared resources. Resources are matched against a connection's
requirements at deployment time.

An Interconnect that is attached to only a single node can be used to describe the
loopback connection. A loopback connection is implicit; components can always be
interconnected locally. Sometimes, it may be useful or necessary to describe the type(s)
of available loopback connections (e.g. “shared memory”), or their resources or
capabilities (e.g. latency).

Attributes

name: String The interconnect’s name.
label: String An optional human-readable label for the interconnect.

Associations

connectedNode: Node [1..*] Set of nodes that the Interconnect is connected to.
bridge: Bridge [*] The bridges that provide connectivity to other interconnects.
ownedResource: Resource [*] Set of Resources owned by the Interconnect.
communicationPath: CommunicationPath [1]

Reference the CommunicationPath the Interconnect belongs to.

Constraints

The name must be unique within the domain

4.3.5 Node (Stereotype)

Description

The Node stereotype extends the UML 2.0 Node metaclass (from
UML2.0::Deployments::Nodes).
June 2003 D+C Draft Adopted Spec: Package Targets 4-17

4

Nodes are connected to zero or more CommunicationPaths that enable components that
are instantiated on this node to communicate with components on other nodes. Nodes
may own resources and may have access to shared resources that are shared between
nodes.

Attributes

name: String The node’s name.
label: String An optional human readable label for the node.

Associations

nodeConnector: Interconnect [*] Set of Interconnect to which the node is connected.
/communicationPath: CommunicationPath [*]

Set of CommunicationPath to which the node is connected. This as-
sociation is derived from the Interconnect::communicationPath as-
sociation.

ownedResource: Resource [*] Set of resources owned by the Node.
availableSharedResource: SharedResource [*]

Set of SharedResources that the Node has access to.

Constraints

The name of the Node must be unique within the Domain (see above).

4.3.6 Resource (Stereotype)

Description

The Resources stereotype extends the UML 2.0 Class metaclass (from
UML2.0::Kernel).

Resource represent features within the target environment. They are matched against
implementation requirements at deployment planning time.

Attributes

name: String An optional name for the requirement satisfier.
resourceType: Sequence(String) The resource types that can be satisfied by this resource.

Associations

No additional associations.

Constraints

The name of a Resource must be unique within the container.
A Resource is exclusively owned by either a Node, an Interconnect, or a bridge.
4-18 Deployment & Configuration Draft Adopted Specification June 2003

4

4.3.7 SharedResource (Stereotype)

Description

The SharedResources stereotype extends the UML 2.0 Class metaclass (from
UML2.0::Kernel). It is a specialization of the Resource stereotype.

Shared resources are resources that are shared between nodes. They are semantically
equivalent to “normal” resources; however, the planner must make sure that a shared
resource is not exhausted by using it from multiple nodes in parallel.

Attributes

No additional attributes.

Associations

resourceUser: Node [1..*] Set of nodes that have access to the SharedResource.

Constraints

The name of the SharedResource must be unique within the domain.
A SharedRsource is a type of Resource that can only be associated with Nodes.
June 2003 D+C Draft Adopted Spec: Package Targets 4-19

4

4-20 Deployment & Configuration Draft Adopted Specification June 2003

PSM for CCM 5
Contents

This chapter includes the following topics.

5.1 Introduction

This chapter describes the mapping of the platform-independent model for Deployment
and Configuration to the CORBA Component Model platform. It is intended to be a
replacement for the Packaging and Deployment chapter of the CCM specification in
CORBA 3.0 as well as the XML DTD chapter (chapters 6 and 7 of the latest document

Topic Page

“Introduction” 5-1

“Definition of Meta-Concepts” 5-3

“PIM to PIM for CCM Transformation” 5-4

“PIM for CCM to PSM for CCM for IDL Transformation” 5-6

“PIM for CCM to PSM for CCM for XML
Transformation”

5-10

“Mapping Discussion” 5-14

“Miscellaneous” 5-16

“Impact on the CCM Specification” 5-20

“Migration Issues” 5-20

“Metadata Vocabulary” 5-21
June 2003 Deployment & Configuration Draft Adopted Specification 5-1

5

from the CCM RTF 1.1, ptc/02-08-03). Issues of migration and compatibility to this
previous CCM deployment specification are addressed in Section 5.9, “Migration
Issues,” on page 5-20.

The D&C data models are used in two different ways, first for persistent storage and
distribution of information, and second for representing data at runtime. For persistent
storage and distribution, the data models are mapped to XML schemas, so that
information can be stored in XML files according to the model. We frequently use the
term (and stereotype) description for the classes that define the data model. We use the
term “descriptor” to refer to the XML file that contains the data. For runtime, the data
models are mapped to IDL data structures.

The management classes are runtime entities and mapped to IDL interfaces only.

This section does not include XML schema and IDL files, since both are generated
according to rules. However, these files are supplied with this specification to show the
results of this rule-based file generation. The rules that will be used to auto-generate
these files from the platform independent model use stereotype classes and associations
appropriately and then use rules set forth in the UML profile for CORBA.

This chapter defines three transformations and two mappings.

The first transformation, T1 (PIM to PIM for CCM), takes the platform-independent
model, and refines it into a platform independent model for CCM. In this PIM for
CCM, the abstract meta-concepts are concretized, and also some other classes are
aligned with the CORBA Component Model.

Platform
Independent Model

PIM for CCM

PSM for CCM for
IDL

PSM for CCM for
XML

IDL XML Schema

(T1)

(T2) (T3)

(M1)
(M2)
5-2 Deployment & Configuration Draft Adopted Specification June 2003

5

The second transformation T2 (PIM for CCM to PSM for IDL) takes the PIM for CCM
and transforms it into a PSM for CCM for IDL that can be used to generate concrete
IDL from the model. The third transformation T3 (PIM for CCM to PSM for CCM for
XML) creates a PSM for CCM for XML that can be used to generate concrete XML
schemas.

The motivation for transformations T2 and T3 is to transform the PIM into PSMs so
that generic, rule-based mappings M1 and M2 can be used. (Note that some classes
have different representations in IDL and XML, for example the <ClassName>Any
class, prohibiting IDL and XML schema generation from the same model.) The
motivation for transformation T1 is that some CCM specific transformations are
necessary that are independent of the mapping to IDL or XML.

The M1 mapping is realized using the UML Profile for CORBA, the M2 mapping is
defined in Chapter 6, “Mapping to XML Schema.”

5.2 Definition of Meta-Concepts

This section provides a concrete definition for the classes that are abstract in the PIM.
This section is unrelated to the transformations, which will be described in the
following sections.

5.2.1 Component

The abstraction of Component in the PIM is mapped to both components and homes for
the CCM platform. Components in CCM have an interface, attributes and ports. Homes
do not have ports, but an interface and attributes. Both components and homes have
explicitly “supported” interfaces in addition to the “equivalent” interface, that inherits
all supported interfaces, and includes attributes and explicit operations in the
component and home interface definitions.

Viewing homes as a kind of component allows this specification’s model to deploy
homes (by themselves or as part of an assembly). Applications or other components in
an assembly can then use the home to create component instances at runtime. This
supports the full feature set of CCM, without requiring explicit home implementations.

If a CCM home or component supports an interface, their
ComponentInterfaceDescription has a special port named “supports” that can be used in
connections for any of the “supported” interfaces. If, in an assembly, a connection is to
be provided by any of the component’s or home’s supported interfaces, then the port
name of the ComponentExternalPortEndpoint or SubcomponentPortEndpoint class is
“supports.” For CCM homes, this port also provides their equivalent interface. The
“supports” port for CCM components does not provide the equivalent interface, since
this would be problematic for assembly implementations of components. Home
implementations are always monolithic. (Note that in CCM 3.0, assemblies did not
allow connections to a component’s equivalent interface either.)

Configuration properties of components, as described by the
ComponentPropertyDescription class, are attributes in the component or home interface
or any inherited component or home interface, but not in any supported interface.
June 2003 D+C Draft Adopted Spec: Definition of Meta-Concepts 5-3

5

Note – The “supports” magic name has been chosen because it reflects the supported
interface. Because it is an IDL keyword, it has little likelihood of conflicting with other
port names.

5.2.2 ImplementationArtifact

The meta-concept of ImplementationArtifact is mapped to a file accessible by URL. This
PSM still treats files as opaque. Agreement between the author of an implementation
and the NodeManager over the contents of an implementation artifact is assumed. This
agreement, or “contract,” is expressed in terms of execution parameters and an
implementation’s dependencies on resources provided by the node.

5.2.3 Package

The meta-concept of a package is mapped to a ZIP file accessible by URL, that
includes implementation artifacts and descriptors. Packages have the “.cpk” extension
and must contain a single Toplevel Package Descriptor containing a
<ClassName>ToplevelPackageDescription element with the magic name
“package.pcd.”

5.3 PIM to PIM for CCM Transformation

This section defines transformation T1 (as described in the introduction for this
chapter). It takes the platform-independent model from Chapter 2 and aligns classes
with the CORBA Component Model. This involves changes to attributes, associations
and semantics of some classes. All classes from the PIM that are not refined here are
imported into the PIM for CCM without change.
5-4 Deployment & Configuration Draft Adopted Specification June 2003

5

5.3.1 ComponentInterfaceDescription

The ComponentInterfaceDescription and ComponentPortDescription classes are
augmented to support CCM.

The idlFile attribute is added to the ComponentInterfaceDescription. If it is not the
empty string, it contains a URL that references an IDL file that contains the definition
for this component or home. The IDL file is not used within the deployment
infrastructure; it may be included in a package for convenience. Since deployable
applications have a component interface, some tools that deploy and execute such
applications might need the IDL to interact with the ports of the application’s
component interface.

The kind attribute is added to the ComponentPortDescription class and specifies the
concrete port kind that is used. This information is required by the NodeManager and by
assembly tools. In CCM, EventConsumer and Facet ports are considered providers,
the other ports are users.

Repository Id strings are used to identify interface types, i.e. for the specificType and
supportedType attributes.

For Facet ports, supportedType lists the Repository Id of the provided interface and
any of its base interfaces that the developer (or tool) chooses to expose for connections.
For receptacles, supportedType lists the Repository Id of the accepted interface. For
EventEmitter and EventPublisher ports, supportedType lists the Repository Id of the
accepted consumer interface. For EventConsumer ports, supportedType lists the
Repository Id of the consumer interface and any of its base interfaces that the
developer (or tool) chooses to expose for connections.

If the component or home supports one or more interfaces, this will be reflected by a
ComponentPortDescription element of kind Facet with the magic name “supports.” The
specificType attribute is left empty, the supportedType attribute lists the Repository
Id of any of its supported interfaces and base interfaces that the developer wants to
expose for connections.

