PHENIX Project - BIKIT / FUNDP
IRSIA/IWONL "Tronc Commun” - Contract 5220

PHENIX Project

DATABASE REVERSE ENGINEERING

FINAL REPORT

Volume III : Technical appendices

Second Version - April 1993

Volume I : General concepts and Introduction

Chapter 1 - INTRODUCTION

Chapter 2 - DATABASE MODELING

Chapter 3 - DATABASE FORWARD ENGINEERING

Chapter 4 - OBJECTIVES OF DATABASE REVERSE ENGINEERING

Chapter 5 - GROSS ARCHITECTURE OF REVERSE ENGINEERING

Volume II : Reverse Engineering

Chapter 6 - NAME PROCESSING

Chapter 7 - SCHEMA TRANSFORMATIONS

Chapter 8 - REPRESENTATION PROBLEMS IN DATABASES
Chapter 9 - DATA REDUNDANCY

Chapter 10 - THE MULTIPLE VIEW PROBLEM

Chapter 11 - DATA STRUCTURE EXTRACTION

Chapter 12 - DATA STRUCTURE CONCEPTUALIZATION
Chapter 13 - PHYSICAL/CONCEPTUAL MAPPING

Chapter 14 - STRATEGIC ASPECTS OF REVERSE ENGINEERING
Chapter 15 - A SHORT SQL CASE STUDY

Chapter 16 - A SHORT COBOL CASE STUDY

Chapter 17 - A SHORT CODASYL CASE STUDY

Chapter 18 - REFERENCES

Intro-1

Volume III : Technical appendices

Appendix A : TRANSFORMATION TECHNIQUES FOR
DATABASE REVERSE ENGINEERING

Chapter 1 - INTRODUCTION

Chapter 2 - TRANSFORMATION OF ENTITY TYPE ATTRIBUTES
Chapter 3 - TRANSFORMATION OF RELATIONSHIP TYPES
Chapter 4 - TRANSFORMATION OF ENTITY TYPES

Chapter 5 - OTHER TRANSFORMATIONS

Appendix B : PHENIX CARE TOOL - The User's View (Version
2.0)

Chapter 1 - USER MODEL OF THE CARE TOOL CONCEPTS
1.1 PROJECT AND APPLICATION
1.2 SOURCE TEXT FILE, MODULE, DATA FILE
1.3 DATA OBJECT AND SCHEMA, STATUS
1.4 DATA OBJECT SUBORDINATE CONCEPTS
1.5 ANCILLIARY CONCEPTS
1.6 ORIGIN
1.7 DATA OBJECT CORRESPONDENCE
1.8 ADVANCED DEFINITIONS
1.9 STATE, STATE TREE AND VERSION
1.10 METHOD

Chapter 2 - AVAILABLE FUNCTIONALITIES IN THE PHENIX CARE
TOOL

2.1 STARTING AND MANAGING O WORK SESSION

Intro-2

2.2 PROJECT HANDLING
2.3 DATA OBJECT EXTRACTION PHASE

2.4 MISCELLANEOUS FUNBCTIONS

2.5 SUGGESTION

2.6 METHOD DEFINITION
2.7 MAN-MACHINE INTERFACE

2.8 REPORTING

Appendix : TOOL CUSTOMIZATION

Appendix C : ADDITIONAL TECHNICAL DOCUMENTS

PHENIX SYSTEM :
PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHENIX SYSTEM :

PHYSICAL DESCRIPTION
SCREEN EXAMPLES

TRANSFORMATIONS SPECIFICATION
(FUNCTIONAL)

LIST OF THE TRANSFORMATIONS (TECHNICAL)

OBJECT-BASE CONCEPTUAL SPECIFICATION
(Version 2)

NAME PROCESSING (TECHNICAL)

SPECIFICATION OF REAL, THE IMPORT/EXPORT
LANGUAGE

SPECIFICATION OF THE INTEGRATION
PROCESS

OBJECT-BASE Version 2.03, TECHNICAL
SPECIFICATION

OBJECT-BASE IMPLEMENTATION

Intro-3

This appendix is a list of additional documents dedicated to the technical descriptions of the
PLENIX CARE tools. Due to their technical focus, the documents themselves have not
been included in this report, but can be obtained from the FUNDP on request.

PHENIX SYSTEM : PHYSICAL DESCRIPTION

Describes the components of the PHENIX system, and how to run it.

PHENIX SYSTEM : SCREEN EXAMPLES

Screen dumps of the major screens of the PHENIX system for a typical example.

PHENIX SYSTEM : TRANSFORMATIONS SPECIFICATION (FUNCTIONAL)

Describes in details the schema transformations that are available in the PHENIX
system from the user view point.

PHENIX SYSTEM : LIST OF THE TRANSFORMATIONS (TECHNICAL)

Describes the schema transformations as methods on the object base.

PHENIX SYSTEM : OBJECT-BASE CONCEPTUAL SPECIFICATION (Version 2)
Describes the conceptual schema of the object base (the PHENIX repository).

PHENIX SYSTEM : NAME PROCESSING (TECHNICAL)

Describes the internal functions for name processing.

PHENIX SYSTEM : SPECIFICATION OF REAL, THE IMPORT/EXPORT
LANGUAGE

Describes REAL, an import/export specification language for the PHENIX system.
Allows interfacing with other tools.

PHENIX SYSTEM : SPECIFICATION OF THE INTEGRATION PROCESS

Describes the internal functions for schema integration.

PHENIX SYSTEM : OBJECT-BASE Version 2.03, TECHNICAL SPECIFICATION

Describes the internal functions that allows accessing and managing the object-base
(repository) contents.

PHENIX SYSTEM : OBJECT-BASE IMPLEMENTATION
Describes the physical implementation of the object-base.

Facultés Universitaires de Namur

Institut d'Informatique

DATABASE REVERSE ENGINEERING

Transformation techniques for Database Reverse engineering

Jean-Luc Hainaut

TABLE OF CONTENTS

Chapter 1 - INTRODUCTION -
1.1 OBJECTIVES - - - —

1.2 SCHEMA REPRESENTATION -------

~I & th

1.3 TRANSFORMATION REPRESENTATION -

Chapter 2 - TRANSFORMATION OF ENTITY TYPE ATTRIBUTES------ 9

2.1 Inwroduction ----- —

2.1.1 General technique 1 (Instance representation)
2.1.2 General technique 2 (Value representation)
2.1.3 Organization of the chapter -----~

2.2 Transformation of (pure) multivalued attributes
2.2.1 Principles -
2.2.2 Technique 1 (instance representation)
2.2.3 Technique 2 (value representation}-----=-s==r=nre=zsomcmmnmm

2.3 Transformation of bag attributes
2.3.1 Principles
2.3.2 Technigue 1 (instance representation) -
2.3.3 Technique 2 (value representation)----=«-=rm=m=x----
2.3.4 Technique 3 (condensation)

2.4 Transformation of list attributes - -
2.4.1 Principles -
2.4.2 Techniqgue 1 {explicit indexing)----
2.4.3 Technique 2 (replace by a multivalued attribute) ~—-----------=ereenus

2.5 Transformation single-valued attributes -
2.5.1 Principles------s=u--
2.5.2 Technique 1 (instance representation) -
2.5.3 Technique 2 (value representation)----------------xs=ussummu-- '
2.5.4 Technique 3 (convert string to multivalued attribute) -------~--------
2.5.5 Technique 4 (convert string to compound attribute) ~---------------

2.6 Transformation of serial attributes----mmsmmmmwmrmm e e oo oo o
2.6.1 Principles------ -
2.6.2 Technique 1 (replace by a bag atiribute) ---
2.6.3 Technique 2 (replace by a list attribute)-------~
2.6.4 Technique 3 (replace by a compound attribute)
2.6.5 Technique 4 (replace by a multivalued attribute) -

2.7 Transformation of a group of atiributes
2.7.1 Principles-- -
2.7.2 Technique 1 {(replace contiguous attributes) e
2.7.3 Technique 2 (replace non-contiguous atributes)

2.8 Transformation of compound attributes ----=--=~=s=mmrrmmemermmmeaeaee

3.1 Introduction --- —

2.8.1 Principles---- - 22

2.8.2 Technique 1 (instance representation) - - 22

2.8.3 Technique 2 (value representation)-- 22

2.9 Transformation of optional attributes e 23
2.9.1 Principles - 23

- 2.9.2 Technique 1 (instance representation) --- 23

2.9.3 Technique 2 (value representation) 23

2.9.4 Technique 3 (muitiple transformation)- 24

2.10 Transformation of reference attributes-------- 25
2.10.1 Principles - - 25

2.10.2 Technique 1 (one single-valued attribute) 25

2.10.3 Technique 2 (group of single-valued attributes) --------=--=~=r=m-- 26

2.10.4 Technique 3 (multivalued attribute) - 29
Chapter 3 - TRANSFORMATION OF RELATIONSHIP TYPES--------- 30
30

3.2 Transformation of N-ary REL-TYPEs ~--- 30
3.2.1 Technique 1 (Transformation into entity type) = 30

3.2.2 Technique 2 (Reduction of a role by integration) 31

3.2.3 Technique 2 (Reduction of a role by reference) ---------- 31

3.2.4 Technique 3 (Project/Join transformation) 32

3.3 Transformation of many-to-many REL-TYPEs - e 33
3.3.1 Technique ! (Entity type) - - 33

3.4 Transformation of functional REL-TYPE with attributes -~ 34
3.4.1 Technique 1 (Entity type) =-w-=-- 34

3.4.2 Technique 2 (Attribute migration) - 34

3.5 Transformation of functional REL-TYPES -------- o 35
3.6 Transformation of ONE-TO-ONE REL-TYPES -----susmmmummmrr oo 36
3.6.1 Technigue 1 (Entity type merging)- - 36

3.6.2 Technique 2 (1S-A relation)- s e 36

3.7 Multiple transformation in case of inclusion constraint - 37
3.7.1 Technique 1 (Non-binary rel-type simplification) 37
Chapter 4 - TRANSFORMATION OF ENTITY TYPES 39
4.1 Introduction - --- 39
4.2 Complex and large entity type e 39
4.2.1 Technique 1 (Splitting through instance representation)------------- 39

4.2.2 Technique 2 (Splitting through value representation)-----------===-~ 40

41

4.3 Entity types linked by a one-to-one rel-type

it

4.4 Unnormalized entity type -

4.4.1 Technigue 1 (Elimination of abnormal FD) -

4.4.2 Technique 2 (Elimination of MD) --

4.5 Relationship entity type-

4.,5.1 Technique 1 (Transformation into entity type)

4.5.2 Technique 2 (Absorption into existing rel-type)

4.6 Attribute entity type

4.6.1 Technique 1 (Entity type merging)-----

4.6.2 Technique 2 (Reference attribute)

4.7 Entity type without identifier

4.7.1 Technigue 1 (Complementation) ------------

4.7.2 Technique 2 (Artificial identifier)

4.8. Entity types with overlapping structures------------ e

4.8.1 Technique 1 (Factoring two subtypes)

4.8.2 Technique 2 (Factoring two entity types)

4.9 Defining a subtype for an entity type

Chapter 5 - OTHER TRANSFORMATIONS---------s-eunncme

5.1 Introduction -

5.2 Structural redundancy reduction ------- -

5.3 Multi-record-type files - -

5.4 Identifier in singular rel-type---—--- -

5.5 Exchanging attribute and role components in an identifier -

iv

INTRODUCTION 15

Chapter 1

INTRODUCTION

1.1 OBJECTIVES

Database design can be modeled as a transformational process based on schema restructuration
techniques called schema transformation [BATINI,92] [HAINAUT,93b]. According to an idealized
view of database design, the operational description must have the same semantic contents as the
conceptual schema. In other words, this process should be semantics-preserving, and therefore
reversible. A process P1 is reversible if there exists an identifiable process P2 that, in every case, can
reverse the effect of applying P1. In this context, there should exist a process that can recover the
conceptual schema of any database from its operational description. This process is called Database

reverse engineering.

Most processes are carried out by executing other, lower level, processes. If a process is reversible,
then its sub-processes must be reversible as well. Schema transformations are basic processes, i.e.
processes that do not call for the execution of other processes, but that are used in other design
processes. In order to be reversible, database design must rely on semantics-preserving schema
transformations. Consequently, database reverse engineering, in its own turn, must rely on
transformations that are the inverse of these forward transformations.

This document is a sort of reference directory of reverse engineering transformations. It presents
some major schema restructuration techniques that allow recovering a conceptual schema from the
data structures of an operational database. They have been classified according to the constructs on
which they apply.

The current material has been borrowed from [HAINAUT,93¢], that describes schema
transformations for both forward and reverse engineering.

INTRODUCTION 1.6

1.2 SCHEMA REPRESENTATION

Any database structure, be it of a conceptual nature, or at the physical level, is expressed as an ER
schema. According to the abstraction level and to the target DMS!, the ER concepts will be
interpreted differently. For instance, at the conceptual level, an entity type will be interpreted as a
class of conceptual objects, while at the physical level, it will be interpreted as a relational table, an
IMS segment type, a CODASYL or COBOL record type, or a TOTAL dataset.

As far as semantics specification is concerned, the supporting ER model includes the following
concepts :

L

&

entity type, comprising any number (including zero) of atiributes;
1S-A hierarchy;

relationship type (called rel-type from now on), comprising two or more roles and any number of
attributes; a role is taken by one or several entity types (multi-ET role), and is given a cardinality
constraint [min-max] that states the minimum and maximum number of relationships in which any
entity participates in this role;

an attribute is either atomic or compound; an atomic attribute has a domain of values; each attribute
is given a cardinality constraint? [min-max] stating how many values can be associated with its
parent object (i.e. entity type, rel-type, compoud attribute); a multivalued attribute (cardinality max
> 1) can be pure (set of values), bag (multiset of values) or list (indexed set or muitiset);

an entity type can have any number of identifiers, including zero; an identifier is made of atributes
and/or roles (i.e. connected entity types)>;

a rel-type has at least one identifier made of roles and/or attributes; any role with cardinality [min-
1] is an identifier; when no identifier is specified or can be deduced, then all the roles of the rel-type
form its identifier;

a multivalued attribute can be given an identifier which is either itself or a subset of its (grand-)
children components;

integrity constraints can be associated with these constructs; let us mention inclusion constraint,

The term DMS, or standing Data Managemlent Systems, encompasses any computerized software that organizes data
according to definite data structures, or data model. DBMS, File management systems, programming languages,
spreadsheet processors and information retrieval systems are DMS.

Note that this constraint allows for the specification of optional/mandatory attributes as well as single-valued/
multivalued atiributes. In addition wsing this constraint for both roles and attributes simplifies greatly many
transformations.

In [BATINI92], identifiers are called internal when they comprise attributes only, external when they include roles
only, and mixed when they are made of both.

INTRODUCTION 1.7

referential constraint4, redundancy constraint, exclusion constraint, mutual coexistence and
functional/multivalued dependency.

Specific graphical representations are used to express such constructs. They will be introduces in the
following of this document.

1.3 TRANSFORMATION REPRESENTATION

A transformation is made up of two mappings T and t. Informally, T states how to replace the
source construct by the target construct, while t states how to convert any source instance into a
target instance [HAINAUT,91a]. Only mapping T will be discussed in this document. However, the
concept of semantic preservation requires the specification of mapping t as well.

