Conceptual interpretation of foreign keys

Jean-Luc Hainaut

May 2010%

Abstract

Foreign keys form a major structuring construateilational databases and in standard files.
In reverse engineering processes, they have loag in¢erpreted as the implementation of
many-to-one relationship types. Though one could naivelykttirey are useless, or at least
unnecessary, in hierarchical and network modeisjda keys also appear very frequently in
IMS, CODASYL, TOTAL/IMAGE and even in OO databasdesides the standard version
of foreign key, according to which a set of colurfiedds) in a table (file) is used to designate
rows (records) in another table, a careful analgbexisting (both modern and legacy) data-
bases puts into light a surprisingly large varigtyon standard forms of foreign keys. Most
of them are quite correct, and perfectly fittedre requirements the developer had in mind.
However, their conceptual interpretation can pnoweh more difficult to formalize than the
standard forms.

The aim of this study is to classify, to analynd #o interpret some of the most frequent vari-
ants of foreign keys that have been observed inatipeal files and databases.

1. The first version appeared as Chapter latodduction to Database Reverse Engineering, 2002

2 Conceptual interpretation of foreign keys

1 Introduction

The termforeign key was introduced to designate a frequent struchatiérn observed in re-
lational databases. Considering a relation scHgmah candidate (most often primary) key
A on the one hand, and a set F of attributes aticel schema R on the other hand, F is a
foreign key of R to S if, at any time, for eachleupfrom the extension of R, such that r.F is
not null, a tuple s exists in the extension of &hsthat r.F = s.A (Figure 1). This property
means that the set of values of F that appeaheiattension of R is a part of the set of values
of A of the extension of S. A foreign key indu@asinclusion constraint the right-hand side
of which is the value set of a candidate (prim#&my. The foreign key F acts aseierence

to the tuples of S. Hence the naneferential constraint commonly given to the inclusion
property. Maintaining this constraint ensuressbecalledreferential integrity of the data-
base.

R S
D A
S(A_,B,C) E B
R(D_.EF) F c
id: D id: A
R[F] O S[A] o /

Figure 1: Two representations of the concept of foreign key in the relational model: attribute R.F is
a reference to S, a role that is expressed by an inclusion constraint (left) or the tag ref (right).

F is called doreign key to suggest that it is a copy of the (prima&sy of a foreign relation.
Of course, both tables can be the same, in whis tee foreign key references tuples of its
own table.

The concept of a set of fields used as a referancecords is not limited to the relational
model, and can be found in practically all databag®f course, it is an integral part of all
value-based models, that is, models in which alitformation is represented by explicit
field values, and by aggregates of values. The pelational model (excluding the object-
relational variants) is value-based, but all staddi¢e structure models also are of that kind.
To define relationships between records or rowsgermerally use reference fields.

Other models include specific constructs to assedata entities. Such is the case of the CO-
DASYL DGTG models, and their numerous commercialtasa(IDMS, IDS, IDS2, UDS,
Vax DBMS, etc.) and of IBM IMS model , in which @ds (or segments) can be linked
through association mechanisms the implementafievhch (generally pointer-based) can
be ignored to a large extend by the programmetgeddoriented databases also offer struc-
tures for associating objects, namely through dkgécibutes or explicit associations. TO-
TAL/IMAGE databases make use of a mixed consthased on explicit associations in one
direction, and foreign keys in the other one.

In pure relation schemas, a foreign key will getligrdoe noted by the referential
constraint they define (e.®R[F] 0O S[A]). In DMS-independent schemas, we will prefer
the more neutral notatioR.F [0 — S.A , or, when there is no ambiguity about the target

(] J-L Hainaut 2010 25/4/2010

1 Introduction 3

identifier,R.F O - S. This notation should not be confused with tHdtiactional depen-
dency, which is similar.

Basic and derived foreign keys

The origin of a foreign key, say F, as it appeaithé schema in concern is an important issue.
In some cases, F has been declared in the DDL esquiogiram, so that it can be considered
a basic property expressing, in most casesarg-to-one relationship type.