CCMComponentPortKind
<<enumeration>>

Facet
SimplexRec eptacle
MultiplexReceptacle
EventEm it ter
EventPublisher
EventCons umer

ComponentPortDescription
<<Specifier>>

name : String
specificType : String
supportedType : S equence(S tring)
provider : Boolean
exclusiveProvider : Boolean
exclusiveUser : Boolean
optional : Boolean

1

+kind

1

Property
(from Deployment and Configuration)

<<Description>>

ComponentPropertyDescription
(from Deployment and Configuration)

<<Specifier>>

ComponentInterfaceDesc ription
<<Specifier>>

s pecificType : String
s upportedType : S equence(S tring)
UUID : S tring
idlFile : St ring

*+port *

*

+configProperty

*

*
+property

*

June 2003 D+C Draft Adopted Spec: PIM to PIM for CCM Transformation 5-5

5

Initially, a ComponentInterfaceDescription can be generated from a component’s or
home’s IDL description with a defined set of configuration properties (from attributes)
and default values for the exclusiveProvider, exclusiveUser and optional attributes. If
desired, a user can then adjust these three attributes for each port and also add
configuration property default values to the ComponentInterfaceDescription by adding
Property elements to the configProperties list.

5.3.2 PlanSubcomponentPortEndpoint

The kind attribute augments the provider attribute in the
PlanSubcomponentPortEndpoint class and specifies the concrete port kind that is used.
This information is required by the various managers in the Execution Management
Model. The provider attribute still indicates a port which provides an object reference.

5.3.3 Application

The start operation on the Application class performs the configuration_complete
operation in all component instances that are part of the application.

5.3.4 RepositoryManager

When artifact files are included in the package (as opposed to referenced via URL
outside the package), the RepositoryManager must make its own copy of these artifacts
during the installPackage operation. It must substitute an URL that references this
copy of the artifact in the location attribute of ImplementationArtifactDescription
elements delivered via its interface.

5.3.5 SatisfierProperty

This PSM has to define concrete types that are implied on the value of a
SatisfierProperty by the SatisfierPropertyKind, and on the value of the Property that is
matched against the satisfier.

• For the Quantity kind, the value of the SatisfierProperty is of type unsigned long.
The value of the Property is ignored.

CCM ComponentP ortK ind
<<enumeration>>

Facet
SimplexReceptacle
MultiplexReceptacle
EventEmitter
EventPublisher
EventConsumer

InstanceDeploymentDescript ion
(f rom De plo yment a nd Config urati on)

<<Planner>>

PlanSubcomponentPortEndpoint
<<Planner>>

portName : St ring
provider : Boolean 1

+kind

1

1+instance 1
5-6 Deployment & Configuration Draft Adopted Specification June 2003

5

• For the Capacity kind, the value of the SatisfierProperty is of type unsigned long or
double. The value of the Property must be of the same type.

• For the Maximum and Minimum kinds, the value of the SatisfierProperty is of type
long or double. The value of the Property must be of the same type.

• For the Attribute kind, the value of the SatisfierProperty is of type long, double,
string, or an enumeration type. In the case of long, double or string, the value of the
Property must be of the same type. If the value of the SatisfierProperty is of
enumeration type, the value of the Property is of type string, containing the
enumeration value that must compare equal to the SatisfierProperty value.

• For the Selection kind, the value of the SatisfierProperty is a sequence of type long,
double, string, or an enumeration type. The same rules as for the Attribute kind
apply.

5.4 PIM for CCM to PSM for CCM for IDL Transformation

This section defines transformation T2 (as described in the introduction). It transforms
the PIM for CCM into a PSM for CCM for IDL that can be used to generate concrete
IDL using a rule-based mapping. Classes from the PIM for CCM are transformed to
match the UML Profile for CORBA. Its rules are then used to generate concrete IDL.

The first subsection describes generic mapping rules that are applied to all classes that
are part of the PIM for CCM. The second subsection defines special transformation
rules for the classes that are abstract in the PIM.

All classes in the PSM for CCM for IDL are placed in the Deployment package, so that
all resulting IDL structures and interfaces will be part of the Deployment IDL
module.

5.4.1 Generic Transformation Rules

The mapping to IDL is accomplished using the rules set forth in the UML Profile for
CORBA. To apply these rules, the stereotypes used in the platform-independent model
are mapped to stereotypes for which a mapping is defined in the profile. The
«Description» stereotype and all that inherit from it are mapped to the «CORBAStruct»
stereotype; these classes are therefore mapped to CORBA structures. The «Exception»
stereotype is mapped to the «CORBAException» stereotype; such classes become
CORBA exceptions. The «Enumeration» stereotype is mapped to the «CORBAEnum»
stereotype in order to become enum types in IDL. The «Manager» stereotype is mapped
to the «CORBAInterface» stereotype so that these classes become CORBA interfaces.

To avoid redundancy and circular graphs, non-composite associations between classes
with a common owner are expressed by an ordinal attribute at the source (navigating)
end, with the name of the attribute being the role name plus the suffix “Ref,” and the
type “unsigned long.” The value of this attribute is the index of the target element in
its container. To enable the usage of an index, the composition of the target element in
its container is qualified with the “ordered” constraint.
June 2003 D+C Draft Adopted Spec: PIM for CCM to PSM for CCM for IDL Transformation 5-7

5

Wherever the multiplicity at the navigable end of a navigable association or
composition is not exactly one (but 0..1, 1..* or *), a new UML class is introduced to
represent a sequence of the class at the navigable end of the association or
composition. The sequence class has the «CORBASequence» stereotype, and the name
is the english plural of the name of the element class. The sequence class has a
composition association with the element class that is navigable from the sequence to
the element. The composition is qualified with the index of the sequence and the
multiplicity of the original association. The original association or composition is then
replaced with an association or composition with the original role name to the new
sequence class, with a multiplicity of 1 at the navigable end. According to the rules in
the UML Profile for CORBA, these associations will then map to a structure member
in IDL, its type being a named sequence of the referenced type.

A similar rule is applied for all uses of the Sequence data type, which is used to denote
sequences of elements of the same type that are to be passed to an operation as a single
parameter, or returned from an operation as a single return value. (With the exception
of a sequence of strings, which re-uses the StringSeq type in the CORBA package, see
below.) In these cases, a new class is introduced to represent a sequence of the
contained type as above. The parameter or return value will then use the new class.

Note that in combination, these rules map non-composite associations between classes
with a common owner and a multiplicity other than 1 to sequence of “unsigned long”
type.

The inheritance relationships of classes with the «Description» stereotype
(SharedResource, Resource and Capability) classes are removed; all attributes and
associations of the base class are attached to the derived class.

Associations of classes with the «Manager» stereotype are removed from the PSM for
CCM for IDL.

5.4.2 Special Transformation Rules

5.4.2.1 Sequence(String)

A type representing a sequence of strings already exists in the CORBA package and can
be re-used. The Sequence(String) type is therefore mapped to the StringSeq class from
the CORBA package as shown above. It then maps to the CORBA::StringSeq type in
IDL (from the orb.idl file).

string
(from CORBAProfi le)

<<CORBAPrimitive>>

StringSeq
(from CORBA)

<<CORBAS equence>>

1

index : long {*}

1

index : long {*}
5-8 Deployment & Configuration Draft Adopted Specification June 2003

5

5.4.2.2 Sequence(unsigned long)

A type representing a sequence of the unsigned long type already exists in the
CORBA package and can be re-used. The Sequence(unsigned long) type is therefore
mapped to the ULongSeqSeq class from the CORBA package as shown above. It then
maps to the CORBA::ULongSeq type in IDL (from the orb.idl file). Sequences of the
unsigned long type occur when a non-composite association between classes with a
common owner with a multiplicity other than one occurs, according to the generic rule
above.

5.4.2.3 Endpoint

The abstract Endpoint class is mapped to the Object class from the CORBAProfile
package. It will therefore map to the Object type in IDL.

5.4.2.4 Sequence(Endpoint)

A type representing a sequence of object references already exists in the CORBA
package and can be re-used. The Sequence(Endpoint) type is therefore mapped to the
ObjectSeq class from the CORBA package as shown above. It then maps to the
CORBA::ObjectSeq type in IDL (from the orb.idl file).

ULongSeq
(from CORBA)

<<CORBASequence>>

unsigned long
(f rom CORBAProfi le)

<<CORBA Primitive>>

index : long {*}

11

index : long {*}

Object
(f rom CORBAProf ile)

<<CORBAInterface>>

Objec tS eq
(from CORBA)

<<CORBASequence>>

Object
(f rom CORBAProfi le)

<<CORBAInterface>>

index : long {*}

11

index : long {*}
June 2003 D+C Draft Adopted Spec: PIM for CCM to PSM for CCM for IDL Transformation 5-9

5

5.4.2.5 DataType

The abstract DataType class is mapped to the typecode class from the CORBAProfile
package. It then maps to the TypeCode type in IDL.

5.4.2.6 Any

The abstract Any class is mapped to the any class from the CORBAProfile package. It
will then map to the any type in IDL.

5.4.2.7 Primitive Types

The UML data types String, Integer and Boolean are mapped to the classes string, long
and boolean in the CORBAProfile package, respectively. They will then map to the
string, long and boolean types in IDL, respectively.

5.4.3 Mapping to IDL

After applying the transformations defined in this section, IDL is generated by
applying the rules set forth in the UML Profile for CORBA specification.

Note – Insert reference. Put IDL into Appendix and cross-link here.

5.5 PIM for CCM to PSM for CCM for XML Transformation

This section defines transformation T3 (as described in the introduction). It transforms
the PIM for CCM into a PSM for CCM for XML that can be used to generate concrete
XML schema using a rule-based mapping.

5.5.1 Generic Transformation Rules

Data model elements, annotated with the «Description» or «enumeration» stereotype
(or a stereotype that inherits from it), are used to generate XML schema for persistent
storage of metadata. Management model elements, annotated with the «Manager» or
«Exception» stereotype, are only mapped to IDL, but not to XML.

typecode
(from CORBAProfi le)

<<CORBAPrimitive>>

any
(f rom CORBAProf ile)

<<CORBAPrimitive>>
5-10 Deployment & Configuration Draft Adopted Specification June 2003

5

All mapping rules can be implemented by a transformation based on the XMI
representation of the platform independent model.

Certain classes (and their contained associations) will be mapped into XML files,
which we call descriptors, and XML elements within those files. Composition
associations imply that the class at the part end is in the same XML descriptor file as
the class at the composite (containing) end. Non-composite associations between
classes with a common owner (composite end of composition) are implemented by an
identifier attribute at the target and a matching reference attribute at the source. Both
attributes are of type String. The attribute at the target of navigation has the name “id,”
the attribute at the navigating end uses the role name plus the suffix “Ref.” The “id”
attributes are scoped by the common owner.