In most case, a transformation <T1,t 1> will be expressed as in figure 1.1. It corresponds to a
symmetrically reversible transformation. This is the highest degree in semantics preservation. Its
reversibility property is defined as follows :

¢ there exist an inverse transformation <T2,t2>;
« applying T1 to SCHEMA 1 produces SCHEMA 2;
« applying T2 to SCHEMA 2 produces SCHEMA 1;

« any instance s1 of SCHEMA 1 can be converted (through mapping t1) into an instance s2 of
SCHEMA 2, in such a way that s1 can be converted (through mapping t 2) into s1 through the
inverse transformation;

» any instance s2 of SCHEMA 2 can be converted (through mapping t2) into an instance sl of
SCHEMA 1, in such a way that sl can be converted (through mapping t 1) into s2 through the
inverse transformation.

SCHEMA1 < SCHEMA2

Figure 1.1 - Symmetrically reversible transformation

A weaker degree in semantics preservation will be used in some cases. It will be specified as in
figure 1.2. It is defined as follows :

« there exist an inverse transformation <T2,t2>;

4 This special case of inclusion constraint that is not based on the concept of primary key; it only requires the presence
of an identifier in the target entity type.

INTRODUCTION 1.8

« applying T1 to SCHEMA 1 produces SCHEMA 2;
« applying T2 to SCHEMA 2 produces SCHEMA 1;

» any instance s1 of SCHEMA 1 can be converted (through mapping t 1) into an instance s2 of
SCHEMA 2, in such a way that s1 can be converted (through mapping t 2) into si through the
inverse transformation.

However, any arbitrary instance of SCHEMA 2 is not garanteed to be recovered by applying t 2 then
tl.

SCHEMA1 = SCHEMA?2

Figure 1.2 - Simply reversible transformation

In this document, the expression reversible transformation should read symmetrically reversible
transformation, except when specified otherwise.

Precise discussion and specification of the concept of transformation can be found in
[HAINAUT,91a] and [HAINAUT,92a] for instance. [BATINIL92] proposes some major techniques
in a more informal way.

The presentation that will be developed in this document is based on generic examples. Relying on
examples allows for an intuitive approach, while the genericity of examples (using abstract names for
instance) allows the reader to apply these examples on actual schemas. A more general presentation
should have been proposed (see [HAINAUT.93c] for instance). However the redadability of the
document, and therefore its usefulness, could have been questioned.

The document is organized as follows.

Chapter 2 : transformations that apply on atiributes.
Chapter 3 : wansformations that apply on relationship types
Chapter 4 : transformations that apply on entity types.

Chapter 5 : other transformations

2.9

Chapter 2

TRANSFORMATION OF ENTITY TYPE ATTRIBUTES

2.1 Introduction

This chapter discusses the techniques that alter the structure of an attribute, or or a subset of

attributes, of an entity type.

Though some general techniques can be used to restructure several kinds of attributes, they will be
repeated for each of these kinds. However, two techniques are of particular importance, and can be
applied to most attributes. They are the Instance representation and the Value representation. Both
can be described as Replacing an attribute by an entity type. They will be analysed in this section, but
their specific versions will be discussed in each corresponding section.

2.1.1 General technique 1 (Instance representation)

Each instance of attribute A2 is represented by an EA2 entity that is associated via R2 with its E
entity. Rel-type R2 is one-to-many. The cardinality i-3 of R2.E (right) is that of E.A2 (left). The
identifier of FA2 is (E,A2) due to the distinctness of the A values for each E entity.

Al
A2 [i-j]

Specific rules

~

E_ 1 11| EA2
Al R)— &2
A3

id(EA2) : E,A2

1. If 1~3 = i-1, then R2 is one-to-one, and the identifier of E (right) is triviall. It is no longer

1 This identifier is no longer minimal, since functional dependency £ — EA2 holds in R2. Therefore, component A2

can be wrimmed out.

ATTRIBUTE TRANSFORMATION 2.10

mentioned in the schema.

2. If A2 is an identifier of E (left), i.e. if no value of the domain of A2 is allowed to appear in the
set of A2 values of more than one E entity, then A2 is an identifier of EA2 (right).

2.1.2 General technique 2 (Value representation)

Each value v of the domain of A2 that appears at least once in the A2 value set of some E entities is
represented by an EA2 entity. This entity is associated with all the E entities whose A2 value set

includes value v.

E

E |..
Al i+ 1N} EA2
A2 [i-i} N — ﬁ; —— R — &2
A3

The cardinality 1-N of R2.EA2 is worth some comments. The minimum cardinality is 1 since only
values that appear at least once in some A2 value sets are represented. The maximum cardinality of
R2.EA? is undefined, and has been set to N (i.e. an arbitrarily large number). In some cases, this
last value can be defined more precisely. For instance, if the size of the domain of A2 is known to
contain exactly M values, then the cardinality of R2.EA2 can be set to 1-M.

Specific rules
1. If 1-9 = i-1, i.e. if A2 is single-valued, then R2 is one-to-many.
2. If A2 is an identifier of E (left), then the cardinality of R2.EA2 is 1-1 (R2 is many-to-one).

3. If i-§ = i-1 and A2 is an identifier of E, then R2 is one-to-one.

2.1.3 Organization of the chapter

The chapter will discuss attribute transformation techniques classified according to the various
attribute classes.

« Multivalued attributes, subclassified into pure (i.e. ser) multivalued, bag and list attributes.
» Single-valued attributes.
+ Serial attributes.

+ Groups of attributes.

ATTRIBUTE TRANSFORMATION 2.11

» Compound attributes.
¢ Optional attributes.

» Reference atiributes.

2.2 TRANSFORMATION OF (PURE) MULTIVALUED ATTRIBUTES

2.2.1 Principles

A2 is a multivalued attribute of entity type E if more than one A2 value can be associated with an E
entity. If A2 is a pure multivalued attribute, the A2 values of any E entity are distinct. In this section,
we shall consider that maximum cardinality J is greater than 1. Transforming a multivalued attribute
can be suggested to clarify or to simplify a schema.

2.2.2 Technique 1 (instance representation)

Each A2 instance is represented by an EA2 entity that is associated via R2 with its E entity. Rel-type
R2 is one-to-many.

E
E
Al 1] 1-1| EA2
A2 [1] & 2; — Rz)—"a2
A3
id(EA2) : E,A2

2.2.3 Technique 2 (value representation)

Each distinct A2 value is represented by an EA2' entity that is associated via R2 with all E entities in
which it appears. Entity type EA2' appears as a dictionary of the A2 values (limited to those values
that actually appear in E). Rel-type R2 is many-to-many.

ATTRIBUTE TRANSFORMATION

2.12

Al
A2 {I-]]

— R &

I-I 1-M}] EAZ

If A2 is an identifier of E (i.e. if each A2 value is associated with only one E entity), R2 reduces to

one-to-many.

E

Al
A2 [I-]]
A3

14(E) : A2{%]

— R)T a2

13 1-1| EA2

2.3 TRANSFORMATION OF BAG ATTRIBUTES

2.3.1 Principles

A2 is a bag (or multiser) attribute of entity type E if it is multivalued (more than one A2 values can be
associated with an E entity) and if the same value can be associated more than once with an entity.
In principle, the order of these values is irrelevant (in which case it would be a list attribute). Bag
attributes are available in object-oriented DBMS for instance.Transforming a bag attribute can be
suggested to clarify or to simplify a schema. It can be suggested when duplicate values are not
desirable (bags are non-set-theoretic constructs).

2.3.2 Technique 1 (instance representation}

Each A2 instance is represented by an EA2 entity that is associated via R2 with its E entity. R2is
one-to-many. EA2 has no identifier, except when A2 is declared with no duplicates.

E

Al
A2 [I-Tjbag
A3

=

I-¥ 1-1] EA2

— RO »

ATTRIBUTE TRANSFORMATION 2.13

2.3.3 Technique 2 (value representation)

Each distinct A2 value is represented by an EA2 entity that is associated via R2 with its E entity. Rel-
type R2 is many-to-many.

E
Al @ E 1.7 / R2 \ 1I-N EA2
A2 [I-T]bag Al count A2
A3 A3 .

2.3.4 Technique 3 (condensation)

All identical A2 instances of an E entity are represented by an EA2 entity that is associated via R2
with the E entity. EA2 specifies the common value of these instances together with their number of
instances. Rel-type R2 is one-to-many.

E .

E ¥ 1 t

Al I} 1.1 EA2
A2 [I-TTbag = Al A2

A3 A3 count

idEA2Y) 1 E,A2

2.4 TRANSFORMATION OF LIST ATTRIBUTES

2.4.1 Principles

A2 is a list attribute of entity type E if it is multivalued, if the same value can be associated more than
once with an entity (except when explicitly prohibited), if the order of these values is significant, and
if an element of the list can be referrred to by its positionZ. List attributes are the most popular
implementation of multivalued or bag attributes. They are proposed in most programming languages
. occurs [indexed] clause in COBOL, strings and arrays in PASCAL and BASIC, arrays in C,

2 To be more precise, this structure should be named indexed list.

ATTRIBUTE TRANSFORMATION 2.14

lists in LISP (though generally unindexed) and PROLOG. Transforming a list attribute can be
suggested to clarify or to simplify a schema, and particularly to express the semantics underlying a
physical construct.

2.4.2 Technique 1 (explicit indexing)

Each A2 instance is represented by an IEA2 compound value that groups this instance with an I
attribute value that acts as an index. The origin list can be recovered by sorting the IA2 values within
each E entity by their ascending values of L.

E B
Al Al
A2 [-T]tist = 1A2 [I-7]
A3 I
A2
A3
id(EIA2) 1 1

dom(E.IA2.I} : [1-]]

2.4.3 Technique 2 (replace by a multivalued attribute)

When it can be proved that the A2 values are distinct for any E entity, and that the sequence is
immaterial, this list attribute is merely the implementation of a multivalued attribute. This
transformation is not strictly reversible since the ordering structure is lost.

E B
Al Al
A2 [I-J]list = | A2{]
A3 A3

id(E.A2): A2

ATTRIBUTE TRANSFORMATION 2.15

2.5 TRANSFORMATION SINGLE-VALUED ATTRIBUTES

2.5.1 Principles

The transformations of an attribute A2 that will be presented are based on the representation by an
EA2 entity, either of each distinct values of A2, or of each instance of A2. Since optional attributes
are discussed in another section, we shall analyse mandatory attributes only. It is clear, however,
that transforming optional attributes and transforming mandatory attributes are special cases of a more
general transformation.

2.5.2 Technique 1 (instance representation)

Fach A2 instance is represented by an EA2 entity that is associated via R2 with its E entity. Rel-type
R?2 is one-to-one. EA2 has no identifier. If A2 is an identifier of E (left), then A2 must be the

identifier of EA2 as well (right).

B
E
Al 1, 1] EA
A2 G Al { rR2 v
A3 A3

In addition, if A2 is an identifier of E (leff), then A2 must be the identifier of EA2 as well (right).

E

E
Al 1-1 1-1} EA2
A2 & Al { R2) A2
A3 A3 —

2.5.3 Technique 2 (value representation)

Each distinct A2 value is represented by an EA2 entity that is associated via R2 with all E entities in
which it appears. Entity type EA2 appears as a dictionary of the A values (limited to those values that
actually appear in E). Rel-type R2 is one-to-many.

ATTRIBUTE TRANSFORMATION 2.16

E
E
Al 1-1 1-M} EA2
o & [Ag_
A3 A3

In addition, if we consider that A2 is a component of a multi-attribute identifier, this identifier must be
converted in the transformed schema.

E
E
Al -1 1-M| EA2
v &= | A a2
A3 A3
Wd(E) : ALA2 id(E) : A1LEA2

2.5.4 Technique 3 (convert string to multivalued attribute)

Through this transformation, a string attribute is interpreted as the concatenation of a list of similar
attribute values. The anonymous attribute is replaced by a multivalued attribute.

E E
Al Al
A2[1-1) & A2 [0}
A3 A3

dom(E.A2) = dom(lefi(E.A2))

2.5.5 Technique 4 (convert string to compound attribute)

Through this transformation, a string attribute is interpreted as the concatenation of a list of
heterogeneous attribute values. The anonymous attribute is replaced by a compound attribute.

ATTRIBUTE TRANSFORMATION

2.17

domE.A2)=XxY

E

Al
A2
A3

E

Al
A2
A21
A22
A3

dom(E.AZ.A!Z) =X
dom(E.A2.A22} =Y

2.6 TRANSFORMATION OF SERIAL ATTRIBUTES

2.6.1 Principles

We call serial artributes a list of sibling? attributes that have the same domain, and whose semantics
present similarities. Their names suggest an indexing structure or identical or similar meaning.
These names may suggest the different states of the same phenomenon (e.g. the days in the week,
names of the twelve months, department names, etc). The common principle is based on replacing

these attributes by one multivalued attribute.

2.6.2 Technique 1 (replace by a bag attribute)

If the attribute values have not to be distinct, and if the names do not suggest indexing or semantic
variants, the simplest translation is through a bag attribute.

E

Al

A2l
A22
A23
A24
A25
A3

dom{A2i) = dom(A2j), 1 <ij£5
names <A21, .., A25> suggest no indexed
structure nor distinct semantics

3 Le. that share the same parent object.

Al
A2(5-5]bag

ATTRIBUTE TRANSFORMATION 2.18

2.6.3 Technique 2 (replace by a list attribute)

If the attribute values have not to be distinct, and if the names suggest indexing (such as SALES],
SALES, .., SALES12), but no semantic variants, the simplest translation is through a list attribute.

E

A2 E
Al

A2

A% &= A2[5-5]list

A% A3

A25

A3

dom{A21) = dom{A2j), 1 <ij<5
names <A2l, .., A25> suggest
an indexed structare

2.6.4 Technique 3 (replace by a compound attribute)

If the attribute values have not to be distinct, and if the names suggest semantic variants (such as
department names), the simplest translation is through a multivatued compound attribute grouping the
origin value (A2-value) together with the former attribute name (A2-name).

E E
Al <
A21
A A2[5-5}
A3 @ A2-name
AQA AZ“Va.luc
A25 A3
A3

id(E.A2) : A2-name
dom(A2i) = dom(A2j), 1 ij<3 dom(E.A2) : {A21"A22''A23"'A24"'A25'}
names <AZ21l, .., A25> suggest

related but distinct semantics

ATTRIBUTE TRANSFORMATION 2.19

2.6.5 Technique 4 (replace by a multivained attribute)

If the attribute values are distinct, the simplest translation is through a mere multivalued attribute.

E

Al E
A2l A
A22 <C3:>

A3 A2[5-5]
A4
A25
A3

dom{A2i) = dom{A2j),1<ij<5
iz =>eAlizeA2j,ec B

2.7 TRANSFORMATION OF A GROU? OF ATTRIBUTES

2.7.1 Principles

A group of sibling attributes can be grouped as a compound attribute. Their domains need not be the
same. The objective is to clarify the attribute structures and to make its semantics more explicit.

2.7.2 Technique 1 (replace contiguous attributes)

If the attributes are contiguous, the physical layout (offset within the physical record structure) of the
new components is the same as that of the origin attributes.

E E

Al Al

A2 A234

A3 @ A2

A4 A3

AS Ad
AS

ATTRIBUTE TRANSFORMATION 2.20

Special case - multivalued attributes

When some of these attributes are multivalued, they keep their cardinality in the compound atiribute.

E E
Al Al
A2[0-3] A234
A3 @ A2[0-3]
Ad[1-5] A3
A5 A4[1-5]
AS

In general, this principle remains valid even when all the grouped attributes have the same cardinality.

E E
Al Al
A2[0-3] A234
A3[0-3] @ A2[0-3]
A4{0-3] A3[0-3]
AS A4[0-3]
A5

Indeed, this common cardinality cannot by associated with the compound attribute in pure
multivalued attributes. This would imply a correlation among the attributes that does not exist in the
source schema. With list structured attributes, factorizing the common cardinality can be valid.
However, since the actual number of values can be different for A2, A3 and A4, these attributes must
be optional for compound attriibute A234.

E E
Al Al
A2[0-3]list A234[0-31hist
A3{0-3}Hist @ A2[0-1]
A4{0-3]1ist A3[0-1]
AS A4[0-1]
A5

With this transformation, however, the physical layout is disturbed. If this number of values is
known to be the same, then the target schema can be simplified as follows :

ATTRIBUTE TRANSFORMATION

E

Al
A2[0-3Hist
A3[0-3]list
A4{0-3]list
AS

S

size(e.A2) = size(e.A3) = size(e.Ad), Ve € E

This discussion is still valid for optional attributes :

E

Al

A2{0-1]
A3{0-1]
A4{0-1]

E

Al
A2[0-1]
A3[0-1]
A4[0-1]
AS

=

E

Al
A234[0-3Hist
A2
A3
Ad
A5

E

Al

A234
A2[0-1]
A3[0-1]
A4[0-13

AS

E

Al
A23410-1)
A2
A3
Ad

AS

absent(e.A2) <> absent(e.A3) <> absent(e.Ad), Ve € E

2.7.3 Technique 2 (replace non-contiguous attributes)

In that case, the physical layout of the components is disturbed. Otherwise, the discussion developed
so far is stili valid.

E E

Al Al

A2 A245

A3 @ A2

Ad Ad

A5 AS
A3

ATTRIBUTE TRANSFORMATION 2.22

2.8 TRANSFORMATION OF COMPOUND ATTRIBUTES

2.8.1 Principles

A compound atiribute value can be perceived as an enbedded entity type

2.8.2 Technique 1 (instance representation)

Compound atiribute A2 is transformed into an entity type whose attributes are the components of A2.
EA2 has no identifier (except if A2 is an identifier for E).

E

Al E_lia 11 | EA2

A2 5 Al i Rz p———] A21
A21 A3 A2
A22

A3

2.8.3 Technique 2 (value representation)

Compound attribute A2 is transformed into an entity type whose attributes are the components of A2,

E
i% E |11 1-m|EA2
s PG
A2l A3 A22
A22
A3 W(EA2) : A21,A22

ATTRIBUTE TRANSFORMATION 2.23

2.9 TRANSFORMATION OF OPTIONAL ATTRIBUTES

2.9.1 Principles

If A2 is an optional attribute of E, then some E entities may have no A2 attribute value. Optional
attributes induce some logical and practical problems, known as the null value problems. Some
authors propose to get rid of these attributes [DATE,86], [CODD,90], [DATE.92]. The
transformations consist in replacing A2 either by a mandatory attribute or by an optional role.

2.9.2 Technique 1 (instance representation)

Instances of A2 values are represented by EA2 entities.

E
Al E 0-1 1-1 EA2
A2[0-1] = i;’ - A2
A3

2.9.3 Technique 2 (value representation)

Distinct values of A2 are represented by EA2 entities. Note that if A2 is an identifier of E (ef?), then
the cardinality of R2.EA2 is 1-1 instead of 1-N (right).

E E
Al 0-1 I-N EA2
A2(0-1] &= ﬁ; R2 A2
A3

ATTRIBUTE TRANSFORMATION

2.24

2.9.4 Technique 3 (multiple transformation)

The grouping transformation can be applied to optional attributes as discussed earlier. Itis recalled

herebelow?,

coexist(A2,A3,A4)

Al

A2[0-1]
A3{0-1]
A4{0-1]

E

Al
A2{0-1]
A3{0-1)
A4[0-1]
AS

Al

A234
A2[0-1]
A3[0-1]
A4[0-1}

E

Al
A234{0-1]
A2
A3
Ad

AS

It is then possible to further transform A234 according to techniques related to single-valued
attributes. An complete example is given herebelow.

Al
A2{0-1]
A3[0-1]

o

E i1 11| EA2
AL —— R) az00]
A3[0-1]

4 1t could be argued that A234 can be optional, since the simultaneous absence of A2, A3 and A4 values is aliowed.
In this case, one could consider that the A234 value is absent. However, such a representation would be much more

complex :

(1) to obtain the value of, say, A2, one have to control two levels of optionality : is there an A234 value ?, in this
case, is there an A2 value ?7; the complexity of controlling optional values is well known, as testified by the

manipulation of aull values in embedded SQL;

(2) one should specify another constraint, stating that in case of an existing A234 value, it should include a vatue for
at least one of its component (i.e. an existing A234 value cannot be empty).

ATTRIBUTE TRANSFORMATION 2.25

2.10 TRANSFORMATION OF REFERENCE ATTRIBUTES

2.10.1 Principles

Attribute A2 (or the group of reference attributes A2, .., A3) of entity type A is called reference
attribute(s) if its values are used as references to entities of type B. To be more precise, let us
consider that entity type B has an identifier’ made of attribute B2 (or attributes B2, .., B3).
Therefore, at any time, the value of A2, .., A3 of any A entity must be a value of B2, .., B3 of some
B entity (except when this A entity has no A2, .., A3 value, in which case this property does not
hold). The latter property is called referential integrity (constraint). In the model used in this
document, a referential constraint is expressed as an inclusion constraint where the target attribute
(B.B2) is an identifier. Reference atiributes are common in relational databases, where they are called
foreign keys. They are used in standard file structures (e.g. COBOL files) as well. However, in the
latter case, the referential constraint is not explicitly declared, and must therefore be elicited through
data usage analysis, name similarities or file contents analysis. Finally, network (CODASYL,
IMAGE, TOTAL, etc) and hierarchical (IMS) database schemas may include reference attributes
instead of relationships.

2.10.2 Technique 1 (one single-valued attribute)

Atiribute A2 is single-valued. It is replaced by a one-to-many rel-type R between A and B.

A B A 1-1 O-N B
Al B2 & Al { R) B2
A2 B3 A3 N B3
A3 B4 Ad B4
Ad

A.A2 in BB2

If A2 is optional (cardinality 0-1), the cardinality of R.A is 0-1 as well.

5 This identifier must be made of single-valued attributes, but need not be a primary identifier.

Atiribute A2 can be an identifier of A. In the resulting schema, rel-type R is one-to-one.

ATTRIBUTE TRANSFORMATION 2.26
A B A 0-1 0N R
Al B2 <:_—:> Al { R B2
A2{0-1] B3 A3 B3
A3 B4 Ad B4
Ad
A.A2 in B.B2

A B A |, 04 B
Al B2 & Al { R) B2
A2 B3 A3 B3
A3 B4 Ad B4
A4

A.A2 in B.B2

The inclusion constraint can be birectional, i.e. from A.A2 to B.B2 and from B.B2 10 A.A2. It
corresponds to an equality constraint. In that case, the cardinality of R.B is 1-N instead of 0-N.

A B A 1-1 1N B
Al B2 <Cr’t‘3> Al { R) B2
A2 B3 A3 B3
A3 B4 Ad B4
Ad

AAZ2 = BB2

2.10.3 Technique 2 (group of single-valued attributes)

Each attribute A2, .., A3 is single-valued. The principles are the same as above and are illustrated for
the most common case.

A.(AZ2,A3) in B.{B2,B3)

Al B2 = At < R — m
A2 B3 Ad B3
A3 B4 B4
Ad .
id®): B2B3 id(B): B2.B3

ATTRIBUTE TRANSFORMATION 2.27

However, the situation can be more complex when attributes A2, .., A3, or some of them, are
optional. A entities for which either all these attributes, or none of them, have a value, can be
considered as being linked (or not linked) to a B entity. However, the case of an A entity for which
some of these attributes have a value while others have no values is more difficult to interprete. Such
an A entity seems to be half-linked to a B entity, or linked to several B entities.

Such situations are not unfrequent since they are allowed in SQL-compliant relational schemas for
instance. This problem can be solved by considering that there are two categories of A entities : those
that have values either for all A2, .., A3 attributes, or for none of them, and those that have values for
a strict subset of these attributesS. Only the first category can be transformed through the current
technique. This two-step solution is sketched herebelow for a typical abstract example.

A B
Al B2
A2 B3
A3[0-1] B4
Ad
id(B): B2,B3

A{A2,A3) in B.{B2.B3)

U

B
B2
B3
B4

id(B) : B2,B3

EAl EA2
A2 A2
A3

EA2.(A2,A3) in B.(B2,B3)

I

6 1In this case, the inclusion constraint A.(A2,A3) in B.(B2,83) should be interpreted as follows
» if both A2 and A3 values exist, then a corresponding B entity must exist with these values as identifier values;
« if one of them only exist (A2), then the constraint is ignored.

ATTRIBUTE TRANSFORMATION

2.28

EAl

o

EA2

i-1

id(B): B2.B3

If necessary, the final schema can be further restructured by upward inheritance as follows. Attribute
A2 and role A in R are exclusive for A.

A o oNl B

Al < R)>— m

A2[0-1] B3

Ad B4
1d(B): B2,B3

absent(a.A2) <> (a€ R.A), Vae A

The situations in which several attributes, or all attributes of the group are optional are a bit more
complex, but can be solved by similar transformations.

Reference attributes can be a part of an identifier. Their transformation must include the translation of

the concerned identifier as well.

A B
Al B2
A2 B3
A3 B4
Ad

id(A): ALA2
A.A? in BB2

A i - oNl B

Al =R — m

A3 B3

A4 B4
id(A) : A1B

ATTRIBUTE TRANSFORMATION

2.29

2.10.4 Technique 3 (multivalued attribute)

Atmribute A2 is multivalued. Such a structure can be found in COBOL, C or PASCAL data

structures, but also in object-oriented languages and DBMS.

Attribute A2 is replaced by a many-to-many rel-type R between A and B. The cardinality of Ain R

(right) is that of A2 in A (lef?).

A A2[*] in B.B2

A B
Al B2
A2{0-N] B3
A3 B4
A4

If A2 is an identifier of A, the cardinality of B in R reduces to 0-1.

A B
Al B2
A2[0-N] B3
A3 B4
Ad
id(A) : A2[*]

A A2[*] in B.B2

A

A _low ~ om|_B
Al — R)— R
A3 B3
Ad B4
A lon 01} B
Al —Cr)— B
A3 B3
Ad B4

3.30

Chapter 3

TRANSFORMATION OF RELATIONSHIP TYPES

3.1 INTRODUCTION

A relationship type can be transformed when it is considered as too complex (in which case it can be
replaced by an entity type for instance), when it is unnormalized (it should be decomposed), or when
it links two fragments of the same entity type. These techniques are mainly aimed at conceptual
normalization.

3.2 TRANSFORMATION OF N-ARY REL-TYPES

A non-binary rel-type has at least 3 roles and may have attributes. Its transformation can be required
for several reasons : normalisation, promoting the representation of the underlying concept,
weakness of the supporting E-R model.

3.2.1 Technique 1 (Transformation into entity type)

The rel-type is replaced by an entity type that inherits its attributes.

[B] [e2] [B | |_EL | B2 | | E3 |
i1-1 2-i2 i3-13 i1-1 i2-2 i3-3

| s @ ®© P

- X
1-1 1-1

Al

A2

A3

id(X) : E1,E2,E3

The target schema includes binary rel-types only. The constraints on R, e.g. identifiers, must be
translated into constraints on X.

REL-TYPE TRANSFORMATION 3.31

3.2.2 Technique 2 (Reduction of a role by integration)

The attributes of a participating entity type can be integrated into the rel-type through a variant of the
extension transformation. The corresponding role is replaced by these attributes. This
transformation concerns entity types whose cardinality is 1-j, i.e. whose entities cannot exist without
participating in R instances.

[B1] | E2 |
il-1 2-12

i1-j1 i2-12

iy

R: A2—— AS

Note the presence of a derived functional dependency, due to the fact that E3 has two attributes, one
of them being an identifier. This pattern is frequent for entity types that represent dimensional
concepts in the application domain, such as TIME, DATE, COUNTRY, CITY, CATEGORY, TYPE,
etc. In these cases, the representative entity type has most often only one attribute that identifies the
instances of the concept. This entity type may participate in more than one rel-type. In this case, it is
best to transform them simultaneously.

3.2.3 Technique 2 (Reduction of a role by reference)

This technique is similar to the former one, but the role is replaced by a reference attribute to the
participating entity type.

[1 | | B | E3 E3
i1-j1 22 A2 A2
A3 A3
0N
RN\

\ Al [/

R.AZ in E3,A2

REL-TYPE TRANSFORMATION 3.32

The most frequent application field is also that of dimensional concepts.

3.2.4 Technique 3 (Project/Join transformation)

This technique is applicable whenever a non-trivial functional dependency holds in a strict subset of
the components (roles + attributes) of R, or if a non-trivial multivalued dependency holds in RL

In the following example, the functional dependency implies normalization problems in R. Indeed, R
is in 1NF but not in 2NF, due to the partial dependency.

M] [=] [] | Bt | [B2 | | B
0N o 5w oN[fo-1 O-N ON
>

R
X =

R:El— E2 (¢ ¢ R1LE1) & (e € R2EI), Ve € El

In the next example, R is in 3NF, but not in 4NF due to the multivalued dependency.

e] [] [B8] [&= | [B |
O-N 0-N OGN O-N| |O-N O-N 0-N
=

o —

R:El 5— E2 (e € R1LEl) & (e € R2EI), Ve € El

A special case of functional dependency appears when a role has cardinality i-1, as discussed in
3.1. In terms of the relational theory, such a schema is normalized. However, it can be decomposed
without loss. Another example is depicted herebelow.

1 This is a mere paraphrase of the preconditions of the P/J ransformation.

REL-TYPE TRANSFORMATION 3.33

=] 2] [] B | e | | B |
0-1 i2-j2 343 0-1f 10-1 i2-j2 i3-13
I ey

D

(e € R1E1) & (e € R2E1), Ve € El

Tn all these examples, the constraint on the target schema can be dropped if the cardinality of R.E1is
1-1 instead of 0-7.

3.3 TRANSFORMATION OF MANY-TO-MANY REL-TYPES

Some E-R models do not allow many-to-many rel-types. They can be transformed into entity types.

3.3.1 Technique 1 (Entity type)

This technique is based similar to technique 3.2.1.
[A] [] [~] []
i1-j1 -2 &S il i2-2

— RO G &,

REL-TYPE TRANSFORMATION 3.34

3.4 TRANSFORMATION OF FUNCTIONAL REL-TYPE WITH
ATTRIBUTES

Some E-R models do not allow rel-types with attributes. Such constructs can be normalized as
follows.

3.4.1 Technique 1 (Entity type)

The rel-type is replaced by an entity type that inherits its attributes.

(a1 [

M L e @

1-1 1—1
\ % / :
Al

id(R) : A,B

3.4.2 Technigque 2 (Attribute migration)

This technique consists in moving the attributes to the participating entity type with cardinality 1-1 or
0-1. We shall distinguish these cases.

If the cardinality of R.A is 1-1, the attributes keep their cardinalities :
A
A B B
<] 5] 2 []

1-1 0N ey A2 O-N
Al - 1-1

However, if the cardinality of R.A is 0-1, the attributes become optional, and are submitted to a
complex constraint. This practice should be avoided if possible.