Non-composite associations between classes that do not have a common owner are
mapped to two optional attributes “fileinarchive” and “link,” both of type String, with
an exclusive-or relationship between them, so either the one or the other must be
present. The fileinarchive attribute points to another XML descriptor file within the
same package. The link attribute contains a URL that points to the location of another
descriptor file. This type of association only appears in the Component Data Model.
All classes in the Target Data Model have the Domain as a common owner, all classes
in the Execution Data Model have the DeploymentPlan as a common owner.

Inheritance relationships (used by the SharedResource, Resource and Capability classes)
are removed; all attributes and associations of the base class are attached to the derived
class.

5.5.2 Special Transformation Rules

5.5.2.1 ToplevelPackageDescription

The <ClassName>ToplevelPackageDescription is introduced to point to the
ComponentPackageDescription element for the top-level component package in a
package.

ToplevelPackageDescription

ComponentPackageDescription
(f ro m Deployme nt and Co nfi gurat io n)

<<Packager>>

1
+package

1

June 2003 D+C Draft Adopted Spec: PIM for CCM to PSM for CCM for XML Transformation 5-11

5

The motivation for this element is that a package may include component packages for
sub-components. A selection mechanism is necessary to distinguish the top-level
component package. This is accomplished by including a single Toplevel Package
Descriptor with the magic name “package.pcd” into the package.

5.5.2.2 Any

An Any instance describes a typed value. It is mapped to a class that contains a
<ClassName>DataType and a <ClassName>DataValue, which are elaborated below.

Note – Investigate whether the Any type that is part of XMI is sufficient.

5.5.2.3 DataType

A <ClassName>DataType instance describes a type. It is mapped to a hierarchical
structure as shown above, describing available types in IDL.

The <ClassName>DataType class contains a single element, either a StructType,
ValueType, SequenceType, ArrayType, EnumType or SimpleType. The SimpleType element
is used for primitive IDL types, including the any, TypeCode and Object types. Its
type attribute contains the IDL name of the primitive type.

DataValueDataType

Any

1
+value

11

+type

1

StructTy pe

name : String
typeId : String

Mem berType

name : String

*
+member
*

ValueType

name : String
type : String

*

+member

*

SequenceType

bound : Int eger

ArrayType

length : Int eger

EnumType

name : String
typeId : String
members : Sequence(String)

SimpleType

type : String

DataType

0..1

+struct

0..1

1
+type

1

0..1

+value

0..1

0..1
+sequence
0..1

1

+elementType

1
0..1
+array
0..1

1
+elementType

1

0..1
+enum

0..1 0..1
+sim ple
0..1

{ordered}

{ordered}
5-12 Deployment & Configuration Draft Adopted Specification June 2003

5

In StructType, ValueType and EnumType, the name attribute contains the name of the
struct, valuetype or enum IDL type, and the typeId attribute contains its Repository
Id.

Note – union types cannot be described using the <ClassName>DataType class above.
Therefore, union properties cannot be configured.

5.5.2.4 DataValue

A <ClassName>DataValue instance describes a value. It is mapped to a hierarchical
structure as above, fully describing a value that can be described by an IDL type. The
StructValue element is used for both struct and valuetype values. The SequenceValue
element is used for both sequence and array values. The SimpleValue element is used
for primitive values, enum values and object references. Its value attribute contains a
stringified representation of the primitive value. For enumeration types, this is the
name of the value. For object references, the value attribute holds a stringified object
reference. For the octet type, the value attribute holds an integer value between 0 and
255. For char, wchar, string, wstring types, the value attribute holds an unquoted
literal (i.e., no single or double quotes, and no leading L prefix) that conforms to the
IDL syntax and semantics chapter. For integer and floating point types, the value
attribute holds an integer or floating point literal, respectively. For convenience, if the
data type is a sequence or array of octet, the value is represented by a single
SimpleValue element that holds, in the value attribute, the data in Base64 encoding.

5.5.2.5 Others

The PackageConfiguration, DomainUpdateKind, Connection and Endpoint classes are used
by the runtime models only and are not part of the PSM for XML.

StructValue

NamedValue

name : String

*
+member
*

SequenceValue SimpleValue

value : String

DataType

Any

1
+type

1

DataValue

0..1

+struct

0..1

1
+value

1

0..1

+sequence

0..1
*

+element
*

0..1
+value

0..1

0..1

+typecode

0..1

1
+value

1
+any

0..10..1
June 2003 D+C Draft Adopted Spec: PIM for CCM to PSM for CCM for XML Transformation 5-13

5

5.5.3 Transformation Exceptions and Extensions

The following file name extensions are used for XML descriptor files:

• The ComponentPackageDescription element maps to a Component Package
Descriptor file with the “.cpd” file extension.

• The ComponentImplementationDescription element maps to a Component
Implementation Descriptor file with the “.cid” file extension.

• The ImplementationArtifactDescription element maps to an Implementation Artifact
Descriptor file with the “.iad” file extension

• The ComponentInterfaceDescription element maps to a Component Interface
Descriptor file with the “.ccd” (CORBA Component Descriptor) file extension.

• The Domain element maps to a Domain Descriptor file with the “.cdd” (Component
Domain Descriptor) file extension.

• The DeploymentPlan element maps to a Deployment Plan Descriptor with the
“.cdp” (Component Deployment Plan) file extension.

• The ToplevelPackageDescription element maps to a Toplevel Package Descriptor with
the “package.pcd” file name.

• Package files use the “.cpk” extension.

As described above, associations that cross file boundaries are mapped to the two
attributes “fileinarchive” and “link.” In the case of the association between
SubcomponentInstantiationDescription and ComponentPackageDescription, the referenced
file can be either a Component Package Descriptor or a package (i.e., a ZIP file with
the “.cpk” extension containing the package).

For backward compatibility, if the target of a fileinarchive attribute that references
metadata descriptors (rather than implementation artifacts) does not exist, it will also
be looked for under a top level “meta-inf” directory.

5.5.4 Mapping to XML

After applying the transformations defined in this section, XML Schema are generated
by applying the rules set forth in Chapter 6, Mapping to XML Schema.

Note – Put schema into Appendix and cross-link here.

5.6 Mapping Discussion

This section elaborates the application of the above rules to the various model
segments. As the transformation and mapping rules are fully defined above, this
section is not normative.
5-14 Deployment & Configuration Draft Adopted Specification June 2003

5

5.6.1 Component Data Model

5.6.1.1 Mapping to XML

The Component Data Model will be mapped to several XML schemas as indicated by
non-composite associations. Instances of the model (XML files) will describe pieces of
an implementation relating to the actors that handle the data.

One schema will describe the Component Interface Descriptor containing data from the
ComponentInterfaceDescription. The Specifier will create this file along with the IDL
for the component interface. A Component Interface Descriptor can initially be auto-
generated from the component’s or home’s IDL; some parts can later be edited (such as
the default values of configuration properties).

The Component Implementation Descriptor describes a single implementation and is
created by the Developer that creates a monolithic implementation or by the Assembler
that creates an assembly-based implementation. It contains information from the
ComponentImplementationDescription, the ComponentAssemblyDescription and the
MonolithicImplementationDescription.

The Implementation Artifact Descriptor contains information from the
ImplementationArtifactDescription and is created by the supplier of that implementation
artifact (the Developer or an external source). Note that the
ImplementationArtifactDescription elements directly contained by the
MonolithicImplementationDescription (the “primary artifacts”) are not in a separate
descriptor file, while any secondary artifacts on which the first artifact depends (such
as ORB dlls) will have their own descriptor file.

The Component Package Descriptor contains data from the
ComponentPackageDescription. It is created by the Packager that packages up one or
more implementations.

Note – Administrators might want to disallow external packages that cannot be
validated. Whether a Repository Manager provides the option to disallow such “link”
attribute in a package or not is a quality of implementation issue.

5.6.1.2 Mapping to IDL

All classes in the Component Data Model are mapped to CORBA structures in the
Deployment module using the generic mapping rules. No exceptions are necessary.

5.6.2 Component Management Model

The RepositoryManager is mapped to a CORBA interface in the Deployment module
using the generic mapping rules. Since it has the «Manager» stereotype, it is not
mapped to XML.
June 2003 D+C Draft Adopted Spec: Mapping Discussion 5-15

5

5.6.3 Target Data Model

5.6.3.1 Mapping to XML

All classes in the Target Data Model are mapped to IDL and XML using the generic
mappings, resulting in a single XML schema. Consequently, domain information will
be contained in a single XML file. It could be argued that there is no need for an XML
mapping of the Target Data Model. If the target information is created using a
proprietary tool that comes with the TargetManager, using a proprietary means for
feeding that information to the TargetManager would be comformant. However, the
XML mapping comes at no price, so it is included to discourage incompatible XML
schemas.

5.6.3.2 Mapping to IDL

All classes in the Target Data Model are mapped to CORBA structures in the
Deployment module using the generic mapping rules.

5.6.4 Target Management Model

The TargetManager is mapped to a CORBA interface in the Deployment module using
the generic mapping rules. Since it has the «Manager» stereotype, it is not mapped to
XML.

The DomainUpdateKind class is used at runtime only. It is mapped to IDL using the
generic mapping rules, but not mapped to XML.

5.6.5 Execution Data Model

5.6.5.1 Mapping to XML

The DeploymentPlan is mapped to a single XML schema. Consequently, a concrete
DeploymentPlan will be contained in a single XML file.

5.6.5.2 Mapping to IDL

All classes in the Execution Data Model are mapped to CORBA structures in the
Deployment module using the generic mapping rules.

5.6.6 Execution Management Model

All classes in the Execution Management Model are mapped to CORBA interfaces in
the Deployment module using the generic mapping rules. Since they have the
«Manager» stereotype, they are not mapped to XML.
5-16 Deployment & Configuration Draft Adopted Specification June 2003

5

5.7 Miscellaneous

5.7.1 Entry Points

CCM’s Packaging and Deployment chapter in CORBA 3.0 defines a home factory
entry point that enables a container to create a user-defined home using a user-defined
factory.

This specification defines the interaction between an implementation artifact and the
execution manager as implementation-dependent, in order to not restrict the forms that
an implementation artifact might have – executable files, loadable libraries, source files
or scripts, for example.

However, to ensure source code compatibility in the common case without restricting
implementation choice, entry points are defined here if the language is C++ and the
implementation artifact is a shared library, or if the language is Java and the
implementation artifact is a class file. In these two cases, there must be a specific
execution parameter associated with the Monolithic Implementation Description.

If the instance to be deployed is a component, then the name of the execution
parameter shall be “component factory.” The parameter is of type String, and its name
is the name of an entry point that has no parameters and that returns a pointer of type
Components::EnterpriseComponent.