REL-TYPE TRANSFORMATION 3.35

A
2] =] A0 5]
s s N R N
\ & / L

abseni(a.A12) <> (a € R.A), Vae A

3.5 TRANSFORMATION OF FUNCTIONAL REL-TYPES

It may happen that a one-to-many rel-type is used to support a one-to-one rel-type. That can be the
case in DBMS models that propose one-to-many rel-types only. CODASYL, IMS, IMAGE and
TOTAL are some popular exemples. Relationship type R is therefore declared as many-to-one, but
an additional constraint corrects the situation. This constraint will not be controlled by the DBMS,
but rather by the application programs or by the dialog manager for instance.

A B A B
Al Bl Al Bl
A2 B2 = A2 B2

1-1 0N 1-1 0-1
VAN
— R CRY

R is one-to-one

REL-TYPE TRANSFORMATION 3.36

3.6 TRANSFORMATION OF ONE-TO-ONE REL-TYPES

3.6.1 Technigue 1 (Entity type merging)

Some one-to-one rel-types are used to link two fragments of a former entity types. The latter has
been split, for instance for technical reasons.

A B A
Al B1 Al
A2 B2 S A2

1-1 1-1 g;
R/

When R.A is an optional role, the inherited attributes can be grouped into an optional compound
attribute.

A B A
AL B1 AL
A2 B2 &> A2

0-1 1-1 B{gll}
(RO
{ > B2

3.6.2 Technique 2 (IS-A relation)

An IS-A relation can be represented through a one-to-one rel-type.

—EEl>
% 2
& [w p—t B 2| w

REL-TYPE TRANSFORMATION 3.37

3.7 MULTIPLE TRANSFORMATION IN CASE OF INCLUSION
CONSTRAINT

An inclusion constraint states that some part of each instance of rel-type R1 can be derived from some
instance of rel-type R2. The transformation aims at factoring these parts by representing them only
once.

3.7.1 Technique 1 (Non-binary rel-type simplification)

The couple (A,B) from each R1 instance is an instance of R2. By representing this couple by an
explicit entity, of new entity type R2, it is then possible to replace the couple (A,B) in R1 by new
entity type R2.

G]
0N

0-N

R1.{AB)in R2

i

[a] [&]

O-N O-N O0-N 0-N

<R21>1;1—| R2 i—1£<R22>
GO

0-N

[c |
id(R2): AB
R1.(A,B) in R21.R22

REL-TYPE TRANSFORMATION 3.38

] =]

0-N 0-N

i-1 1-1
Cr)= ro < k2
0-N '

0-N
[c]

id(R2): AB

Hence the global transformation :

O-N O-N
—

- Gio—

O-N

[c]

R1.(A,B) in R2 d(R2) : AB

In general, this transformation is valid whenever,
- the structures of R1 and R2 overlap,
- and a part of each R1 instance can be derived from an R2 instance.

For instance, it is still valid if R1 and R2 have attributes, or if R1 and R2 have other non-overlapping
roles.

4.39

Chapter 4

TRANSFORMATION OF ENTITY TYPES

4.1 Introduction

The following techniques will be used mainly in conceptual normalization. They allow processing
large and complex entity types, unnormalized entity types, split entity types, relationship and atiribute
entity type, as well as defining supertypes and subtypes.

4.2 Complex and large entity type

These techniques aim at replacing an entity type by two entity types among which the attributes and
roles of the former are distributed. The source entity type appears as being split into two fragments.

Such practices are frequent when an entity type seems too complex either because it describes too
many aspects of an application domain concept, or because it describes several distinct, but related,
application domain concepts.

4.2.1 Technique 1 (Splitting through instance representation)

A subset of attributes of entity type A (here A3,A4) and/or roles played by A (R2.A) are extracted and
associated 1o new entity type A'. A and A’ are connected through one-to-one rel-type R. Both
roles of R are mandatory and the cardinality of each attribute/role extracted is left unchanged.

N A A [c]
i1 Al Al 343
A2 A2
| A3 51
1
A'

PG

OTHER TRANSFORMATIONS 4.40

If the components extracted form a coexistence group (or a subset of such a group), then the
cardinality of R2.A is 0-1 and all the components of A' are mandatory :

[] A | ¢ | A L ¢ |
i1 Al B3 . Al B33
A2 A2
A3[0-1] & 151

242 0-j4
{ R =" A4[0-10] — R2) (R
coexist{A3,A4, R2.A) Al

1-j4
B 1)

A4[1-10]

If the set E of components extracted from A include components of an identifier of A, this identifier
must be modified as follows.

- the identifier is included in E : it is transfered to A, and disappears from A;

- some components of the identifier (but not all} are transfered to A’ : each of them is replaced by
its target version. For instance, the source identifier "id (&) : A2, A3,R2. ¢" is modified into
the target identifier "id (A) :A2,R.A" .A3,R.A' .R2.C".

Similar translation will be carried out for other integrity constraints such as inclusion constraints.

4.2.2 Technique 2 (Splitting through value representation)

According to this technique, the extracted components are represented without duplicates : when their
values appear in more than one entity, they will be represented as one A’ instance only. The main
differences with the first technique are that,

- the extracted components form the identifier of the new entity type,

- rel-type R is now a one-to-many rel-type.

OTHER TRANSFORMATIONS 441

B A ¢] A | ¢ |
il-31 Al i3-i3 Al 13-3
A2 ¢ A2

pip| A3 i & i1
Cro—_~ R2 CR)
1N
A
i4-1
o BT
A4

id(A") : A3,A4R2.C

The extracted components keep their cardinalities.

If the extracted components form a mutual coexistence group, the minimum cardinalities of R.A,
A"A3, A" A4 and R2.A' must be revised following the same principles as in technique 5.2.1.

If a functional dependency (such as a:a3,R2.c — a4) holds among the extracted components,
then the source entity type is unnormalized, and should be processed as such (section 5.4).

4.3 Entity types linked by a one-to-one rel-type

These entity types can be merged through transformations that are the inverse of technigues 5.2.1.
They consist in integrating the components (attributes and roles) of A’ into A through rel-type R.
This technique is sometimes called entity type merging.

4.4 Unnormalized entity type

An abnormal dependency holds in the set of attributes and (i-1) roles of entity type A. A dependency
is said to be abnormal whenever its left-hand side (its determinant) is not an identifier of Al. We
shall distinguish the cases according to the type of dependency : functional or multivalued.

1 1t is important 1o recall that this notion is not strictly equivalent with that of the standard relational theory. Indeed,
the concept of normal form can be defined even when no identifier has been defined for the entity type. More on this
topic can be found in [HAINAUT,89].

OTHER TRANSFORMATIONS 4.42

4.4.1 Technique 1 (Elimination of abnormal FD)

This situation can be solved through a technique that is somewhat similar to technique 5.2.2 of Entity
type splitting. The extracted components are all the components of the left-hand and right-hand sides
of the concerned dependency. In case of functional dependency, the new entity type is given an
identifier made of the left-hand side components. The new rel-type is one-to-many. Note in
particular the cardinalities of R2.A, R.A"and R2.A",

[] A [c] | B | A | C
il-1 Al i3-53 i1-i1 Al 343
x2 e GO w2

pp| A3 i L1
' 1.N
A:AIR2C —> A4 e
4.1
o G
Ad

id(Ah : A3R2.C

4.4.2 Technigue 2 (Elimination of MD)

The concerned MD are those which,

- are not functional (in which case technique 5.4.1 applies),

- are not trivial (in which case no action has to be performed),

- are not the complement of an abnormal functional dependency (in which case technique 54.1
applies on this FD).

Let us consider the general following situation, that is expressed as a set of dependencies among the
components {C1,C2,..,C5,C6} of A. C1, C2, C3 are either single-valued attributes of A or roles
played by a partner of A in a one-to-many rel-type.

The set of dependencies is as follows :

A: Cl —»- C2
A: C1 —-— C3
Ay Cl — C4
Ay C2 — C5
A: C3 — C6b

Components C4, C5 or C6 may be missing, in which case the corresponding FD's are missing as
well. The following schema illustrates the normalization transformation when all A components are

OTHER TRANSFORMATIONS 443

attributes {A1,A2,..,A5,A6}.

A Al A2
I-N 7 ~, 1-N
Al Al { R2) A2
A2 Ad AS
A3 1N
Al &
AS
A6 (®)
A Al - A2 1N
A Al -3A3 A3
A: Al s Ad A3
A:A2 — A5 A6
A:A3 —>Ab

'This net result can be obtained by,
1. repeatedly applying technique 5.2.2 to each functional dependercy,
2. then transforming the resulting entity type A into a rel-type A through technique 5.6,

3. then normalizing rel-type A through technique 3.2.4.

The technique is easily generalized to situations in which C4, C5 or C6 are role components. When
C1, C2 or C3 are role components, the roles can be transformed into attributes through techniques
3.2.2 and 3.2.3, processed as propose in this section; the source roles can then be recovered with
techniques such as those of section 5.2 or chapter 4. The reasoning is still valid when each
component C1 to C6 is made of several attributes and roles.

Of course, the initial dependency pattern on which we have based the reasoning does not cover all the
situations that could occur. However, true multivalued dependencies are not that frequent in actual
database schemas, so that the above discussion can be considered quite sufficient for real-life
problems. However, we shall mention two additional refinements to this technique.

1. An additional FD holds in A in the source schema: Ci,C2 — C7
Action : add attribute C7 to rel-type R2 of the target schema.

2. An additional FD holds in A in the source schema: C1,C2,C3 — C8
Action : keep the 3-ary rel-type A mentioned in step 2 of the development of the current
technique; add attribute C8 to this rel-type; normalize rel-type A, which leads to rel-types R2
and R3, together with rel-type A with attribute C8. Add inclusion constraints.

OTHER TRANSFORMATIONS 4.44

4.5 Relationship entity type

A relationship entity type is an entity type that is perceived as the representation of a link between
other entity rypes. According to this view, it can be better to transform it into a pure relationship
type. Whether an entity type is a relationship one or not depends on every one's perception, and can
be considered as a mere matter of taste?. Nevertheless, this concept appears is some E-R models and
methodologies. It is also relevant in reverse engineering activities, since few DBMS offers a specific
representation of relationship types, but the simplest forms (if at all).All the techniques are the inverse
of some variants of the extension transformation described in chapter 3, dedicated to relationship
types. Indeed, the extension transformation is aimed at replacing a rel-type by an entity type.

4.5.1 Technique 1 (Transformation into entity type)

This technique is the simplest and most popular one. It consists in representing each entity by one
relationship. The source entity type A satisfies the following conditions

A participates in N functional, non-recussive, rel-types that have no attributes, with N2 2; the
other roles are played by entity types El, .., EN;

A participates in no other rel-types;

all the roles of A have cardinality 1-1;

A has at least one identifier, comprising some of these roles and/or some of its attributes.

The target rel-type R inherits these attributes, has N roles played by E1, .., EN which keep their
source cardinalities.

[B | [| | B | [E] [e} [B |
i1-j1 i2-12 i3-i3 i1-j1 i2-j2 i3-13
GO G GO e

1-1 R

: \ % /

1-1 1-1

Al

A2

A3

2 1t is interesting o observe that both entity type and rel-type representations of relationships can generate the same
relational structure. This has often been used to advocate against the undeterminism of the E-R model as compared
with the relational model. The argument is valid. However, the greater multiplicity of representations of a single
fact type can be considered as an advantage as well, provided a formal proof exists of the equivalence of these
representations. This is precisely one of the objectives of this document.

OTHER TRANSFORMATIONS 4.45

The identifier of source entity type A is converted on target rel-type R. For instance, the source
identifier "id(a) :R2.E2,R3.E3,A1" is converted into target identifier "id (r) :82, B3, A1".

4.5.2 Technique 2 (Absorption into existing rel-type)

The source entity type appears as the development of a member of a source rel-type. It is possible to
integrate it into this rel-type thanks to a variant of the extension transformation [HAINAUT,91a]. In
the following pattern, A can be perceived as the development of role R.A of rel-type R. The
transformation consists in replacing A by roles E2 and E3 of R.

[=] [E2] [=] (] [m=] [B]

i151 252 1343 - i1-j1 i2-j2 i3-j3
11 A 1
Ees pen S, |

= 11N
A2

4.6 Attribute entity type

An attribute entity type is an entity type that is perceived as the representation of a simple property of
one or several entity types. Typically, it has one attribute (or a small number of attributes) that is its
identifier. This can suggest to represent this property by an attribute instead. The discussion about
the user's perception is the same as for relationship entity types.

4.6.1 Technique 1 (Entity type merging)

Attribute B1 of entity type B is added to those of entity type A. Its cardinality is that of R.A. If the
cardinality of R.B is 1-1, then B1 is an identifier of A.

OTHER TRANSFORMATIONS 4.46

A lig 1N|_B A

m | e [®

A2 ' A2
BI1fil-j1]

4.6.2 Technique 2 (Reference attribute)

Though this technique is intended to transform rel-types, it is mentionned here because it appears as a
variant of the previous one. It basically is the same as technique 1, but the source entity type B is not
removed. It is recommended when role R.B is optional for B (cardinality 0-j2), and when B is
shared by several entity types.

A L oNL.B A B
al F—< R)— B & [Tm Bl
A2 A2
B1fil1)
AB1inBBI

4.7 Entity type without identifier

In general, an entity type need not have an identifier, as testified by many E-R conceptual formalisms
and by DBMS such as CODASYL and OO-DBMS. However, some ER-based methodologies may
require the existence of an identifier for each entity type.

4.7.F Technique 1 (Complementation)

This technique consists in augmenting the entity type with a new attribute that forms a natural
identifier when appended to a list of existing attributes. This practice is frequent, and has lead to the
ubiquitous sequence number that populates many schemas. In the following paitern, atiribute Abis
added because it forms an identifier with Al, A2 and A3.

OTHER TRANSFORMATIONS 447

A A
Al Al
A2 A2
A3 = A3
Ad A4
AS AS

A6

id(A) : A1,A2,A3,A6

Due to the augmentation of the semantics in the source schema, this transformation is not
reversible.

As an example, let us consider a source schema that describes product transfers from an origin
warehouse to a destination warehouse. In addition, we are interested by the date and volume of the
transfer. However, several transfer may occur on the same date. If we are not interested by transfer
identification, but if an identifier is required for technical reasons, we can add attribute Hour, that
indicates the hour at which a transfer occurs, or attribute Seg-number, that indicates the order of
the transfer among all those that occurs the same day, between the same warchouses.

4.7.2 Technique 2 (Artificial identifier)

A new attribute is added, and is made the identifier of the entity type. This attribute is given no
semantics, and is chosen in such a way that the generation and management of its values is easy.

A A
Al A
A2 &= Al
A3 A2
Ad A3
A5 Ad
A5

dom{A#) : integer

This technique is often preferred to the former one because, since the new attribute bears no
semantics, this transformation is reversible.

OTHER TRANSFORMATIONS 4.48

4.8. Entity types with overlapping structures

The principle is to introduce a supertype of these entity types that collects the common structure.
These techniques are useful when simplifying a conceptual schema or when several schemas have to
be integrated. Their aim is to gather common attributes, roles and constraints of two or more entity
types into a common supertype. The presentation will first tackle the processing of attribute structure

of two subtypes of a common supertype.

4.8.1 Technique 1 (Factoring {wo subtypes)

Subtypes B and C of entity type A have common attributes, i.e. attributes that have the same syntactic
properties (domains, constraints) and that are asserted? to have the same semantics (they are
synonyms, they represent the same properties for similar objects). In the following example, the
common attributes have been given the same names for simplicity. These attributes are associated to
a common supertype D, which in turn is made a subtype of A. If A has other subtypes, they are left

unchanged.