If the instance to be deployed is a home, then the name of the execution parameter
shall be “home factory.” The parameter is of type String, and its name is the name of an
entry point that has no parameters and that returns a pointer of type
Components::HomeExecutorBase.

For backwards compatibility, it is recommended that the name of the entry point
should be the name of the component or home, prefixed with “create_” (e.g.
“create_Account” for an Account component).

If the language is C++, then the entry points shall be qualified as ‘extern "C"’.

These well-defined entry points ensure that the user code for the entry point does not
need to be changed when building components for different target environments.
These definitions do not enable interoperability between containers and DLLs (even
assuming the same compiler and ORB), thus additional interfaces are still required that
are specific to container implementations. This implies that, as in CCM 3.0,
component and home implementation DLLs are specific to the container
implementation (and the code generation tools). Since there was and is no normative
interoperability interfaces within a node, thus further implies that there is no vendor
segmentation boundary within a node at all.
June 2003 D+C Draft Adopted Spec: Miscellaneous 5-17

5

5.7.2 Homes

Note that this specification does not depend on the existence of homes; using the entry
points defined above, a container is able to create component instances directly,
without the need of creating a home first, and then using it as a factory for the
component instance.

This is no loss in comparison to the Packaging and Deployment chapter of CCM in
CORBA 3.0. If a component instance is to be deployed as part of an assembly, the
container has no way of providing a user-defined home with any parameters, and is
therefore limited to keyless homes. However, a factory operation for the component
instance as defined above can do its job as well as the parameter-challenged create
operation that is part of a keyless home.

In contrast to the Packaging and Deployment chapter, this specification recognizes
homes as instances that can be deployed, and therefore enables the full range of home
features.

5.7.3 Valuetype Factories

If an ImplementationArtifact contains valuetype factories, then its list of execution
parameters shall include an element with the name “valuetype factories” and of type
ValuetypeFactoryList, which is defined as

module Deployment {
struct ValuetypeFactory {

string repid;
string valueentrypoint;
string factoryentrypoint;

};
typedef sequence<ValuetypeFactory>

ValuetypeFactoryList;
};

Each element of that sequence describes a valuetype factory that needs to be registered
with the ORB in order to demarshal user-defined valuetypes. The repid field
specifies the Repository Id of the valuetype created by the valuetype factory. The
factoryentrypoint field specifies the name of an entry point that can be be used
to create an instance of the valuetype factory. If valueentrypoint is not the empty
string, it specifies an entry point that can be used to create an instance of the valuetype.

If the language is C++, then the entry points shall be qualified as ‘extern "C"’.

5.7.4 Discovery and Initialization

The ExecutionManager must be able to find the NodeManager instances for all nodes in
the Domain, so that it is able to deploy applications according to deployment plans that
are based on the current contents of the Target Data Model. This is accomplished using
the Naming Service.
5-18 Deployment & Configuration Draft Adopted Specification June 2003

5

• The user of the deployment system creates a naming context for a domain. Note that
a naming context is expressible by a URL representation (e.g., a “corbaname:“
reference).

• Implementations of the ExecutionManager interface must accept the address of the
naming context as a configuration parameter, and use it to publish its own reference
with the name “ExecutionManager” and the empty string as the id in that context.

• Implementations of the TargetManager interface must accept the address of the
naming context as a configuration parameter, and use it to publish its own reference
with the name “TargetManager” and the empty string as the id in that context.

• Implementations of the NodeManager interface must accept the address of the
naming context as a configuration parameter, and use it to publish their own
reference with the node’s name as the name and the id “NodeManager.” The node’s
name must match the name attribute of the node in the Target Data Model.

Upon startup, the ExecutionManager finds the TargetManager in the Naming Service, and
accesses the current Domain information. Based on the Node elements that are
contained in the Domain, the ExecutionManager then calls the joinDomain operation of
each NodeManager.

An ExecutionManager may offer functionality to “add” new nodes to the domain, or to
remove nodes from the domain. In that case, the ExecutionManager looks up a
NodeManager with a user-provided name in the Naming Service and then calls its
joinDomain or leaveDomain operation, respectively. In addition, an ExecutionManager
may offer to scan the Naming Service context for previously unregistered nodes,
calling the joinDomain operation on each associated NodeManager.

Note that there is no direct relationship between domains and repositories. Therefore,
implementations of the RepositoryManager interface are not registered in the Naming
Service.

5.7.5 Location

URL references are handled by the RepositoryManager and NodeManager interfaces: the
RepositoryManager receives URLs to packages as a parameter to the installPackage
operation and must generate URLs pointing to itself in
ImplementationArtifactDescription elements. The NodeManager receives URLs as
attributes of the ArtifactDeploymentDescription elements that are part of the
DeploymentPlan.

Both RepositoryManager and NodeManager shall be able to interpret URLs according to
the http scheme. Additional schemes may optionally be supported.

Note – This requires RepositoryManager implementations to include both an http server
and an http client. NodeManager need to implement http clients only, in order to
download implementation artifacts from the repository.
June 2003 D+C Draft Adopted Spec: Miscellaneous 5-19

5

If a RepositoryManager supports URL schemes in addition to http, it shall offer a
configuration parameter that allows user selection of the scheme(s) that will be used in
ImplementationArtifactDescription elements.

5.7.6 Segmentation

This specification obsoletes CCM’s idea of component segmentation. In the original
CCM, assemblies provided just a single level of decomposition. Segments then offered
a second level to split the implementation of a component into several independent
pieces of code. This specification allows composition and decomposition on any level,
and therefore the ability to add another level of decomposition on the lowest level is
redundant. However, no parts of this specification inhibit a component author from
using this feature of the CCM Implementation Framework.

5.8 Impact on the CCM Specification

This specification is intended to replace the Packaging and Deployment chapter and the
XML DTD chapter of CCM 3.0.

Note – The Packaging and Deployment chapter of CCM 3.0, in its Component
Deployment section, defines interfaces that are involved in the deployment of
components onto nodes. Similar interfaces might be useful in implementing the
NodeManager, however, this specification does not prescribe any such node-level
interfaces.

The potential ability to create component instances without homes requires that the
get_ccm_home operation in the CCMObject interface is allowed to return a nil object
reference.

5.9 Migration Issues

This section deals with the issues of migrating from the Packaging and Deployment
model that exists in CCM 3.0 to the deployment model presented in this specification.

5.9.1 Component Implementations

The portable parts of CCM component implementation source code remains
untouched. The generated code to enable interactions with the containers may change,
requiring recompilation and linking. The non-portable hand written code in some
implementations which was written assuming a particular container implementation
would likely have to change — similar to porting the component to a different CCM
system.
5-20 Deployment & Configuration Draft Adopted Specification June 2003

5

5.9.2 Component and Assembly Packages and Metadata

The metadata is changed to be based on XML schemas, and the basic models are
different. Many lower level elements are not different, and it is expected that meta-data
transformation (forward migration) will be able to be automated in the common cases
where all the features used are supported.

This specification is kept simple in anticipation that broad (and necessarily complex)
software packaging and distribution standards do not exist, and the W3C OSD
specification (by Microsoft and Marinba in 1997) referenced by the original CCM
specification did not become a standard. Future RFPs may want to consider mappings
from such comprehensive standards into this simpler model that focuses on CCM
applications.

The component data model stays within the scope of deployment and configuration and
does not bring forward all the metadata aspects in the previous CCM specification that
were not relevant to deployment and configuration. Furthermore, much of the metadata
for informing containers of the requirements of component instances was not defined
as part of an intervendor boundary. Thus this specification assumes the use of two
“private” channels of information between the development tools (and code generation)
and the runtime environment (NodeManager). These are the resource requirements of
the MonolithicImplementationDescription and the execParameters of the
InplementationArtifactDescription. The submitters believe standardizing this metadata
should be part of a true effort at vendor segmentation between CCM development tools
and CCM runtime environments (assuming the same compiler and ORB), which does
not exist and was not the mandate of this RFP.

Beyond the necessity of validating configuration and connection among components,
the one other metadata interoperability issue is to standardize the vocabulary for
selection criteria, which is interoperation between users and implementers of
component software. This is currently deferred due to the concurrence of the other
specification for this language with this specification (see below).

5.9.3 Component Deployment Systems

Deployment systems need to be changed to support this specification. Most aspects of
container implementations should be reusable.

5.10 Metadata Vocabulary

5.10.1 Implementation Selection Requirements

Selection requirements, part of both the PackageConfiguration and
SubcomponentInstantiationDescription classes, express requirements that are meant to
drive the selection among alternative implementations. The user of an implementation
(creator of a package configuration or an assembly) is requesting services to be
satisfied by a component implementation. The mechanism defined in this specification
requires agreement of the vocabulary of these services on both sides, but there is no
interoperable vocabulary defined. The currently active RFP entitled “UML Profile for
June 2003 D+C Draft Adopted Spec: Metadata Vocabulary 5-21

5

Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
should result in, among other things, “a Definition of Individual QoS Characteristics,”
which should provide an appropriate vocabulary to drive this mechanism.

When this QoS-driven vocabulary is connected to the CCM PSM, some other
component metadata requirements, such as “humanlanguage” may also be added to the
selection criteria language.

5.10.2 Monolithic Implementation Resource Requirements

As mentioned above, this vocabulary is a private communication channel between
development tools and the NodeManager, since no other interoperability boundary
exists between these two. Obviously some standardization could be easily done, based
on previous CCM-defined metadata such as container supported persistence,
transactions, and POA policies. If this limited scoping is not accepted by the Task
Force, data model classes containing this type of information can easily be added to
support both a defined resource vocabulary and even a separate container-services
vocabulary for information that would never be part of a “resource finding” matching
process with the target nodes, but needs to be conveyed to the runtime environment for
component instances.
5-22 Deployment & Configuration Draft Adopted Specification June 2003

Mapping to XML Schema 6
XML documents are an attractive and widely used format for various descriptors
defined by models. The instantiation of these XML documents is guided by one or
more XML Schemata, derived from the PIM constructs through a mapping process.

The mapping rules for the XML Schemata have been derived from, and are compatible
with, the XML Metadata Interchange (XMI) specification, version 2.0. However, the
information to be mapped in this case are not fully featured metamodels, but data
structure definitions (see below), the extra capabilities provided by the XMI schema
are not needed. To simplify the use of the resulting XML schema in a resource
constraint environment, where a MOF or XMI tools are most likely not available, the
mapping has been constructed using plain XML Schema only, and the XMI schema is
not imported.

As described earlier in this document, the PIM is segmented into a set of sub-models.
Along this line is again a distinction between management and data models. The data
models define the actual information required for the deployment process and are
reflected in the XML-encoded information sets presented to the deployment system.
Therefore only the three data sub-models of the PIM are mapped to XML Schemata,
which are the Component, Target and Execution Data Models.