If B and C are disjoined within A, then they are disjoined within D as well, and therefore form a

partition :

A
Al
A A2
Al
A2
- D
e D1
D2
B C
B C1
B2)
D1 DI
D2 D2 B ¢
B C1
B2 2

3 This means that the correspondence between pairs of atiribates must be specified externally, e.g. by the designer, and
is not an intrinsic property of the schema.

OTHER TRANSFORMATIONS

4.49

B C

Bl C1

B2 2

D1 D1

D2 D2 B &
Bl Cl
B2 2

A A

Al Al

A2 A2
D1
D2

B c

Bl C1 B C

B2 2 o ol
D1 D1 - s
D2 D2

If B and C form a cover (or a partition) of A, then D and A have the same population, and are merged

Extension to roles and constraints

Roles that are common to B and C can be associated to D instead. The concept of common role can
be materialized by a multi-ET role, or by representation thereof, e.g. by exclusive rel-types.

Common constraints can also by associated to A, provided their supporting components are common
to B and C as well.

OTHER TRANSFORMATIONS 4.50

4.8.2 Technique 2 (Factoring two entity types)

This case can be dealt with by transforming it into the previous one. A common, empty supertype is
first added in the schema. In an unstable schema, one can admit that the populations of A and B may
overlap. If such is the case, B and C form a cover of new entity type A. Otherwise, they will be
supposed to be disjoined, and that they form a partition of A.

Bl C1
B2 c2
D1 D1
D2 D2

According to technique 5.8.1, the target schema is further processed, yielding the following pattern :

A
D1
D2
B C
Bl Cl1
B2 2
DI Di
D2 D2 B C
Bl C1
B2 C2

4.9 Defining a subtype for an entity type

We have seen that a coexistence group can be transformed into an optional compound attribute
(technique 2.9.4), and that an optional attribute can be transformed into an explicit entity type , linked
to the origin entity type through a one-to-one rel-type (technique 2.9.2). In addition, a one-to-one
rel-type can be interpreted as the implementation of a generalization relation (technique 3.6.2). By
composing these transformation, we obtain the transformation of a coexistence group into a subtype.
This technique can be extended to roles as well.

OTHER TRANSFORMATIONS 451

A
A Al
Al A5
A2[0-11
A3[0-11 <:>
Ad{0-1]
A5
B
coexist(A2,A3,A4) AD
A3
Ad

552

Chapter 5

OTHER TRANSFORMATIONS

5.1 Introduction

The following technigues concern physical constructs that appear in DMS schemas. They are useful
in untranslation and de-optimization processes.

5.2 Structural redundancy reduction

Structural redundancy techniques consist in adding new constructs in a schema such that their
instances can be computed from instances of other constructs. Attribute duplication, rel-type
composition and agregate representation are some examples of common optimization structural
redundancies. These transformations are reversible since they merely add derivable constructs
without modifying the source constructs. In the following example, a duplicate attribute and a

redundent rel-type are removed.
A B
Al Bl
A2 B2
O-N 1-1 0-N

— R —

0-N

Cy—{ c <

A.A2=ARI1.BB2Z
R3=RioR2

Al

1-1

i-1

Bl
B2

(r2)—

0N

OTHER TRANSFORMATIONS 553

5.3 Multi-record-type files

A one-to-many rel-type can be implemented as a sorted multi-record-type sequential or indexed
sequential file. The identifiers/keys are structured in such a way that an A instance is followed by its
associated B instances in the file sequence. The transformation is not reversible unless a referential
constraint from B.B1.B11 to A.A1.A11 can be proved, for instance by file contents examination.
However, this physical pattern is sufficiently frequent to make its rel-type origin stron gly probable.

e
A B
al Bl A don B
All B11 &= All B12
A12 BI12 A2 B2
A2 B
. Y id(B) : A, B12

order(F) : sorted(Al; B1) order(R1.B) : sorted(B12)

type(A.A1.A11) = type(B.B1.B11)
type(A.A1.A12) = type(B.B1.B12)

AALALZ =mall
id(A,B): A1A2

5.4 Identifier in singular rel-type

When an identifier is made of attributes and of one role, and when this role is taken by a single-
instance entity type, then this role can be discarded. This practice is typical of CODASYL schemas,
where an entity type can have one all-attribute identifier only. The trick is to insert the entity type (ie.
the record type) into a SYSTEM-own set type, and to declare the identifier as local in this set type.

O-N
o A
1-1 @ Al
A A2
AL A3
A2
A3

id(A) : A3, SYSTEM

OTHER TRANSFORMATIONS 5.54

5.5 Exchanging attribute and role components in an identifier

When a component of an identifier is an attribute that is a copy of the identifier of a linked entity type,
this attribute can be replaced by this entity type. This pattern can be found in CODASYL schemas,
where an identifier (or a access key) cannot include more than one role. The other roles can be
replaced by a copy of the identifier of their entity type.

C C
Cl Cl
N C2 B 2
oN 0N 0N oN
Cry ey & & (Crey
A A
1-1 Al 1-1 1-1 Al 1-1
A2 A2
ct id(A): AL, B, C
id(A): Al, B, Cl

ACl=AR2CCI

Phenix Project
BIXIT-FUNDP
IRSIA/TWONIL. Convention nb 5421

PHENIX CARE Tool Specification

The User’s View

Version 2.0

Specification report PHENIX-SPEC-9303-01

March 1993

Abstract

This document specifies the user’s view of the Phenix CARE tool (the Phenix
end-user is the so-called reverse engineer).
Section 1 describes the user model of the CARE tool concepts. Section 2 details the
functionalities available for the user. Section 3 illustrates the use of these
functionalities in a scenario-oriented way.

Phenix CARE Tool Specification - The User’s View

About this version

This version presents concepts and functionalities of the Phenix CARE tool.
Detailed concepts and functionalities are the ones provided in the system. Some
concepts and functionalities are just mentioned: they are considered as
interesting in a CARE tool, but could not be developped within Phenix.

Section 3, which illustrates the use of these functionalities in a scenario-oriented
way, will be completed in the version of this document.

Phenix Project - July 92 Page 2

Phenix CARE Tool Specification - The User’s View Table of Contents

Table of Contents

I. User model of the CARE tool concepts rereressesrenrensarernessssnsessasssnriors O

1.
2.
3.
4

-

9.

Project and applicationcvminnionennnnnnann. rertesetnenes e ressasssssenss O
Source Text Files, Module and Data File........cccocvvviiinnncnnne, cenerene crereenes reeverrnes 6
Data Object and Scheina, Status (abstraction level) ... 8

Data Object Subordinate Concepts ... iormmmeeen. 10
4.1 Data ObJect TYPE ..ccovvvvinniinrinemnrssismsssssssiesasnssssne s wvesenrssnensnssessassseorees L0
4.2 Data Object Key wuivnvvmnniniiennenerinenee, cesreres et s a s n et e s e s nns e 11
4.3 Identifier.....c.comivimremerereienninnns Heeeeerabiae bR be G s bR R R e e s e e R n e R s rn e san e naeas 12
4.4 Constrainteeverervoreerseeranenns ctrrersaisne s assn e s s e e ey an e S, vreeneorenne 13

4.4.1 Inclusion and Referential Constraint................. resbinresbeerenseniessersesanases 13
4.4,2 Functional Dependencyc.ccvviimmiesrisssissiniserssmnssnennesesrssessses v 13
4.4.3 EXistence COnSIAINT.....ccouvrirsssisinsiisisiisssrsssnssssssssssasssssssrssssasses corverennes 14
4.4.4 Inclusion, Equality or Exclusion of Partscccvivecnniinsnnceninvernensinen. 14
4.4.5 Inclusion, Equality or Exclusion of Links............ RO PRTRTRRTRT L
4.4.6 Inclusion, Equality or Exclusion of Values......cveiiinnncnnissannn.. 14
4.4.7 Weak-typed Constraintscccouveveene fereeeutea s e e a s s r e nenas 14

Ancillary conceptsviiniinniriinneaen e teretetreeetesateesresera e ate et s aR s st s et e sa R e rers 14
5.1 Name and Thesaurus........ccouee. reereseretae e ee e raeesae s s b e b e e e R a e sane cesenenens 14
5.2 Connected Data OBJECES .oouvirinriimieninmiimmsissnissienrssssensessannes vervensnreniorens 13
5.3 Transfer Instruction.......coceveueeee. rethere e s ee s e e et se e b e v ba e b s e rae e rresesnennns 13

0] 5 7-11 1 LTSRN eeereer e e s b saer b e Rt E bt SR b e R e en cevsnsisinnnes 16
6.1 Needs for the concept 0of "Origin’ccirivreciiiiineenineerese s reessresinennns 16
6.2 Dual Definition: Textual Origin vs Object Origincocevvveriennnnee. verresseranses 1O

Data Object Correspondence.........ceemnevnieenennnnnn beresssisesessresssesseosasressesrers 11

Advanced Definitionsc.ccoonvveneeenn. reerereersesre et ener et s e e as e et b e s be et e s st en e s e sree e .18
8.1 Generalized and Specialized Main Objectscceveerieniiervennnns cerrrresersssssnsssenss 18
8.2 Multiple Partc..... ceevteseseaeer e ase s R ns st e sesaees reeverereseeensens crereneserassinessssnes 18
8.3 Pathand Arc...vvenevincrnnnnnnns Leebeesaaie e ate e sR st eR b asa s besh e e s e be e st et srens veoeennins 18
8.4 Complex Identifierc.ccoeurerene ettt ssesae st s et ssbo e s e s abasa sesssanssnsensres 1O
8.5 Position of a Property in its father Data Object, Concept of "Zone’19
8.6 Multiple Descriptionc.ccoeevenenee ceeret ettt s e b saea e as cresesseesssenssones 19
8.7 Name Unicity Constraints and Name Enforcing.....c.cuvvreermnnenieecenseniennne 20

State, state tree and version rereesstreeneessaentasenasersassrsennssrasssasesnessetns SO
0.1 State and SALE TEEC...vveerreeeriererrsrserssiressesaessseasssansssessnns vevrreiirsearensaasseensnnserrses 20

Phenix Project - July 92 Table of Contents - 3

Phenix CARE Tool Specification - The User’s View Table of Contents

0.2 Version ..o Y T T A

10. Method ...ovvrvviiennrisrenerreensvnnn eeeeserassreseraranteyettaratanasrersrensenesenrsnnne eanree rrvssemsinans 21
II. Available functionalities in the CARE toolcoovvvvvvvvereneeene ceverveerenneann 22

1.
2.
3.

9.

Starting and Managing a Work Session ..., 22
Project Handling rerneeene creesnrrerssanesesasesansreen ereereaes bbb 20

Data Object EXtraction Phase ... 24
3.1 Source Organmization.........ureiesmnrsssssserennes Cerese st sss s e en s r et ab e s sb s nes SO
3.2 Source consultation reerrerrerre s sraesaas revesreenee bttt 20
3.3 EXtractionceeemecnsnne.

Data Object Conceptualization Phase..........oeviinenniicnnnnnne. crrerrinnns 20
4.1 Schema management.......cccceeeecernnres ceeet e retere et eese e RE s s te b eeas e sasnanae s e s ras creeeernns 26
4.2 Transformationcceevenenens Cereteesiae et esssassara s s e anre s ransantn e cervisressnrveresreis 7
4.3 Semantic enrichment and refinement.................... ereverrersreesraeeesrasesss e saes sarnanaes 29
4.4 Integrationccoememennnn cerrerrereeasneeres s entanbe s neans rerveressessrresnrersessseersnens 31
4.5 Conformity management < will not be implemented in the tool >................32

Miscellaneous FUnctions.........vreimnminenen, reesaisaserssnessrsseneres 32
5.1 Name management........... ereersreenerenesatersbrenarbs e r e tanees crerersnererernrsossranessransessies 32
5.2 Data object correspondence management ..o sereesse e ssoaesnansssneses 33
5.3 Origin management............ beeerereres et es st e sh e e sbaseraeeraee eevsserasrenaesrrsssanrrssarens 33
5.4 State Managementcccvrrniesreesssssnnnsisssrsssssnarssnes feereterere s e s sars e sanas 33

Suggestionccoeeven. tererereeereeraaae e e s e e e as s e n s veeetiseesn e bse e e s e s sa s s b e 34
6.1 Source Organization............. tereesrrereernreseneeeesssas e sbaea e aenans rrrersasneannesssanessenes S
6.2 EXtraction ... eereeteieeresasarae b ee st s et e e et s st b e s a b e b 34
6.3 Name management. ... ceeerressrrreneraeeearartereraresesrns e sanraees 34
6.4 Data Objects Correspondenceccovvvvvnerirennene teevere bbb a s eaa s 35
6.5 Transformationcccveerersnsnenunnns Feebereeesteterr e e st et st er s st e e sr s e eaee rereenen 35

Method Definitioncooevennenninnicnnnnenee. cveerreresrrasaense e nassa s e e staseannreeann 35

Man Machine Interface rreeerarer e e preesrae st e e st rerarer teerentrerressssnssarsesens 33
8.1 Basic Presentation: menus, selectors, etC. ...occvvmmriinirnineeniciiininn, rrveresener 39
8.2 Specialized BEdItOIS....cccvvummmesrrneseesnrsrrenans ceetereteriaebesesenerennt s besevesatesrasernsas .35
8.3 Explanation Facilitycccerimemrveriennicninninncsse e ceterierissnerosshassrssssasanas 35
8.4 Help Facilityc...... feeeeereesseeererarersearae st er et eanesr e b a e reene erinsenreeneirosssssesaenaes SO
8.5 Error and Warning MeESSAEZES ..cccvvimmerrirmrcrimmmniesesninsseeenes rereesesinssssorisenes 30

R i 36
1530107 i 41 1 1+ SO OR P ON erhirrereibeeissa et sssE AL s s s R RN R te e n e e v

Appendix A : Customization featuresccucviimneerinimrrimsrissresese s e ssesrensens RN ¥ |

Phenix Project - July 92 Table of Contents - 4

Phenix CARE Tool Specification - The User’s View

Warning

This document is build up to introduce progressively the Phenix CARE tool.
Concepts and functionalities are first defined in their basic meaning, and further
detailed as long as you go on reading for advanced use of the tool.

Phenix Project - July 92 Page 5

. Application

Phenix CARE Tool Specification - The User’s View

1. User model of the CARE tool concepts

. Project and application

Project

A project is the basic work unit of the CARE tool. It collects the general
information about one application to reverse engineer up to its final result.
A project has:

a name',

a creation date, (automatically set by the CARE tool),

an associated directory where a copy of the source text files of the application

is available,
associated textual comments (optional),
a responsible reverse engineer (optional).

While using the CARE tool, the user wants to recover the (conceptual) description
of a (sub)system, called an application.
When starting this reverse engineering process, an application has a set of its source text
files. Further on, it will also be viewed as a (set a of) data schema.
An application:

is a set of souxce text files,

is a set of schema,

is described by one project.

Source Text Files, Module and Data File

Source Text Files

The source text files of an application contain its (whole) source code?. Most of
these source text files contain the description of one or several programming module(s)
with, possibly, one or several data file description(s)3.

A source text file is written in a specific programming language. According to
source text inclusion facilities existing in many languages, the text of a source text file is
*pre-processed’ to solve precompilation techniques such as include, copy with/without
replacement, instanciations, etc. Two texts are thus associated to any source text file of
an application: the original source code text (with precompilation statement(s)) and a

! The name of a project is preferably the name of the corresponding application to reverse engineer,

An application is basically described by the collection of its source text files. Source text files only are
modelized in the CARE tool. Other knowledge sources about the application, such as external
documentation teports, are not directly handled by the CARE tool. Nevertheless, the user always keeps the
opportunity to introduce schema description by himself.

3 Any source file text must be in a syntax recognized as valid by the extraction process

Phenix Project - July 92 Page 6

Phenix CARE Tool Specification - The User’s View

text where all precompilation statements are expanded.

Source text files can be discriminated on the following criteria, While parsing the
expanded text of a source file, the syntactical analyser can detect a (set of) autonomous
programming declaration unit(s) or not (according to the programming language; for
instance ’program-id’ in Cobol). Each time such a programming unit is found out, a
(programming) module is associated to the éorresponding portion of text of the source
file.

At last, source text files have a specific physical location according to the (running)
application®. This information is considered as optional, because it is not very easy to
introduce. In fact, it could be helpful when sources files must be grouped to launch a
common extraction but it has not many other uses.

A source text file has: |

a name,

a physical location (optional),

an original text,

an expanded text,

an associated language,

inchides and/or is included into 0 to n other source text file(s),

has 0 to n associated modules.

b. Module

A module is a (textual) declaration unit. Two kinds of modules are managed by the
CARE tool: programming modules and declaration modules.
Programming modules are the most usual modules, They correspond to processing units
of the application (mainly such as programs). They are automatically created by the
parser of the source text files when it syntactically detects such a processing unit.
Declaration modules correspond to a declaration unit defined by the reverse engineer in
the expanded text of a source file that does not contain any programming module
declaration.
A module:

has a name,

originates from one expanded source text file at a definite position (start and end
position),

has 0 to n submodule(s) and/or is the submodule of 0 or 1 module,

calls 0 to n module(s) and/or is called by 0 to n module(s).

¢. Data File
Data files declarations are the basic start elements of the CARE tool when reverse
engineering an application’. They are found in the (expanded) source text file of
modules (the highest granularity level programming modules or a declaration module).

4 Nevertheless, as mentionned in the Project definition, a copy of all the files that the user wanis to get
analyzed during the application reverse engineering are gathered into one unique directory.
Other start elements such as data object (schema) introduced by the user are considered as a secondary
knowledge source by regards to the application to reverse engineer.

Phenix Project - July 92 Page 7

Phenix CARE Tool Specification - The User’s View

In the CARE tool, the actual distinction between a data file as declared in a
programming module, called a logical file, and its assigned data storage medium, called
the physical file, is maintained. As the same physical file may be declared (and used) in
different programming modules, a physical file can be associated with several (and
possibly dissimilar) logical files.
A physical file has:

a name,

a physical location.
A logical file:

has aname,

describes a physical file,

is declared in a module,

is accessed 0 to n times in its declaration module for I, O or I/O (access mode),

its description contains 0 to n main object declarations.

3. Data Object and Schema, Status (abstraction level)

a. Data Object
The concept of data object is used to register any kind of data or information
structure.
Data object covers four specialized concepts:

e ’main object’: data object registering a 'main’ information concept (self-defined,
rather independent concept); physical or logical data structures such as a Cobol
record type, a Codasyl record type, or a relational table, as well as conceptual
entities such as an entity type in a given ERA model or an ’entite’ in the Merise
model, are instances of a main object;

e ’property’: data object registering properties or characteristics of other data objects
(called their *father’ objects), a property takes one or several (groups of) values; a
Cobol record field, a Codasyl data-item, a column of a relational table, an attribute
in an ERA model or an "attribut’ Merise model are instances of a property;

¢ ’link’: data object registering links between at least two main objects, each one
playing a specific "part’ in the link; Codasyl sets, relationship types in an ERA
model or 'relation’ in the Merise model are instances of a link;

o ’programming variable’: any kind of data object used as programming variable in
the source text of a module.

A data object is said elementary or compound whether it comprises no or at least
one property.

A property has a minimal and maximal cardinality indicating the minimal and
maximal number of values that its father object must or may have for this property. A
property with a maximal cardinality equal to 1 or greater than 1 is respectively called a
monovalued or multivalued property.

The concept of part is introduced as an intermediary concept between a link and each

Phenix Project - July 92 Page 8

Phenix CARE Tool Specification - The User’s View

’linked’ main objects. For a given link relating main objects, a part is defined for each
main object to express the role played by this main object in the link. To add semantics
about these roles and to avoid designation ambiguities in the case of recursive links, a
part has a name. A part has a minimal and maximal cardinality indicating the minimal
and maximal number of occurrences of its related link an occurrence of its related main
object must or may participate in. A link has a definite number of parts, which is its
degree.

" A data object:
has one name,
has type and length information,
is compound of 0 to n property(-ies),
has associated textual comments (optional).
A main object:
inherits data object features,
most often originates from a logical file (see section 1.2.c),
plays 0 to n part(s).
A property:
inherits data object features,
has a minimal and maximal cardinality,
is the component of one data object.
A link:
inherits data object features,
has 2 to n related parts and a degree.
A programming variable:
inherits data object features,
originates from one module (see section 1.6).
A part has:
a name,
a minimal and maximal cardinality,
a multiplicity.
b. Schema
A schema is a set of data objects. It either originates from extraction process
(automnatic or user-directed) launched on the (expanded) text associated to one or several
modules -this is the most usual case-, or it is created by the user through an enrichment
process.
More than one modules may be grouped to activate the automatic extraction process at
once on a group of ’related’ modules (and therefore source files). The result of this
grouped extraction is a schema that contains the data objects descriptions issued from all

6 not necessarily distinct: recursive links are allowed

Phenix Project - July 92 Page 9

Phenix CARE Tool Specification - The User’s View

the modules gathered in the group.’
A schema:
has a name,
contains 0 to n data object(s),
groups 0 to n module(s), 7
associated textual comments (optional).

c. Status (abstraction level)

A status characterizes data object and schema. It registers their abstraction level as
usually defined in database forward and/or reverse engineering.
Possible values of status are 'physical’, "logical’, ’conceptual’ and 'undefined’. These
values are: _
- automatically set by the CARE tool according to specific functionalities activated on a
data object or a schema (for instance, objects created by an extraction process have a
*physical’ status),
- simply maintained by most of basic functionalities,
- interactively set by the reverse engineer when (s)he estimates that a data object or a
schema has reached a specific abstraction level (see section II).

This concept is defined in order to introduce methodological assistance in the CARE
tool. For instance, it can be used to force some reverse engineering methodology based
on the sequential reconstruction of the physical, the logical and finally the conceptual
schema of the application. Moreover, the physical schema is considered as a
specification criterion for the concept of origin.

A status:

equals "physical’, "logical’, *conceptual’ or *undefined’,

qualifies a data object or a schema.
N.B.: The status of a programming variable is always "physical’.

4, Data Object Subordinate Concepts

4.1 Data Object Type

Data objects with a ’physical’ status are always typed (programming languages
force explicit typing or infers implicit typing for all data structure definitions). Type
information includes:

a. a domain type such as numeric, alphabetic, alphanumeric, text, date, pointer, boolean,
complex, 'user-defined’;

7 A module may belong to at most one group of modules so that its data objects descriptions are
present in only one schema. The only case where data objects descriptions issued from the same
source file can be found more than once in the schema(s) of an application comes from source text
inclusion facilities provided in the programming language. Nevertheless, these multiple

descriptions will immediately be suggested for integration because of their common and unique
textual origin.

Phenix Project - July 92 Page 10

Phenix CARE Tool Specification - The User’s View

b. alogical and/or physical length (optional);

c. an editing format® (optional).

Moreover, the possible value domain of data objects may be more accurately
constrained. For a given data object, type information can be completed by the definition
of significant *values’, Using this secondary concept, the value domain of a data object
can be restricted to an interval or enumerated domain. A interval domain is defined via
the definition of its lower and upper limit value. An enumerated domain is defined via
the definition of all its possible values. Optionally, a significant name may be associated
‘to any specific value or interval linked to a data object.

When and while appropriate, this kind of information is maintained for data objects
with another status than physical’.

An elementary data object has:

a domain type,

a logical and physical length (optional),

a format (optional).
A compound data object:

has inferred type information from its component property(-ies) type information.
A domain type value is ‘numeric’, *alphabetic’, ’alphanumeric’, "text’, 'date’, *boolean’,
*pointer’, "complex’, or any other user-defined value.
A significant value:

equals a specific value,

is linked to 1 to n elementary data object(s),

is used as lower limit of 0 to n interval definition(s),

is used as upper limitof O ton interval definition(s),

has a name (optional).
An interval:

is linked to an elementary data object,

refers 2 values: its lower and upper limit,

has a name (optional).

4.2 Data Object Key

In many programming languages, various access facilities are provided between
data structures. As for data object type, this kind of information is useful to achieve
some reverse engineering tasks or reasoning processes. Most of these access facilities
correspond to key techniques’. On this basis, four kinds of key between data objects are
conceptualized in the CARE tool.

8 Format is specified using the Cobol-like format conventions such as XXBXX, A(4), 59999,
Most of these key concepts basically relate to data objects with a *physical’ status. Nevertbeless, as long as
it migth be needed, key information will be accessible for data objects with a status value other than
*physical’.

Phenix Project - July 92 Page 11

Phenix CARE Tool Spécification - The User’s View

Note: Link data object implies both side access ’facilities’ between linked main
objects. This is an implicit property of link data object. It is not explicitly
registered in the CARE tool. :

a. Access Key
An access key is a mechanism providing fast access t0 a data object given a set of
values for one or several of its component property. Therefore, an access key is a set of
one or more property(-ies), and is defined as primary or secondary (only one primary
key is allowed per data object).
An access key can be an identifier, if all its components also compose an identifier.
An access key:
relates to one data objectm,
is constituted by 1 to n property data objects, components of this data object,
is primary or secondary.
b. Sort key
A sort key is a mechanism allowing (fast) sort facilities of data object occurences
according to a set of values for one or several of its component property, each one
considered with a specific sorting mode (’ascending’ or *descending’). Therefore, a sort
key is a set of one or several oredered property(-ies). A sort key does not always provide
a one-to-one access link.
A sort key:
relates to one data object,
is made up of 1 to n ordered property data objects, components of this data object.

¢. Relative key
A programming variable may be used as a relative key for a data object
A relative key:
relates to one data object,
is made up of one programming variable.

10

d. Pointing relationship
A data object11 may point to a main object.
A pointing relationship relates:
a 'pointing” data object (0-n),
a *pointed’ main object (O-n).

4.3 Identifier

The identifier of a data ol:aje:t.:t12 (the identified one) is a set of one or several data
objects (the identifier components) such that there may not exist more than one
identified data object occurence with the same set of values for the data objects
components of itsidentifier. Let’s define temporarily a component of a data object

10mhis data object must be a main object if its status equals *physical’ but might be another specialization of
data object otherwise. .
This data object may not be a link object if its status equals 'physical’
12e:xcept programming variable

Phenix Project - July 92 Page 12

Phenix CARE Tool Specification - The User’s View

identifier as either a property of this data object or a (property of a) main object 'linked’
to this data object'>. A more accurate definition using the concept of path is given in
section 1.8.4.

Note: An identifier must not be defined if the corresponding identifying property
can be inferred from another concept such as the 1-1 cardinality of a part
implied in the identifier.

Note: An identifier can be an access key, if all its components also compose an
access key.

4.4 Constraint'*

Constraints are additional features that must be satisfied by the data objects, parts,
or values they concern. A major distinction sets apart strong-typed constraints and
weak-typed constraints. Weak-typed constraints have no bound semantics (free text),
whereas strong-typed constraints have a predefined semantics (so are referential
constraint, functional dependency, existence constraint and inclusion, equality or
exclusion of value, part or link). Specific inference and management processes are
provided for strong-typed constraints as far as their semantics is "understood’ by the
CARE tool.

Strong-typed constraints are briefly recalled here below.

4.4.1 Inclusion and Referential Constraint

An inclusion constraint states that the values of given attributes must be a subset of
the values taken by other attributes.

A referential constraint defines an inclusion constraint between the value(s) taken
by a (set of) referencing property object(s) and value(s) taken by a {(set of) referenced
property object(s) moreover declared as an identifier for its (their) father object.

4.4.2 Functional Dependency

a. Functional Dependency between Properties
Given a main object or a link, a set of one or several property objects (the
determined one) is functionally dependent on another set of one or several property
objects (the determining one) if, at any time, each value of the determining set of
property(-ies) is associated with only one value of the determined set of property(-ies).

b. Functional Dependency between Parts
Given a link, a set of one or several of its parts (the determined ones) is functionally
dependent on another set of one or several parts (the determining ones) if, at any time,
cach value of the determining set of part(s) is associated with only one value of the
determined set of part(s).

135ee Methodological guide, Vol I, chapter 2, section 2.3, for a detailed presentation of the concept of
identifier '

15 dentifier, part and property cardinalities are constraints that have received an independent modelization
See Methodological guide, Vol I, chapter 2, section 2.3.11, for a detailed presentation of strong-typed
constraints

Phenix Project - July 92 Page 13

Phenix CARE Tool Specification - The User’s View

¢. Multivalued Functional Dependency between Properties :
A multivalued functional dependency corresponds to a functional dependency
between a determining (set of) property(-ies) and a multivalued property.

4.4.3 Existence Constraint

An existence constraint makes the existence of a data object dependent to the
existence or value constrainment of other data object(s)

4.4 4 Inclusion, Equality or Exclusion of Parts

These constraints refer to parts played by the same main object.
A parts inclusion constraint implies for a main object that plays a part (the including
one) in a link, to play another part (the included one) in another link.
A parts equality constraint implies for a main object that plays a part in a link, to play
another part in another link, and conversely.
A parts exclusion constraint expresses that several parts played by a main object are
mutually exclusive.

4.4.5 Inclusion, Equality or Exclusion of Links

These constraints are similar to the inclusion, equality or exclusion constraints of
parts but at the level of link: they concern all the parts of the link.

4.4.6 Inclusion, Equality or Exclusion of Values

These constraints are aimed to reduce the set of values that one (or several) property
object(s) may take. Such restrictions make reference to constraining elements such as:
- the domain type itself,
- one or several property(ies) of the same data object,
- one or several property(ies) of another data object.

4.4.7 Weak-typed Constraints

A weak-typed constraint is a constraint with no predefined semantics: it is just free
text. However, this text may explicitely refers two kinds of ’significant’ elements:
variable and path. In the text of a weak-typed constraint, a variable can be used to
designate one given instance of a specific data object (main object, property, link or
programming variable) while a path details one given connection between two data
objects (see section 1.8.4). Variables and paths are significant elements in the sense that
the text in which they appear is automatically updated in accordance to any data objects
structural modification.

5. Ancillary concepts

5.1 Name and Thesaurus

Names are used in various reverse engineering reasoning processes to infer semantic
information. In fact, names appear as a concept to be handled in an autonomous way:

Phenix Project - July 92 Page 14

Phenix CARE Tool Specification - The User’s View

they can be made up of several parts, each one being significant by its own, the use of
prefix, suffix and abbreviation is a common practice, synonyms and homonyms occur,
etc. Moreover, names belong to a specific language (English, Dutch, French, etc), but
have traduction(s) in some other languages.