Common mapping rules have been applied to all three models. Only the mapping of
links has variations, as described later. XML Schemata, as the successors of DTDs, are
typically used for validation of XML documents. The XML Schemata presented here
are intended to go beyond that role and are capable to assist the generation and
interpretation of deployment data structures.

Two namespaces are used in the resulting XML Schema: Namespace "xsd" is used for
all elements defined by the XML Schema metaschema, while "DnC" is the (default)
target namespace for all elements defined in the created schema. It is explicitly used in
all type references.
June 2003 Deployment & Configuration Draft Adopted Specification 6-1

6

Classes in the PIM map to complexType definitions in the XML Schema. XMI
provides two alternatives to map UML attributes: either as XML attributes or as XML
elements. In this mapping, only elements are used. The disadvantage of an increased
XML document size for this method is more than compensated by the gain in
flexibility for the value encoding. The element method is more tolerant to the used
character set and in particular immune to embedded whitespace.

The definition of type Any as a catch-all type has been borrowed from the XMI v2.0
specification:

 <xsd:complexType name="Any">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:any processContents="skip" />
 </xsd:choice>
 <xsd:anyAttribute processContents="skip" />
 </xsd:complexType>

Regular associations in the UML models (not aggreagations) are mapped to XLinks in
the XML Schema. Unidirectional associations result in a single link following the
navigable direction of the association. Bidirectional associations result in two
complementary links. Names for the linking elements are derived from the association
and aggregation role names in the UML model.

Real XLinks, which may cross file boundaries without problems, are only used in the
Component and Target Data Model. According to the view of the Deployment Plan as
a flattened structure containing all relevant information, more compact IDREF links
are used in the schema derived from the Execution Data Model. Due to the fattened
character of the Deployment Plan, the actual linking takes place when the individual
elements are integrated into the plan. To accommodate this, the XML type
DeploymentPlan uses sub-classing to generate the link targets required for the IDREF
links. This is shown in the following excerpt from the DeploymentPlan XML type:

 <xsd:element name="artifact">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="DnC:ArtifactDeploymentDescription">
 <attribute name="ïd" type="xsd:string" use="required" />
 </xsd:extension>
 </xsd:complexContent>
 </complexType>
 </xsd:element>

Here the ArtifactDeploymentDescription XML type is extended with a mandatory
attribute when integrated into the deployment plan. This attribute provides the target id
for an IDREF link, which is referenced like this:
6-2 Deployment & Configuration Draft Adopted Specification June 2003

6

 <xsd:element name="implementingArtifact">
 <!-- Reference to Artifact -->
 <attribute name="ïdref" type="xsd:IDREF" use="required" />
 </xsd:element>

In the resulting Deployment Plan XML document this results in the following snippets:

Defined as:
...
<artifact id="1234">
 ...
</artifact>

and referenced via:
<implementingArtifact idref="1234">

Elements with multiplicity greater than one are mapped into "choice" content groups if
no ordering is required. The "sequence" content group is used for order-sensitive
elements. XOR constraints map to a "choice" group with an upper limit of 1.

According to the following snippet, the "property" subelement may be absent from the
body of the instantiated "requirement" element, or repeated an unlimited number of
times:

 <xsd:complexType name="Requirement">
 <xsd:sequence>
 <xsd:element name="resourceType" type="xsd:string" />
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="property" type="DnC:Property" />
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

In the resulting XML document, a conforming instance could look like the following
snippet:

 <myRequirement>
 <resourceType>someResource</resourceType>
 <property>
 ...
 </property>
 <property>
 ...
 </property>
 </myRequiremetn>

Generalization in the UML model is mapped to the "extends" single inheritance
construct of XML Schema. In the following snippet is Resource specialized by
SharedResource:
June 2003 D+C Draft Adopted Spec: 6-3

6

 <xsd:complexType name="SharedResource">
 <xsd:extension base="DnC:Resource">
 <xsd:complexContent>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="node">
 <xsd:complexType>
 <!-- Hosting Node pointer -->
 <xsd:attribute name="href" type="xsd:string"
 use="required">
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexContent>
 </xsd:extension>
 </xsd:complexType>
6-4 Deployment & Configuration Draft Adopted Specification June 2003

Conformance Points 7
7.1 Summary of optional versus mandatory interfaces

All interfaces are mandatory within the compliance points. The interfaces are Reposi-
toryManager, TargetManager, ExecutionManager, NodeManager, ApplicationManager,
and Application.

7.2 Proposed conformance points

In general, the PIM suggests and enables several independent compliance points to en-
able different vendor implementations or user replacement of implementations. These
are:

• RepositoryManager
Rationale is that this function can be standalone, and implementations can offer a
wide range of persistence, database, security, file system or web functionality.

• TargetManager
Rationale is that this function can be standalone for independent offline planning or
fully dynamic at runtime. Both could coexist.

• NodeManager
Rationale is that this function is related to the node OS, ORB, development system
etc., and there would likely be multiple vendors’ implementations in a given
distributed system. it should be a modest effort for a node platform supplier to
implement this without the rest of the deployment system.

• ExecutionManager
This is the core of the deployment system.

The PSMs define their own specific compliance points. For the CCM PSM, all 4 are
defined.

In Chapter 2, the UML Profile for D&C Tool Support, suggests a further set of con-
formance points for tools:
June 2003 Deployment & Configuration Draft Adopted Specification 7-1

7

• Modeling Tools that can create a well formed conformant M0 model of the PIM for
CCM

• Forward Engineering Tools that can generate well formed XML, based on the XML
schema for the PSM for CCM, of conformant M0 models.

7.3 Changes or extensions required to adopted OMG specifications

As intended, the CCM PSM replaces the “Packaging and Deployment” (and associated
IDL) and “XML DTDs” chapters of CCM 3.0. The implications of this change are dis-
cussed in the migration subsection of the CCM PSM section.

7.4 Complete IDL definitions

Note that IDL definitions for the CCM PSM are generated based on the rules in the
PSMs and are included in the appendix. The included IDL is normative due to the lack
of tools to perform the mapping automatically.
7-2 Deployment & Configuration Draft Adopted Specification June 2003

References A
A.1 List of References
June 2003 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification A-1

A

A-2 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

IDL for CCM B
B.1 Introduction

Chapter 5 describes the process to generate concrete IDL from the platform
independent model, by using the rules defined by the UML Profile for CORBA on a
transformation of the original PIM. With these rules, Chapter 5 contains the normative
definition.

This chapter contains IDL that has been produced from the PIM using these rules. It is
non-normative, so in the case of discrepancies, Chapter 5 is relevant.

B.2 Full IDL

The file orb.idl is used.

#include <orb.idl>

B.3 Exceptions

module Deployment {
 /*
 * Exceptions
 */

 exception PackageError {
 CORBA::StringSeq label;
 string reason;
 };

 exception ResourceNotAvailable {
 string label;
 string resourceType;
June 2003 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification B-1

B

 string propertyName;
 string elementName;
 string resourceName;
 };

 exception PlanError {
 string label;
 string reaon;
 };

 exception StartError {
 string label;
 string reaon;
 };

 exception StopError {
 string label;
 string reaon;
 };

 exception InvalidProperty {
 string label;
 string reaon;
 };

 exception InvalidConnection {
 string label;
 string reaon;
 };

 exception NameExists {};
 exception NoSuchName {};
 exception LastConfiguration {};
 exception InvalidReference {};
};

B.4 Common Elements

module Deployment {
 struct Property {
 string name;
 any value;
 };

 typedef sequence<Property> Properties;

 struct Requirement {
 string resourceType;
 Properties property;
 };
B-2 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

B

 typedef sequence<Requirement> Requirements;

 enum SatisfierPropertyKind {
 Quantity,
 Capacity,
 Minimum,
 Maximum,
 Attribute,
 Selection
 };

 struct SatisfierProperty {
 string name;
 SatisfierPropertyKind kind;
 any value;
 };

 typedef sequence<SatisfierProperty> SatisfierProperties;

 struct RequirementSatisfier {
 string name;
 CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence<RequirementSatisfier> RequirementSatisfiers;
};

B.5 Component Data Model

module Deployment {
 struct Capability {
 string name;
 CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence<Capability> Capabilities;

 enum CCMComponentPortKind {
 Facet,
 SimplexReceptacle,
 MultiplexReceptacle,
 EventEmitter,
 EventPublisher,
 EventConsumer
 };

 struct ComponentPortDescription {
June 2003 Deployment & Configuration Draft Adopted Specification B-3

B

 string name;
 string specificType;
 CORBA::StringSeq supportedType;
 CCMComponentPortKind kind;
 boolean exclusiveProvider;
 boolean exclusiveUser;
 boolean optional;
 };

 typedef sequence<ComponentPortDescription> ComponentPortDescrip-
tions;

 struct ComponentPropertyDescription {
 string name;
 TypeCode type;
 };

 typedef sequence<ComponentPropertyDescription> ComponentProperty-
Descriptions;

 struct ComponentInterfaceDescription {
 string label;
 string UUID;
 string idlFile;
 string specificType;
 CORBA::StringSeq supportedType;
 ComponentPortDescriptions port;
 ComponentPropertyDescriptions property;
 Properties configProperty;
 };

 struct ImplementationArtifactDescription;
 typedef sequence<ImplementationArtifactDescription> ImplementationAr-
tifactDescriptions;

 struct ImplementationArtifactDescription {
 string label;
 string UUID;
 string location;
 ImplementationArtifactDescriptions dependsOn;
 Properties execParameter;
 Requirements deployRequirement;
 };

 struct MonolithicImplementationDescription {
 ImplementationArtifactDescriptions primaryArtifact;
 Properties execParameter;
 Requirements deployRequirement;
 };

 typedef sequence<MonolithicImplementationDescription> MonolithicIm-
B-4 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

B

plementationDescriptions;

 struct SubcomponentPropertyReference {
 string propertyName;
 unsigned long instanceRef;
 };

 typedef sequence<SubcomponentPropertyReference> Subcomponent-
PropertyReferences;

 struct AssemblyPropertyMapping {
 string label;
 string externalName;
 SubcomponentPropertyReferences delegatesTo;
 };

 typedef sequence<AssemblyPropertyMapping> AssemblyPropertyMap-
pings;

 struct ExternalReferenceEndpoint {
 string location;
 };

 typedef sequence<ExternalReferenceEndpoint> ExternalReferenceEnd-
points;

 struct SubcomponentPortEndpoint {
 string portName;
 unsigned long instanceRef;
 };

 typedef sequence<SubcomponentPortEndpoint> SubcomponentPortEnd-
points;

 struct ComponentExternalPortEndpoint {
 string portName;
 };

 typedef sequence<ComponentExternalPortEndpoint> ComponentExter-
nalPortEndpoints;

 struct AssemblyConnectionDescription {
 string label;
 ComponentExternalPortEndpoints externalEndpoint;
 SubcomponentPortEndpoints internalEndpoint;
 ExternalReferenceEndpoints externalReference;
 Requirements deployRequirement;
 };

 typedef sequence<AssemblyConnectionDescription> AssemblyConnec-
tionDescriptions;
June 2003 Deployment & Configuration Draft Adopted Specification B-5

B

 struct ComponentPackageReference {
 string requiredType;
 };

 typedef sequence<ComponentPackageReference> ComponentPack-
ageReferences;

 struct ComponentPackageDescription;
 typedef sequence<ComponentPackageDescription> ComponentPackage-
Descriptions;

 struct SubcomponentInstantiationDescription {
 string label;
 Properties configProperty;
 Requirements selectRequirement;
 ComponentPackageReferences reference;
 ComponentPackageDescriptions package;
 };

 typedef sequence<SubcomponentInstantiationDescription> Subcompo-
nentInstantiationDescriptions;

 struct ComponentAssemblyDescription {
 SubcomponentInstantiationDescriptions instance;
 AssemblyConnectionDescriptions connection;
 AssemblyPropertyMappings externalProperty;
 };

 typedef sequence<ComponentAssemblyDescription> ComponentAssem-
blyDescriptions;

 struct ComponentImplementationDescription {
 string label;
 string UUID;
 Properties configProperty;
 Capabilities capability;
 ComponentInterfaceDescription implements;
 ComponentAssemblyDescriptions assemblyImpl;
 MonolithicImplementationDescriptions monolithicImpl;
 };

 typedef sequence<ComponentImplementationDescription> ComponentIm-
plementationDescriptions;

 struct ComponentPackageDescription {
 string label;
 string UUID;
 Properties configProperty;
 ComponentInterfaceDescription realizes;
 ComponentImplementationDescriptions implementation;
B-6 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

B

 };

 struct PackageConfiguration;
 typedef sequence<PackageConfiguration> PackageConfigurations;

 struct PackageConfiguration {
 string label;
 string name;
 Properties configProperty;
 Requirements selectRequirement;
 PackageConfigurations specializedConfig;
 ComponentPackageDescriptions basePackage;
 };
};

B.6 Component Management Model

module Deployment {
 interface RepositoryManager {
 void installPackage (in string name,

 in string label,
 in string location)

 raises (NameExists, PackageError);

 PackageConfiguration findConfigurationByName (in string name)
 raises (NoSuchName);

 CORBA::StringSeq getAllNames ();
 CORBA::StringSeq findNamesByType (in string type);
 CORBA::StringSeq getAllTypes ();

 void createConfiguration (in string nname, in string bname,
 in Properties cp, in Requirements sr)

 raises (NoSuchName, NameExists);

 void updateConfiguration (in string name,
 in Properties cp, in Requirements sr)

 raises (NoSuchName);

 void deleteConfiguration (in string name, in boolean deletePackage)
 raises (NoSuchName, LastConfiguration);
 };
};

B.7 Target Data Model

module Deployment {
 struct Resource {
 string name;
June 2003 Deployment & Configuration Draft Adopted Specification B-7

B

 CORBA::StringSeq resourceType;
 SatisfierProperties property;
 };

 typedef sequence<Resource> Resources;

 struct SharedResource {
 string name;
 CORBA::StringSeq resourceType;
 SatisfierProperties property;
 CORBA::ULongSeq nodeRef;
 };

 typedef sequence<SharedResource> SharedResources;

 struct Node {
 string name;
 string label;
 Resources resource;
 CORBA::ULongSeq connectionRef;
 CORBA::ULongSeq sharedResourceRef;
 };

 typedef sequence<Node> Nodes;

 struct Interconnect {
 string name;
 string label;
 Resources resource;
 CORBA::ULongSeq connectionRef;
 CORBA::ULongSeq connectRef;
 };

 typedef sequence<Interconnect> Interconnects;

 struct Bridge {
 string name;
 string label;
 Resources resource;
 CORBA::ULongSeq connectRef;
 };

 typedef sequence<Bridge> Bridges;

 struct Domain {
 string UUID;
 string label;
 Nodes node;
 Interconnects interconnect;
 Bridges bridge;
 SharedResources sharedResource;
B-8 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

B

 };
};

B.8 Execution Data Model

module Deployment {
 struct PlanSubcomponentPropertyReference {
 string propertyName;
 unsigned long instanceRef;
 };

 typedef sequence<PlanSubcomponentPropertyReference> PlanSubcom-
ponentPropertyReferences;

 struct PlanPropertyMapping {
 string label;
 CORBA::StringSeq source;
 string externalName;
 PlanSubcomponentPropertyReferences delegatesTo;
 };

 typedef sequence<PlanPropertyMapping> PlanPropertyMappings;

 struct PlanSubcomponentPortEndpoint {
 string portName;
 CCMComponentPortKind kind;
 unsigned long instanceRef;
 };

 typedef sequence<PlanSubcomponentPortEndpoint> PlanSubcomponent-
PortEndpoints;

 struct PlanConnectionDescription {
 ComponentExternalPortEndpoints externalEndpoint;
 PlanSubcomponentPortEndpoints internalEndpoint;
 ExternalReferenceEndpoints externalReference;
 };

 typedef sequence<PlanConnectionDescription> PlanConnectionDescrip-
tions;

 struct ArtifactDeploymentDescription {
 string location;
 string label;
 string node;
 Properties execParameter;
 Requirements deployRequirement;
 };

 typedef sequence<ArtifactDeploymentDescription> ArtifactDeploymentDe-
June 2003 Deployment & Configuration Draft Adopted Specification B-9

B

scriptions;

 struct MonolithicDeploymentDescription {
 string label;
 CORBA::ULongSeq artifactRef;
 Requirements deployRequirement;
 Properties execParameter;
 };

 typedef sequence<MonolithicDeploymentDescription> MonolithicDeploy-
mentDescriptions;

 struct InstanceDeploymentDescription {
 string node;
 string label;
 unsigned long implementationRef;
 Properties configProperty;
 };

 typedef sequence<InstanceDeploymentDescription> InstanceDeployment-
Descriptions;

 struct DeploymentPlan {
 string label;
 ComponentInterfaceDescription realizes;
 ArtifactDeploymentDescriptions artifact;
 MonolithicDeploymentDescriptions implementation;
 InstanceDeploymentDescriptions instance;
 PlanConnectionDescriptions connection;
 PlanPropertyMappings externalProperty;
 };
};

B.9 Target Management Model

module Deployment {
 enum DomainUpdateKind {
 Add,
 Delete,
 UpdateAll,
 UpdateAvailable
 };

 interface TargetManager {
 Domain getAllResources ();
 Domain getAvailableResources ();

 void commitResources (in DeploymentPlan plan)
 raises (ResourceNotAvailable, PlanError);
B-10 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

B

 void releaseResources (in DeploymentPlan plan)
 raises (PlanError);

 void updateDomain (in CORBA::StringSeq elements,
 in Domain domainSupset,
 in DomainUpdateKind updateKind);
June 2003 Deployment & Configuration Draft Adopted Specification B-11

B

 };
};

B.10 Execution Management Model

module Deployment {
 interface Logger {};

 struct Connection {
 string name;
 CORBA::ObjectSeq endpoint;
 };

 typedef sequence<Connection> connections;

 interface Application {
 void finishLaunch (in Connections providedReference,

 in boolean start)
 raises (StartError);
 void start ();
 };

 typedef sequence<Application> Applications;

 interface DomainApplication : Application {};
 interface NodeApplication : Application {};

 interface ApplicationManager {
 Application startLaunch (in Properties configProperty,

 out Connections providedReference)
 raises (InvalidProperty, StartError, ResourceNotAvailable);
 void destroyApplication (in Application app)
 raises (StopError, InvalidReference);
 };

 interface DomainApplicationManager : ApplicationManager {
 Applications getApplications ();
 DeploymentPlan getPlan ();
 };

 typedef sequence<DomainApplicationManager> DomainApplicationMan-
agers;

 interface NodeApplicationManager : ApplicationManager {
 };

 interface NodeManager {
 void joinDomain (in Domain domainSubset,

 in TargetManager manager,
 in Logger log);
B-12 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

B

 void leaveDomain ();

 NodeApplicationManager preparePlan (in DeploymentPlan plan)
 raises (StartError, PlanError);

 void destroyManager (in NodeApplicationManager manager)
 raises (StopError, InvalidReference);
 };

 interface ExecutionManager {
 DomainApplicationManager preparePlan (in DeploymentPlan plan)
 raises (StartError, PlanError, ResourceNotAvailable);

 void destroyManager (in DomainApplicationManager manager)
 raises (StopError, InvalidReference);

 DomainApplicationManagers getManagers ();
 };
};
June 2003 Deployment & Configuration Draft Adopted Specification B-13

B

B-14 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

XML Schema for CCM C
C.1 Introduction

Chapter 5, in combination with Chapter 6, describes the process to generate the
concrete XML schema from the platform independent model. With these rules,
chapters 5 and 6 contain normative definitions.

This chapter contains the XML schema that has been produced from the PIM using
these rules. It is non-normative, so in the case of discrepancies, chapters 5 and 6 are
relevant.