Name conceptualization and management is synthesized in the Phenix CARE tool in
the folowing way:

- names are considered as strings of character(s), made of substrings,

- substrings are detected upon the use of delimitors (such as '~ or ’_’), changing
between upper and lower cases or changing between numeric and alphabetic
characters,

- standard substrings are predefined to indicate identifying, referencing or pointing
features,

- serial names are detected upon name correspondence except a numeric substring,

- synonysms are recorded as pairs of two synonysm names,

- an abbreviation is viewed as a synonysm,

- prefix/suffix handling is provided only via string find (and replace) functionalities,
- names are handled independently of their so-called object(s) type,

- no language qualification is provided.

A thesaurus registers a set of synonysms (pairs of synonysm names) significant for
the application to reverse engineer.
A name:

has a string value,

is a synonym of and/or has as a synonym O to n other names.
A thesaurus:

has a name (optional).

5.2 Connected Data Objects

Two data objects are connected if there exists a succession of other data objects
composing a ‘connection’, between the two data objects said to be connected, via part(s)
andfor property/'father’ data object composition relationship(s). If a connection is
entirely defined via only one part or one property/'father’ data object composition
relationship, the two connected data objects are said directly connected, otherwise they
are said indirectly connected.

A connection will further be detailed through the definition of the concept of "path’
in section 1.8.3.

5.3 Transfer Instruction

A transfer instruction between data objects is a concept pointed out in several
extraction reasoning processes. As so, transfer instructions between data objects with a
*physical’ status are recorded (and accessed while appropriate). Various programming

Phenix Project - July 92 Page 15

Phenix CARE Tool Specification - The User’s View

statements may be registered as transfer instructions: for instance in Cobol, so are move
(corresponding), read/write, compute, etc.
Inference rules combine transfer instructions to find out more complex transfer links -
between data objects.
A transfer instruction relates:
a 'transfered into’ data object (0-n),
a *transfered from’ data object (0-n),
originates from one module.

6. Origin

6.1 Needs for the concept of "origin’

Let’s consider two main profiles of reverse engineer: a database administrator and a
programming manager.
a. The end-user as a database administrator

A database administrator manages the information system(s) of a company: he controls
its conceptual model(s) and the corresponding translated physical model(s). He must be
able to indicate whether any given information is present in the information system, and
if so to locate this information in the implemented system in order to define an access
request to it. To do so, starting with any element of the information system (from the
conceptual model), he needs to know how it is present in the physical model. This link
between a conceptual information and its translation in a physical schema corresponds
to an origin in terms of objects.

b. The end-user as a programiming manager
A programming manager is responsible for the maintenance of programs developped in
a company. Starting with any element of a physical schema, he needs to know where
this element is referenced in programs to meet any software evolution requirements. The
link between an object in a physical schema and the, possibly many, declaration(s) and
use(s) in source files corresponds to an origin in terms of textual references.

6.2 Dual Definition: Textual Origin vs Object Origin

Because of these various needs, a dual definition of the concept of origin is
proposed, based on the explicitation of the physical schema’® of the application.

1645 perceived by the user: the physical schema is a close image of the text of the source files of the
application - it contains all the information declared in the source files - but it may have already been
restructured (mostly via transformation and integration processes, including gen/spec structures, etc)

Phenix Project - July 92 o Page 16

Phenix CARE Tool Specification - The User’s View

Object origin CONCEPTUALIZATION
_____________________ B __ ___. Schema(s) stated as physical
Textual origin
J R 5 First schema(s): objects created by
EXTRACTION extraction
Source files

e *Textual origin’: position (start and end line number - possibly the same) in a
expanded source text file where an extracted object is referenced (declaration
statement).

e ’Object origin’: data object from the physical schema from which a data object
from a further schema derives'.
Note: While the user does not define a schema as a physical one, the CARE tool
considers that the physical schema is the first extracted schema.
A textual origin relates:
a data object,
to one module at a given position (start and end line number).
A data object has 0 to n textual origin(s).
An object origin relates:
a data object,
to a (set of) data object(s) from the 'physical’ schema.

Note: The composition of textual and object origins provides the textual origin of
a data object from a schema at an upper level than the physical one

7. Data Object Correspondence

Data object correspondences make explicit correspondences existing between two
(sets of) data objects. They are characterized by features such as:

- semantically, correspondences are registered as ’equality’ con:spondencesls;

17gee Methodological Guide, Chapter 2, p 2-29. An object can have more than ope origin. Any reverse
engineered object has at least one origin.

Y80 other types of correspondences should be interesting to register: they are 'inclusion’ and *subtype’
correspondences. They are not provided as such in the Phenix CARE tool but data objects transformations ,
integration and creation processes handling generalization/specialization structures can be considered as
assimilating them.

Phenix Project - July 92 Page 17

Phenix CARE Tool Specification - The User’s View

- a correspondence is based on various elements of 'comparison’: name, structure,
physical type information (domain, length, format, position), transfer instruction,
textual origin, physical and/or logical file belonging and context (relationships with
other data objects); '

- a correspondence is defined either intra- or inter- schema.

Correspondences are intensely used throughout any integration process; they are
also used to suggest some specific process execution.

How are they found out? First eventuality: the user spontaneously declares them. If
not, the detection of data objects correspondences is a functionality, provided by the
CARE tool, that is based on data objects analysis on the various comparison criteria
described hereabove. Following this analysis, correspondences are either asserted as
certain, or the user is asked to confirm one (or several) of the correspondence proposals.

A correspondence:
relates a set of 1 to n data objects,
to a set of 1 to n data objects,
is *scored’,
is based on specific comparison elements.

8. Advanced Definitions

8.1 Generalized and Specialized Main Objects

Generalization/specialization is allowed in the CARE tool. A generic main object
has a set of at least two specific main objects, a specific main object is specific to at the
most one generic main object. As far as the population of gen/spec main objects is
concemed, a partition constraint is required upon the set of all the specific main objects
of a generic one. Downward inheritance mechanism is automatically defined for the
property and link objects of a generic main object.

A main object:

is generic of 0 or 2 to n main objects (called *subtypes’),

js specific of 0 or 1 main object (called 'supertype’).

8.2 Multiple Part

A part relates a link to the main object that plays a role in this link. If the same part
may be played by several main objects, the part is called multiple part. The
multiplicity of a part indicates how many different main object(s) may play this part.

8.3 Path and Arc

A path' is a way to designate a connection’ between two data objects. The
intermediary concept of arc is used to lead to the definition of a path. An arc is either a

1956 Methodological guide, Vol 1, chapter 10, for a detailed presentation of this approach

Phenix Project - July 92 Page 18

Phenix CARE Tool Specification - The User’s View

part or the component relationship between a property and its father data object.

Therefore, a path is a list of arcs and intermediary data objects composing a connection
between two data objects.

Arcs and paths have cardinalities which express, in both direction, the minimum and
maximum number of data objects that must and may be linked by the arc or path.

A path is designated by a name automatically built up by the CARE tool on the basis of
the path components.

Paths are essential for the definition of identifiers; they can also be used i the
expression of weak-typed constraints, Their most important feature is that they are
updated in conformity with any data objects transformation.

A path:

is a list of arcs and data objects,

has a minimal and maximal cardinality,

has a system-defined name.

8.4 Complex Identifier

A complex identifier is an identifier made up of more than one identifying
component that must not be directly connected to the identified object. To allow the
definition of such identifiers, identifier components are considered as pairs defined as
follows:

(identifying data object,

path relating this identifying data object to the identified one).

An identifier:
has 1 to n components,
identifies one data object (called the "identified’ object).
An identifier component:
patticipates to 1 to n identifiers,
is a pair of:
- one identifying data object (main object or property),
- a path relating this identifying data object to the data object identified by its
identifier.

8.5 Position of a Property in its father Data Object, Concept of "Zone’

Elementary data objects have type information including domain and length
declaration.

8.6 Multiple Description

A data object is compound of 0 to n property(-ies) with overlapping possibilities.
Indeed, more than one composition relationships may exist for the same data object
when several descriptions are gathered for the same data objcc (extracted from the
code or introduced by the user). This feature is materialized in the CARE tool by the

205ee Methodolo gical guide, Vol I, "The Representation Problems in Databasges’, chapter 8

Phenix Project - July 92 Page 19

Phenix CARE Tool Specification - The User’s View

addition of a start and end position of a property in its direct ’father’ data object
(property or main), according to its own type information and the one of any “brother’

property(ies).

A property data object has:
a start and end position.

8.7 Name Unicity Constraints and Name Enforcing

9.

Name unicity constraints are imposed upon the instances of the concepts handled
by the CARE tool. They are presented herebelow. May not have the same name the
following objects:

all main objects of a given schema;

all programming variables of the given schema

all the properties (possibly inherited) of a given main object;

all the links of a given main object and of its subtype main objects;
all the *named’ parts of a given link (the name of a part is optional)*’;
all schemas of an application.

Name enforcing is automatically made by the CARE tool when it must create
objects that viloate name unicity constraints. Such violating names are suffixed by ol
followed by a number, the whole suffix tuming the name into a name meeting the name
unicity constraints.

State, state tree and version

9.1 State and state tree

All the states management facilities are based on the following two basic concepts:
states and state tree. A state tree registering remarkable states is maintained during any
work session started by the user (see section 1I.1). A remarkable state is created each
time the user launches a reverse engineering process. Basically, they are registered
sequentially in the state tree. But the creation of a remarkable state in parallel with
another is afforded to allow the evaluation of several reverse engineering hypotheses.

A multihypothesis corresponds to the opportunity for the user to evaluate several
reverse engineering sequence of processes. The multihypothesis state is a remarkable
considered as the entering point of a hypothesis.

In the CARE tool, some implementation considerations implies the following
features’:

215 part may have no name if no one of its main objects (and any of its generic or specific main objects)
> 2part:icipa.tes to the same Lok,

therefore they are not justified by actual conceptual requirements

Phenix Project - July 92 Page 20

Phenix CARE Tool Specification - The User’s View

- the state tree is developed globally to an application: it is not local to a schema,

. the state tree can not be maintained further any schema (um)loading: it is
reinitialized after any of these actions (states navigation can not bypass the execution
of such actions);

_ the state tree is maintained during a work session but is not registered outside the
session (versioning facilities are provided to keep a permanent trace of remarkable
schema states, including hypothesis evaluation).

9.2 Version

A schema can be saved under several versions (a schema has a version number). A
version tree is maintained for each schema (independently of a work session). Thus,
access to any version is allowed (though only one version is loaded at a time);
modification of any of these version can be done in combination with the various
savings facilities (save as the same version, save as a new version, save as another
schema).

Among all versions of a schema, there can be one with a specific status - the image
of the 'physical’ level of abstraction of a schema; it determines access to object
origin(s). This version of a schema is automatically saved by the system when the user
declares it as corresponding to the physical schema; it will be maintained as a read only
version (no ’save as the same version’ allowed).

10. Method

A method refers to a reverse engineering methodology (to be) followed by the
reverse engineer. As so, it must be regarded as a global process indicating what can be
done and when. Considering the whole reverse engineering process, specific activities
have been identified and ordered, so that the various problems encountered during the
overall reverse engineering process are solved™.

23gee Methodolo gical guide, Part IV, "Reverse Engineering Methodology’

Phenix Project - July 92 Page 21

Phenix CARE Tool Specification - The User’s View

I1. Available functionalities in the CARE tool

Preliminary Note.

Most functionalities are ’context sensitive’: some of their application parameters are
objects currently selected in the user interface. In the following sections, when the word
‘current’ will be used to designate an object, it is to be understood as the object
*currently selected in the user interface’.

Starting and Managing a Work Session

A work session is started each time the user activates the CARE tool. Within a
session, the CARE tool runs by default as a toolbox: the reverse engineer is free to
launch any functionality of the system at any moment. This is considered as a
methodology-free running mode (nevertheless, the absence of methodology is itself a
method).

On the contrary, the reverse engineer migth be constrained within a specific
methodology upon selection of a specific reverse engineering methodology®*, but
methods are not externalized in the Phenix CARE tool.

Some reverse engineering functionalities can be customized by the user.
Customizable elements are: comparison criteria (with weight valuation) for
correspondence detection and integration, naming conventions (specific names or
delimiters), application description and schema graph contents.

The extraction process of a schema is not customizable® from the global session
custornization.

Standard and default customization values are defined in appendix; note that they are
totally application independent within the tool®.

a. Session customization

e Customize...
Displays the several customization elements of a session with their current values
and allows any update

¢~ Load Options
Restores the last saved values of the customization elements

e Save Options
Saves the current values of the customization elements

245ee Methodological Guide, volume I, Part If

The initial extraction of a schema could be customized in terms of the concepts to be extracted.
Nevertheless, such a customization would imply that the object base was completed by the registration of
the 'not extracted yet’ information. In fact, if instances of a concept are not present in the OB, it no more
automatically means that this concept is not instanciated in the source files, for it can simply mean that it
has not been extracted yet.

There is no explicit registration of customization values according to a specific application.

Phenix Project - July 92 Page 22

Phenix CARE Tool Specification - The User’s View
b. Method definition
¢ Define Method...
¢. Session Quitting
e Quit
Closes the current project and exits the current work session
If necessary, asks for project save confirmation before closing it

2. Project Handling

a. New pro-stack ject declaration

e New..

Asks the user for:
the new project (application) name
the directory where (a copy of) the source text files composing the application

to solve in this project are gathered

Optional information is prompted too:
the responsible reverse engineer
textual comments

Initializes the work session for this project

The work session initialization of a new project implies the following actions:

- declaration of all the source text files contained in the directory associated to the
application,

- initial extraction of these source files to get all the information needed to show the
application description and to organize it into schema

b. Existing project opening
¢ Open...
If a project is currently opened, asks the user to confirm to close it
Displays the list of all the projects known by the Phenix CARE tool to allow one
project selection
Initializes the work session for the project selected by the user

The work session initialization of an existing project implies to load all the initial
information associated to a project: mainly application description and source
organization

c. Import/Export

¢ Import...
If a project is currently opened, asks the user to confirm to close it
Asks the user for the name of a file where the contents of a project is stored
(including the whole application description and contents)
Initializes the work session for this project

The work session initialization of an imported project implies to load the project and its

Phenix Project - July 92 Page 23

Phenix CARE Tool Specification - The User’s View

application description and contents as stored in the corresponding file
d. Project information

¢ Info...
Displays the list all the projects known by the Phenix CARE tool
For any selected project, displays the overall associated information (creation date,
source text files directory, responsible reverse engineer and textual comments)
For displayed project information, allows update of the responsible reverse engineer
and textual comments
e. Project and its application description
e GGraph
Displays a graphical description of the application associated to the current project
According to the current customization of the system, this description contains:
source files,
the modules (programming ones and user-defined declaration ones if any),
the physical data files,
the logical data files and their main (data) objects,
call relationships between modules,
include relationships between source files

f. Project current state saving

e Save
Saves the current state of the current project, as it is at this moment of the work
session

e Save as...
Saves the current state of the current project under a new project name prompted to
the user
The new project creation date is set to the current date

¢ Export...
Asks the user for the name of a file where the contents of the current project must
be stored
Generates this file according to the current state of the project

g. Project deletion

¢ Delete
Asks for project deletion confirmation before deleting it

h. Project quitting
¢ Close

Closes the current project in the current work session
If necessary, asks for project save confirmation before closing it

3. Data Object Extraction Phase

Phenix Project - July 92 Page 24

Phenix CARE Tool Specification - The User’s View

3.1 Source Organization

a. Source organization and schema declaration

e QOrganize...