C.2 Full XML Schema
<?xml version="1.0" encoding="utf-8" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.omg.org/DnC"

 xmlns:DnC="http://www.omg.org/DnC">

C.3 Component Data Model

Any
 <xsd:complexType name="Any">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:any processContents="skip" />

 </xsd:choice>

 <xsd:anyAttribute processContents="skip" />

</xsd:complexType>
June 2003 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification C-1

C

Property
 <xsd:complexType name="Property">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="value" type="DnC:Any"

 minOccurs="1" maxOccurs="1" />

 </xsd:sequence>

</xsd:complexType>

Requirement
 <xsd:complexType name="Requirement">

 <xsd:sequence>

 <xsd:element name="resourceType" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="property" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>

</xsd:complexType>

PackageConfiguration
 <xsd:complexType name="PackageConfiguration">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="1">

 <xsd:element name="specializedConfig">

 <xsd:complexType>

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="basePackage">

 <xsd:complexType>

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>
C-2 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="selectRequirement" type="DnC:Requirement" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="configProperty" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>

</xsd:complexType>

ComponentPackageDescription
 <xsd:complexType name="ComponentPackageDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="uuid" type="xsd:string" />

 <xsd:element name="realizes">

 <xsd:complexType>

 <!-- ComponentInterfaceDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="implementations">

 <xsd:complexType>

 <!-- ComponentImplementationDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="configProperty" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>
June 2003 Deployment & Configuration Draft Adopted Specification C-3

C

</xsd:complexType>

ComponentImplementationDescription
 <xsd:complexType name="ComponentImplementationDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="uuid" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="1">

 <xsd:element name="assemblyImpl">

 <xsd:complexType>

 <!-- ComponentAssemblyDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="monolithicImpl">

 <xsd:complexType>

 <!-- MonolithicImplementationDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:element name="implements">

 <xsd:complexType>

 <!-- ComponentInterfaceDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="configProperty" type="DnC:Property" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="capability" type="DnC:Capability" />

 </xsd:choice>
C-4 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 </xsd:sequence>

 </xsd:complexType>

ComponentAssemblyDescription
 <xsd:complexType name="ComponentAssemblyDescription">

 <xsd:sequence>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="instance"

 type="DnC:SubcomponentInstantiationDescription" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="connection"

 type="DnC:AssemblyConnectionDescription" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="externalProperty"

 type="DnC:AssemblyPropertyMapping" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

SubcomponentInstantiationDescription
 <xsd:complexType name="SubcomponentInstantiationDescription">

 <xsd:sequence>

 <xsd:choice minOccurs="0" maxOccurs="1">

 <xsd:element name="reference">

 <xsd:complexType>

 <!-- ComponentPackageReference pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="package">

 <xsd:complexType>

 <!-- ComponentPackageDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"
June 2003 Deployment & Configuration Draft Adopted Specification C-5

C

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="configProperty" type="DnC:Property" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="selectRequirement" type="DnC:Requirement" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

ComponentPackageReference
 <xsd:complexType name="ComponentPackageReference">

 <xsd:choice minOccurs="1" maxOccurs="1">

 <xsd:element name="requiredType" type="xsd:string" />

 </xsd:choice>

</xsd:complexType>

AssemblyConnectionDescription
 <xsd:complexType name="AssemblyConnectionDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="externalEndpoint"

 type="DnC:ComponentExternalEndpoint" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="internalEndpoint"

 type="DnC:SubcomponentPortEndpoint" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="externalReference"

 type="DnC:ExternalReferenceEndpoint" />

 </xsd:choice>
C-6 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />

 </xsd:sequence>

 </xsd:complexType>

ComponentExternalEndpoint
 <xsd:complexType name="ComponentExternalEndpoint">

 <xsd:choice minOccurs="1" maxOccurs="1">

 <xsd:element name="portName" type="xsd:string" />

 </xsd:choice>

 </xsd:complexType>

SubcomponentPortEndpoint
 <xsd:complexType name="SubcomponentPortEndpoint">

 <xsd:sequence>

 <xsd:element name="portName" type="xsd:string" />

 <xsd:element name="instance">

 <xsd:complexType>

 <!-- ComponentAssemblyDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

ExternalReferenceEndpoint
 <xsd:complexType name="ExternalReferenceEndpoint">

 <xsd:choice minOccurs="1" maxOccurs="1">

 <xsd:element name="location" type="xsd:URL" />

 </xsd:choice>

 </xsd:complexType>

AssemblyPropertyMapping
 <xsd:complexType name="AssemblyPropertyMapping">

 <xsd:sequence>
June 2003 Deployment & Configuration Draft Adopted Specification C-7

C

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="externalName" type="xsd:string" />

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="delegatedProperty">

 <xsd:complexType>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="instance">

 <xsd:complexType>

 <!-- Ref. to SubcomponentInstantiationDescription -->

 <xsd:attribute name="href" type="xsd:string"

 use="required" />

 </xsd:complexType>

 </xsd:element>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

MonolithicImplementationDescription
 <xsd:complexType name="MonolithicImplementationDescription">

 <xsd:sequence minOccurs="1" maxOccurs="1">

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="primaryArtifact">

 <xsd:complexType>

 <!-- ImplementationArtifactDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="execParameter" type="DnC:Property" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />
C-8 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

ImplementationArtifactDescription
 <xsd:complexType name="ImplementationArtifactDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="uuid" type="xsd:string" />

 <xsd:element name="location" type="xsd:URL" />

 <xsd:element name="describes">

 <xsd:complexType>

 <!-- ImplementationArtifact pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="dependsOn">

 <xsd:complexType>

 <!-- ImplementationArtifactDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="execParameter" type="DnC:Property" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>
June 2003 Deployment & Configuration Draft Adopted Specification C-9

C

Implementation Artifact
 <xsd:complexType name="ImplementationArtifact">

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="dependsOn">

 <xsd:complexType>

 <!-- ImplementationArtifactDescription pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

ComponentInterfaceDescription
 <xsd:complexType name="ComponentInterfaceDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="uuid" type="xsd:string" />

 <xsd:element name="specificType" type="xsd:string" />

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="supportedType" type="xsd:string" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="port" type="DnC:ComponentPortDescription" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="property" type="DnC:Property" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="configProperty" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

ComponentPortDescription
 <xsd:complexType name="ComponentPortDescription">
C-10 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="specificType" type="xsd:string" />

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="supportedType" type="xsd:string" />

 </xsd:choice>

 <xsd:element name="provider" type="boolean" />

 <xsd:element name="exclusiveProvider" type="boolean" />

 <xsd:element name="exclusiveUser" type="boolean" />

 <xsd:element name="optional" type="xsd:string" />

 </xsd:all>

 <xsd:attribute name="id" type="xsd:string" />

 </xsd:complexType>

ComponentPropertyDescription
 <xsd:complexType name="ComponentPropertyDescription">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="type" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

RequirementSatisfier
 <xsd:complexType name="RequirementSatifier">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="resourceType" type="xsd:string" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="property" type="DnC:SatisfierProperty" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>
June 2003 Deployment & Configuration Draft Adopted Specification C-11

C

Capability
 <xsd:complexType name="Capability">

 <xsd:extension base="DnC:RequirementSatisfier">

 </xsd:extension>

 </xsd:complexType>

SatisfierProperty
 <xsd:complexType name="SatifierProperty">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="value" type="DnC:Any" />

 </xsd:sequence>

 <xsd:attribute name="kind" type="DnC:SatisfierPropertyKind"

 use="required" />

 </xsd:complexType>

 <xsd:simpleType name="SatisfierPropertyKind">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="quantity" />

 <xsd:enumeration value="capacity" />

 <xsd:enumeration value="minimum" />

 <xsd:enumeration value="maximum" />

 <xsd:enumeration value="attribute" />

 <xsd:enumeration value="selection" />

 </xsd:restriction>

 </xsd:simpleType>

C.4 Target Data Model

Domain
 <xsd:element name="domain" type="DnC:Domain" minOccurs="0" />

 <xsd:complexType name="Domain">

 <xsd:sequence>

 <xsd:element name="uuid" type="xsd:string" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="nodes">

 <xsd:complexType>
C-12 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="node" type="DnC:Node">

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="interconnects">

 <xsd:complexType>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="interconnect" type="DnC:Interconnect">

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="bridges">

 <xsd:complexType>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="bridge" type="DnC:Bridge">

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="sharedResources">

 <xsd:complexType>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="sharedResource"

 type="DnC:SharedResource">

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </complexType>

Resource
 <xsd:complexType name="Resource">

 <xsd:extension base="DnC:RequirementSatisfier">

 </xsd:extension>

 </xsd:complexType>
June 2003 Deployment & Configuration Draft Adopted Specification C-13

C

SharedResource
 <xsd:complexType name="SharedResource">

 <xsd:extension base="DnC:Resource">

 <xsd:complexContent>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="node">

 <xsd:complexType>

 <!-- Hosting Node pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexContent>

 </xsd:extension>

 </xsd:complexType>

Node
 <xsd:complexType name="Node">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="resource" type="DnC:Resource" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="sharedResource">

 <xsd:complexType>

 <!-- SharedResource pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="connection">
C-14 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 <xsd:complexType>

 <!-- Interconnect pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

</xsd:complexType>

Interconnect
 <xsd:complexType name="Interconnect">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="resource" type="DnC:Resource" />

 </xsd:choice>

 <xsd:choice minOccurs="1" maxOccurs="unbounded" />

 <xsd:element name="node">

 <xsd:complexType>

 <!-- Connection to Node pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="bridge">

 <xsd:complexType>

 <!-- Connection to Bridge pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>
June 2003 Deployment & Configuration Draft Adopted Specification C-15

C

 </xsd:sequence>

 </xsd:complexType>

Bridge
 <xsd:complexType name="Bridge">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded" />

 <xsd:element name="resource" type="DnC:Resource" />

 </xsd:choice>

 <xsd:choice minOccurs="1" maxOccurs="unbounded" />

 <xsd:element name="connect">

 <xsd:complexType>

 <!-- Connection to Interconnect pointer -->

 <xsd:attribute name="href" type="xsd:string"

 use="required">

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

C.5 Execution Data Model

DeploymentPlan
<xsd:element name="deploymentPlan" type="DnC:DeploymentPlan"

 minOccurs="0" />

 <xsd:complexType name="DeploymentPlan">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <!-- XLink to ComponentInterfaceDescription -->

 <xsd:element name="realizes">

 <xsd:complexType>

 <xsd:attribute name="href" type="xsd:string"

 use="required">
C-16 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 </xsd:complexType>

 </xsd:element>

 <!-- List of Artifacts -->

 <xsd:element name="artifacts">

 <xsd:complexType>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="artifact">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension

 base="DnC:ArtifactDeploymentDescription">

 <attribute name="ïd" type="xsd:string"

 use="required" />

 </xsd:extension>

 </xsd:complexContent>

 </complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <!-- List of Implementations -->

 <xsd:element name="implementations">

 <xsd:complexType>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="implementation">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension

 base="DnC:MonolithicDeploymentDescription">

 <attribute name="ïd" type="xsd:string"

 use="required" />

 </xsd:extension>

 </xsd:complexContent>

 </complexType>

 </xsd:element>

 </xsd:choice>
June 2003 Deployment & Configuration Draft Adopted Specification C-17

C

 </xsd:complexType>

 </xsd:element>

 <!-- List of Instances -->

 <xsd:element name="instances">

 <xsd:complexType>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="instance">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension

 base="DnC:InstanceDeploymentDescription">

 <attribute name="ïd" type="xsd:string"

 use="required" />

 </xsd:extension>

 </xsd:complexContent>

 </complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 <!-- List of Connections -->

 <xsd:element name="connections">

 <xsd:complexType>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="connection">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="DnC:PlanConnectionDescription">

 <attribute name="ïd" type="xsd:string"

 use="required" />

 </xsd:extension>

 </xsd:complexContent>

 </complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>
C-18 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

 </xsd:element>

 <!-- List of Property Mappings -->

 <xsd:element name="propertyMappings">

 <xsd:complexType>

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="externalProperty">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:extension base="DnC:PlanPropertyMapping">

 <attribute name="ïd" type="xsd:string"

 use="required" />

 </xsd:extension>

 </xsd:complexContent>

 </complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

ArtifactDeploymentDescription
 <xsd:complexType name="ArtifactDeploymentDescription">

 <xsd:sequence>

 <xsd:element name="location" type="xsd:URL" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:element name="node" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="execParameter" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>

</xsd:complexType>
June 2003 Deployment & Configuration Draft Adopted Specification C-19

C

MonolithicDeploymentDescription
 <xsd:complexType name="MonolithicDeploymentDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <xsd:sequence minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="implementingArtifact">

 <!-- Reference to Artifact -->

 <attribute name="ïdref" type="xsd:IDREF" use="required" />

 </xsd:element>

 </xsd:sequence>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="execParameter" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

InstanceDeploymentDescription
 <xsd:complexType name="InstanceDeploymentDescription">

 <xsd:sequence>

 <xsd:element name="node" type="xsd:string" />

 <xsd:element name="label" type="xsd:string" />

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="execParameter" type="DnC:Property" />

 </xsd:choice>

 </xsd:sequence>

 <!-- Reference to MonolithicDeploymentDescription -->

 <attribute name="ïmplementation" type="xsd:IDREF" use="required" />

 </xsd:complexType>
C-20 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

C

PlanConnectionDescription
 <xsd:complexType name="PlanConnectionDescription">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <!-- Sequence of AssemblyConnectionDescription labels -->

 <xsd:element name="sourceList">

 <xsd:complexType>

 <xsd:sequence minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="source" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:element name="deployRequirement" type="DnC:Requirement" />

 </xsd:choice>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">

 <xsd:choice>

 <xsd:element name="externalEndpoint"

 type="DnC:ComponentExternalPortEndpoint" />

 <xsd:element name="internalEndpoint"

 type="DnC:PlanSubcomponentPortEndpoint" />

 <xsd:element name="externalReference"

 type="DnC:ExternalReferenceEndpoint" />

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

PlanSubcomponentPortEndpoint
 <xsd:complexType name="PlanSubcomponentPortEndpoint">

 <xsd:sequence>

 <xsd:element name="portName" type="xsd:string" />

 <xsd:element name="provider" type="xsd:boolean" />

 <xsd:element name="instance">

 <xsd:complexType>

 <!-- Reference to the InstanceDeploymentDescription -->

 <xsd:attribute name="idref" type="xsd:IDREF"
June 2003 Deployment & Configuration Draft Adopted Specification C-21

C

 use="required" />

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

PlanPropertyMapping
 <xsd:complexType name="PlanPropertyMapping">

 <xsd:sequence>

 <xsd:element name="label" type="xsd:string" />

 <!-- Sequence of AssemblyPropertyMapping labels -->

 <xsd:element name="sourceList">

 <xsd:complexType>

 <xsd:sequence minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="source" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="externalName" type="xsd:string" />

 <xsd:choice minOccurs="1" maxOccurs="unbounded">

 <xsd:element name="delegatedProperty">

 <xsd:complexType>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="instance">

 <xsd:complexType>

 <!-- Reference to the InstanceDeploymentDescription -->

 <xsd:attribute name="idref" type="xsd:IDREF"

 use="required" />

 </xsd:complexType>

 </xsd:element>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>
C-22 Deployment & Configuration of Component-based Distributed Applications Draft Adopted Specification June 2003

	1. Introduction
	1.1 Component-Based Applications
	1.2 The Target Environment
	1.3 The Deployment Process
	1.3.1 Preconditions for the Process of Deployment
	1.3.2 Installation
	1.3.3 Configuration
	1.3.4 Planning
	1.3.5 Preparation
	1.3.6 Launch
	1.3.7 All at Once, or Step by Step

	1.4 Relationship to the MDA

	2. Platform Independent Model
	2.1 Segmentation of the Model
	2.1.1 Dimension #1: Data Models vs. Management (or Runtime) Models.
	2.1.2 Dimension #2: Component Software vs. Target vs. Execution
	2.1.3 Summary of Model Segmentation Dimensions

	2.2 Model Diagram Conventions
	2.3 Component Data Model
	2.3.1 Component Data Model Overview
	2.3.2 PackageConfiguration
	2.3.3 ComponentPackageDescription
	2.3.4 ComponentImplementationDescription
	2.3.5 ComponentAssemblyDescription
	2.3.6 SubcomponentInstantiationDescription
	2.3.7 ComponentPackageReference
	2.3.8 AssemblyConnectionDescription
	2.3.9 ComponentExternalPortEndpoint
	2.3.10 SubcomponentPortEndpoint
	2.3.11 ExternalReferenceEndpoint
	2.3.12 AssemblyPropertyMapping
	2.3.13 SubcomponentPropertyReference
	2.3.14 MonolithicImplementationDescription
	2.3.15 ImplementationArtifactDescription
	2.3.16 ImplementationArtifact
	2.3.17 ComponentInterfaceDescription
	2.3.18 ComponentPortDescription
	2.3.19 ComponentPropertyDescription
	2.3.20 Capability

	2.4 Component Management Model
	2.4.1 RepositoryManager

	2.5 Target Data Model
	2.5.1 Domain
	2.5.2 Node
	2.5.3 Interconnect
	2.5.4 Bridge
	2.5.5 Resource
	2.5.6 SharedResource

	2.6 Target Management Model
	2.6.1 TargetManager
	2.6.2 DomainUpdateKind

	2.7 Execution Data Model
	2.7.1 DeploymentPlan
	2.7.2 ArtifactDeploymentDescription
	2.7.3 MonolithicDeploymentDescription
	2.7.4 InstanceDeploymentDescription
	2.7.5 PlanConnectionDescription
	2.7.6 PlanSubcomponentPortEndpoint
	2.7.7 PlanPropertyMapping
	2.7.8 PlanSubcomponentPropertyReference

	2.8 Execution Management Model
	2.8.1 Execution Management Model Overview
	2.8.2 ExecutionManager
	2.8.3 NodeManager
	2.8.4 ApplicationManager
	2.8.5 DomainApplicationManager
	2.8.6 NodeApplicationManager
	2.8.7 Application
	2.8.8 DomainApplication
	2.8.9 NodeApplication
	2.8.10 Logger
	2.8.11 Connection
	2.8.12 Endpoint

	2.9 Common Elements
	2.9.1 RequirementSatisfier
	2.9.2 SatisfierProperty
	2.9.3 SatisfierPropertyKind
	2.9.4 Requirement
	2.9.5 Property
	2.9.6 DataType
	2.9.7 Any

	2.10 Exceptions
	2.10.1 PackageError
	2.10.2 NameExists
	2.10.3 NoSuchName
	2.10.4 LastConfiguration
	2.10.5 ResourceNotAvailable
	2.10.6 PlanError
	2.10.7 StartError
	2.10.8 StopError
	2.10.9 InvalidProperty
	2.10.10 InvalidConnection
	2.10.11 InvalidReference

	2.11 Relations to Other Standards

	3. Actor
	3.1 Development Actors Overview
	3.2 Specifier
	3.3 Developer
	3.4 Assembler
	3.5 Packager
	3.6 Domain Administrator
	3.7 Deployment Actors Overview
	3.8 Repository Administrator
	3.9 Planner
	3.9.1 Finding Valid Deployments
	3.9.2 Matching Selection Requirements
	3.9.3 Matching Implementation Requirements
	3.9.4 Matching Connection Requirements
	3.9.5 Matching a Resource against a Requirement

	3.10 Executor

	4. UML Profile for D+C Tool Support
	4.1 Structure of the Profile
	4.2 Package Components
	4.2.1 Capability
	4.2.2 Component (Stereotype)
	4.2.3 ComponentAssembly (Stereotype)
	4.2.4 ComponentImplementation (Stereotype)
	4.2.5 ExternalReference (Stereotype)
	4.2.6 PortConnector (Stereotype)
	4.2.7 Constraints
	4.2.8 PropertyConnector (Stereotype)
	4.2.9 MonolithicImplementation (Stereotype)
	4.2.10 Port (Stereotype)
	4.2.11 Property (Stereotype)
	4.2.12 Requirement

	4.3 Package Targets
	4.3.1 Bridge (Stereotype)
	4.3.2 CommunicationPath (Stereotype)
	4.3.3 Domain (Stereotype)
	4.3.4 Interconnect (Stereotype)
	4.3.5 Node (Stereotype)
	4.3.6 Resource (Stereotype)
	4.3.7 SharedResource (Stereotype)

	5. PSM for CCM
	5.1 Introduction
	5.2 Definition of Meta-Concepts
	5.2.1 Component
	5.2.2 ImplementationArtifact
	5.2.3 Package

	5.3 PIM to PIM for CCM Transformation
	5.3.1 ComponentInterfaceDescription
	5.3.2 PlanSubcomponentPortEndpoint
	5.3.3 Application
	5.3.4 RepositoryManager
	5.3.5 SatisfierProperty

	5.4 PIM for CCM to PSM for CCM for IDL Transformation
	5.4.1 Generic Transformation Rules
	5.4.2 Special Transformation Rules
	5.4.3 Mapping to IDL

	5.5 PIM for CCM to PSM for CCM for XML Transformation
	5.5.1 Generic Transformation Rules
	5.5.2 Special Transformation Rules
	5.5.3 Transformation Exceptions and Extensions
	5.5.4 Mapping to XML

	5.6 Mapping Discussion
	5.6.1 Component Data Model
	5.6.2 Component Management Model
	5.6.3 Target Data Model
	5.6.4 Target Management Model
	5.6.5 Execution Data Model
	5.6.6 Execution Management Model

	5.7 Miscellaneous
	5.7.1 Entry Points
	5.7.2 Homes
	5.7.3 Valuetype Factories
	5.7.4 Discovery and Initialization
	5.7.5 Location
	5.7.6 Segmentation

	5.8 Impact on the CCM Specification
	5.9 Migration Issues
	5.9.1 Component Implementations
	5.9.2 Component and Assembly Packages and Metadata
	5.9.3 Component Deployment Systems

	5.10 Metadata Vocabulary
	5.10.1 Implementation Selection Requirements
	5.10.2 Monolithic Implementation Resource Requirements

	6. Mapping to XML Schema
	7. Conformance Points
	7.1 Summary of optional versus mandatory interfaces
	7.2 Proposed conformance points
	7.3 Changes or extensions required to adopted OMG specifications
	7.4 Complete IDL definitions

	Appendix A - References
	Appendix B - IDL for CCM
	Appendix C - XML Schema for CCM