Displays the list of all the files existing in the source text files directory associated
to the current project (as already grouped if so) with the modules associated to them
Allows a multiple selection of modules to define additional groups of files for
which the user wants a common ex{raction process
Asks for a name for any set up group and creates an empty schema, called with this
name, in which all the concepts to be created by an extraction process launched on
this group of files”’ will be located
Optionally, textual comments are associated to any set up group or, in fact, to the
schema corresponding to this group of modules

Note: Already extracted modules of a schema are asterisked; such modules can

not be removed from their associated schema

b. Module declaration

e Associate Module To Source File...
Allows selection of lines in the current edited source file
Creates a module that is associated to this source file with this portion of text
Launches the extraction of concepts presented in the application description

3.2 Source consultation

a. Text browsing
The text browser provides usual text file browsing facilities: navigation and elementary
find facilities
¢ Show File...,
Displays the list of all the source files of the current project and allows a single
selection
Allows the user to launch the browser on the expanded text of this source file

¢ Show Module...
Displays the list of all the modules defined for the current project and allows a
single selection
Allows the user to launch the browser on the expanded text of this module

b. Pattern searching

e Search

Displays the list of all the patterns that the system can search for and allows a
multiple pattern selection

a. Pattern definition

e Define...

27By default, this name is the name of the first source text file selected to start a group definition, but it may
be modified by the user

Phenix Project - July 92 Page 25

Phenix CARE Tool Specification - The User’s View

AHows the definition of a new search pattem

3.3 Extraction

a. Automatic concepts extraction’

e Extract... (*Schems’ window)
Displays the list of all the modules associated to the current schema (already
extracted modules are asterisked)
Launches the extraction process for all the not yet extracted modules and traces the
extraction process in a standard file

b. Assisted concepts extraction

e Search and Extract... (*Schema’ window)
Displays the list of all the modules associated to the current schema (already
extracted modules are asterisked) and allows a single selection
Displays the expanded text corresponding to this module
Allows concept(s) creation on the basis of pattern searching
(Concepts are created in the schema of the module; this schema is possibly still

empty)

4, Data Object Conceptualization Phase

4.1 Schema management

a. Schema display

¢ Open Schema... (menu ’Project’)
Displays the list of all the schema known for the current project and allows one
schema selection

Loads the schema and opens a window to display the contents of this schema®

Displays a warning message if there is (are) module(s) associated to the schema that
has (have) not been extracted yet

b. Schema reporting

e Print... {menu ’Schema’)
Prints the contents of the current schema (see section IL9 'Reporting’)

¢. Schema comments

e Info... (menu ’Schema’)
Displays the list all the schemas of the current project and allows a single schema
selection

Displays the textual comments associated to this schema and allows any update of it

gglf this extraction was customized, the user would select the concepts to be extracted
Main and property objects, gen/spec structures and links, links and parts are presented at once. Other
concepts such as identifiers and constraints are presented at explicit user’s request

Phenix Project - July 92 Page 26

Phenix CARE Tool Specification - The User’s View

o Group
Displays all the property(-ies) of the current main data object (direct or indirect) and
allows a multiple
Groups the selected properties (they should have the same ’father’ property) into a
property the name of which is asked for (optional)

e Ungroup
Displays all the property(-ies) of the current main data object (direct or indirect) and
allows a single selection
Ungroups the selected property

e. several property’s <> one compound property -+ several component property’s

(aggregation / desaggregation of property(s))

e Aggregate
Displays all the property(-ies) of the current main data object (direct or indirect) and
allows a multiple selection
Aggregates the selected properties into a property the name of which is asked for
(optional)

e Desaggregate

Displays all the property(-ies) of the current main data object (direct or indirect) and
allows a single selection
Desaggregates the selected (compound) property

£, one main object ¢ two main objects (merging / splitting of main object(s))

« Merge Mains
Upon selection of two (nor specific, nor generic) main data objects, merges them

e Split Main
Displays all the properties of the current main data object (direct or indirect) and
allows a multiple selection
Displays all the links of the current main data object and allows a multiple selection
Splits the main according to the selected property(-ies) and/or link(s) by the creation
of a new main data object the name of which is asked for (optional), related to the
splitted main data object by a new link the name of which is also asked for
(optional)

g. multiple role «> several links

o Split Part
Displays all the parts of the current link object and allows a single selection
Splits the selected multi-domain paxt

e Merge Links

Upon selection of two links, displays the two corresponding sets of parts and allows
a single selection in each set
Merges the selected parts

h. gen/spec of main object(s) <> the supertype main object only

Phenix Project - July 92 Page 28

@

]

Phenix CARE Tool Specification - The User’s View

Generic only

Specialize
Displays all the properties and all the parts of the current (not already generic) main

~ data object

Allows the designation of a ’type’ property among these properties

At least two specific main data objects must be described by coresponding multiple
selections of properties and parts to be specialized

Specializes according to these selections by the creation of new specific main data
objects the name of which are asked for (optional)

i. gen/spec of main object(s) <> the subtype main objects only

]

L

Specifics only

Generalize

Upon selection of two or more (not already specific) main data objects, displays the
corresponding sets of all their direct properties

For each main object, allows a multiple selection of its property(-ies) to be
generalized ‘

Generalizes according to the selected property(-ies) by the creation of a new generic
main data object the name of which is asked for (optional)

4.3 Semantic enrichment and refinement

a. Creation of a new schema

L2

New... (menu ’Schema’)

Asks the user for the name of the new schema

Prompts for optional textual comments to associate to it
Updates the list of the schema known for the current project

b. Addition of new concepts in the current schema

New Main...
Asks the user for the name of the new main object
Prompts for optional textual comments to associate to it

Add Property...

Asks the user for the name of the new property to add as the last property of the
current data object

Displays default cardinalities and allows update of it

Insert Property...

Asks the user for the name of the new property to insert behind the current property
object

Displays default cardinalities and allows update of it

New Link...

Asks the user for the name of the new link
Asks for the definition of each part of this link:

Phenix Project - July 92 Page 29

Phenix CARE Tool Specification - The User’s View

allows (multiple) selection of the main object(s) playing this part,
prompts for a name (optional)
displays default cardinalities and allows update of them

e New Gen/Spec..
Asks the user for the name of the new generic main object
Asks the user for the name of the new specific main objects
Prompts for optional textual comments to associate to them

o New Correspondence...
Asks the user to select (a set of) data object(s)

As_ks the user to select the (set of) corresponding data object(s)
Prompts for the correspondence type

e New Value/Interval...
Allows the creation of a significant value or interval of values

¢ New Identifier...
Asks the user for the definition of the identifier:
allows (multiple) selection of main or property object(s), component of the
identifier.
For each component leading to a problem with its path to the identified object:
asks for path definition or component redefinition.
e« New Constraint...
Displays a panel
¢. Deletion of existing concepts

e Delete
Asks the user for a deletion confirmation of the current schema, data object, part,
data objects correspondence, value, interval or domain, constraint or identifier
d. Update of concepts

e Rename...
Asks for a new name for the current object (schema, main object, property, link or
part)
¢ Add Part...
" Allows the creation of a new part for the current link
Allows multiple selection of the main object(s) playing this part
Displays default cardinalities and allows update of them
e Modify Part Main(s)...
Displays the list of the main object(s) playing the current part
Allows update of it, that means addition of main object(s) from the list of all the
main object(s) of the schema or removal of main object(s) already playing the part
e Add Gen/Spec Link...
Asks the user to select the generic main object (single selection)
Asks the user to select the specific main objects (multiple selection)

Phenix Project - July 92 Page 30

Phenix CARE Tool Specification - The User’s View

Asks the user to designate generic/specific properties

Modify Card...
Displays the minimal and maximal cardinalities of the current part or property
object
Allows update of them
Refine Property...
Allows the user to define component(s) for the current (clementary) data object.
Asks for each component to create:
i{s name,
a physical length and/or a start position.
Unrefine Property
Eliminates all the elementary properties of the current compound property object
(that is turned into a elementary one)

Change Domain...
Allows changing of domain type for the current elementary property
Possible changes are:

alphanumerical domain — boolean domain,

alphanumerical domain — date domain

Modify Value/Interval..
Displays the list of all significant values and intervals already registered

Modify Comments...

Displays the comments (if any) registered for the current data object and allows
update of them

Change Status...

Asks for a new status value for the current data object or schema

Displays the list of data object(s) for which this change can be a problem

4 4 Integration

The integration process is considered as a sequence of the two processes: first

correspondence detection and then data object fusion.

a. Correspondence detection
See functionality "Find Correspondence..." (section I1.5.2)

b. Merge of two data objects

Merge...

On the basis of the currently registered correspondence between two data objects,
achieves integration of the two data objects

c. Integration of two data objects

@

Integrate...

d. Integration of two schemata

Phenix Project - July 92 Page 31

Phenix CARE Tool Specification - The User’s View

e Imtegrate...

4.5 Conformity management < will not be implemented in the tool >

a. conformity diagnosis

b. conformity enforcing

5 Miscellaneous Functions

5.1 Name rnzmagem'e,r:.fM

a. Thesaurus

A thesaurus of synonysms (pairs of synonysm names) is maintained in the
tool-defined text file ’thesaurus.txt’. This file can be updated externally with any textual
editor.

¢ Show Thesaurus
Displays all the synonysm pairs stored in the text file thesaurus ’thesaurus.tst’

¢ I.oad Thesaurus
Loads the synonysm definitions stored in the text file thesaurus 'thesaurus.txt’

e Save Thesaurus
Saves the current synonysm definitions in the text file thesaurus 'thesaurus.txt’

b. Search facilities

e Find...
Displays predefined search scopes® (the current schema is the default selection)
and allows a single selection ‘
Within the selected scope, finds a name or part of a name (the name of the current
object is the default 'find suggestion®) and displays the result of the search

 Find and replace...
Displays predefined search scopes33 (the current schema is the default selection)
and allows a single selection
Within the selected scope, finds a name or part of a name (the name of the current
object is the default 'find suggestion’)
Prompts for the replacing string™

These search functionalities can be used to find (and replace) a prefix or suffix within
name(s).

3 iSee Methodological Guide, volume I, chapter 6, for a detailed presentation of name management
Predefined search scopes: the current main object, the current schema, a set of schema of the current
3 froject, a set of main objects of the current schema,...
Predefined search scopes: the current main object, the current schema, a set of schema of the current
3 %ijt’ a set of main objects of the current schema,...
eletion of a part of name is achieved by using a replacing string that equals an empty string. Addition of 2
part of name can also be achieved through this *find and replace’ functionality.

Phenix Project - July 92 Page 32

Phenix CARE Tool Specification - The User’s View

¢. Similitude management

¢ Compare _
Compares two (sets of) names according to the tool comparison techniques
Displays the comparison result in a descriptive way and/or with a percentage value

5.2 Data object correspondence management

e Find Correspondence...
Asks the user to select a (set of) data object(s)
Asks the user to select the schema to be the search space:
displays the list of schemas of the current project
allows a multiple selection (the current schema is selected by default)
Asks the user to confinm customized 'comparison’ criteria to use (incl. weight
valuation) or to select new ones:
displays the possible criteria and heuristics
allows a single or multiple selection (optional selection)
Displays the resuits:
any definite correspondence and/or any correspondence proposal to be
confirmed by the user

5.3 Origin management

a. Schema evaluation

e Set Physical Status
Displays the list of schemas of the current project and allows a multiple selection
Sets the status of the selected schema(s) to *physical’

b. Access to object origin(s)
¢ Object Origin(s)
Displays the object origin(s) of the current object
Note: These object origin(s) belongs to the physical schema version

¢. Access to textual origin(s)
¢ Textual Origin(s)
Displays the textual origin(s) of the current object: source file and position (start

and end line number)
Allows access to the corresponding text

5.4 State Management

Navigation in the state tree is feasible only between remarkable states. Except for
'undo’, state management facilities are accessed after display of the state tree.
a. 'Undo’ facilities
e Undo

Phenix Project - July 92 Page 33

Phenix CARE Tool Specification - The User’s View

Undo the last reverse engineering process launched by the user™
Note: An ’undo’ may only be made ina ’leaf” state of the state tree

b. go to state x / go back (x times)
¢ State Move...
Asks the user to specify the state move by choosing between;
go back (n) times,
go to (state number)
Achieves the state move
¢. start multihypothesis
To start a multihypothesis, just go in the state considered as the entering point of a
hypothesis. As soon as you launch any reverse engineering process, a new hypothesis is
created. In a new hypothesis, any action is allowed (except schema (un)loading that
should reinitialize the state treeand therefore implied the loss of any hypothesis but the
current one),
d. end multihypothesis

e Keep hypothesis...
Prompts for a state number indicating one hypothesis to retain in a multihypothesis

e. reinitialize state tree

e Init
Asks for user confirmation and if so reinitializes the state tree

6. Suggestion

Even in a methodology-free running mode, the user can launch specific
functionalities providing different kinds of suggestion. The system makes such
suggestion(s) according to the current work context and possibly to the current reverse
engineering state of the project.

6.1 Source Organization

Suggest:
- to group modules

6.2 Extraction

Suggest:
- to get better description
- to get referential constraint through key and transfer intruction analysis

6.3 Name management

35 An *undo’ corresponds to a "go back’ to the last state where the user launched a process and to the deletion
of the subtree created because of this launch.

Phenix Project - July 92 Page 34

Phenix CARE Tool Specification - The User’s View

Suggest:
- to delete prefix/suffix
- names interrelationship

6.4 Data Objects Correspondence

Suggestion of data objects correspondence is provided vhen correspondence
proposals are made by the 'Find Correspondence...” functionality (see section IL5.2).

6.5 Enrichment and Transformation

Detection of specific structural pattems is helped by the CARE tool. They are for
instance:

- find key

- find identifier

- find referential constraint

- find pointing relationship

- find link object

- find main object

- find multivalued property

- find compound property

- find refinement

- find gen/spec

7. Method Definition

8. Man Machine Interface
8.1 Basic Presentation: menus, selectors, etc,

8.2 Specialized Editors

The user sees information through specialized editors provided in the MMI.

Source Browser
A source browser is used to display source texts.

e Application Description
A graph editor is used to display the application description graph.
e Object Editor

Specialized graphical and/or textual editors are used to display objects of
the object base such as data objects, constraints etc.

e State Tree Editor

8.3 Explanation Facility

Phenix Project - July 92 Page 35

Phenix CARE Tool Specification - The User’s View

8.4 Help Facility

a. contextual

b. passive: glossary
active: help text updated according to current variables

8.5 Error and Warning Messages

9. Reporting

a. Schema reporting
e Print... (menu ’Schema’)
Prints the contents of the current schema: main and property objects are presented
via indented lists, each main object list is followed by a paragraph presenting
identifiers and constraints defined on this main object or any of its property object;
links are referred in paragraphs following the description of any main object they
relate and detailed as a whole after all main object description

b. Object reporting

e Print Origin {menu ’Schema’)
Prints the cross-referenced origin relationships between all the data objects of the
current schema and the data objects of the corresponding ’physical’ schema version

Phenix Project - July 92 Page 36

Phenix CARE Tool Specification - The User’s View

Appendix A : Customization features

1. Customize Find Correspondence

Comparison criteria Weights Level

Name

Sub-properties

Transfer instruction search
File belonging

Textual origin

Zone

Path

P O O N

Global Weight: 4
Mazx of correspondences: 3

2. Name Analysis

2.1 Identifier subnames

Standard subnames: "ID", "NUM", "CODE"

2.2 Gen/Spec subnames
Standard subnames: "TYPE", "CAT", "CLASS"

2.3 Referencing subnames

Standard subnames: "REF"

2.4 Pointing subnames

Standard subnames: "POINT"

2.5 Delimiters

Standard delimiters: n__n, n-_u

Phenix Project - July 92 Page 37