In other cases, F has been recovered in the Datet&t Extraction phase through elicitation
techniques such as those discussed in SeXtkonSuch foreign keys can be basic or derived
(Figure 2). Indeed, a derived foreign key exhitlisssame static and dynamic characteristics
as basic ones. In particular, data analysis angrpm analys?scan detect both types of for-
eign keys.

DEPT(D#NAME)
ACCOUNT(A#,D#AVAIL)
EXPENSE(E#AMOUNT,A#,D#)

ACCOUNTI[D#] O DEPT[D#] (FK1)
EXPENSE[A#,D#] O ACCOUNT[A#,D#] (FK2)
EXPENSE[D#] [DEPT[D#] (FK3)

Figure 2: Basic (FK1, FK2) and derived (FK3) foreign keys. Derived foreign keys must be discard-
ed.

If all the basic foreign keys have been recovettegh) identifying derived foreign keys is an
easy task, when considering the following inferendes of inclusion constraints:

1llet M and N be two lists of domains such that N O M, and R and S two relation
schemas defined on supersets of M
R[M] O S[M] = R[N] O S[N]
2let J, K, L be subsets of an arbitrary set P,
JOK OKOL = JOL
Applying these rules to the schema 2 leads toxpeessions,
EXP[A#,D#] O ACT[A#D#] = EXP[D#] [0 ACT[D#
EXP[D#] OAC[D#| 0O AC[D#] 0 DEPT[D#] = EXP[D#] 0 DEPT[D#]

. .. that prove that FK3 is derivable from FK1 &P, and therefore can be discarded.

Conversely, some derived foreign keys may happée tept in the schema, and erroneously

considered basic, if not all their basic foreiggkbave been elicited. In this case, the schema
is both incomplete and flawed and will rapidly leéadiata inconsistencies, should it be used

for example to migrate the data to a new databagerged by this schema. For instance, due

to careless data structure extraction, the schdérore 2 could have included the foreign

2. Through such constructs laspass joins:
select * from DEPT D, EXPENSE E where D.D# = E .D# .

25/4/2010 (] J-L Hainaut 2010

4 Conceptual interpretation of foreign keys

keys FK1 and FK3 only.

Fortunately, heuristics exist which can locate safnguch patterns, and help the analyst re-
build the correct schema (see Section 7.5).

Two puzzing observations

1. One of the most surprising observations in agtaalalue-based databases, is that they
most often include foreign keys, despite the abdityt of explicit constructs to express
associations. For instance, many CODASYL databaseksalmost all medium to large
size IMS databases include hundreds to thousanfiwaifjn keys. As a consequence,
studying foreign keys and their interpretation mbstconsidered a major domain of
interest in data reverse engineering, whateveptiysical model according to which the
legacy data are organized.

2. The second, even more disturbing, observatiothat besides standard foreign keys
described here above as the implementatianapify-to-one relationship types, database
developers have used this apparently straightfahwancept to code a large variety of
sophisticated structures. Though some patterndeasonsidered trulperverse, most
of them are clever implementations of complex stmes that have never been described
in the literature. This proves, if need be, thaerse engineering can provide invaluable,
and often original, techniques for database design.

Structure of this chapter

We will first discuss the most frequent standarectfdn 2) and non-standard (Section 3) for-
eign key patterns, as well as inclusion constrdi@éstion 4) and propose natural and intui-
tive interpretations. Then, we will address compd@d tricky structures (Section 5) that
cannot be solved by simple transformations, angteai foreign keys (6). Finally we will
examine some awkward and even incorrect patteedi(® 7). A series of tables will syn-
thesize the main patterns (Section 8), while egescivill conclude the study.

Terminology

This report, just like many of those which copehitie conceptualization process, develops
techniques that concern both logical and conceptuadtructs. We will in particular use the
terms relations, tables, record types, files, segsand entity types on the one hand, and
fields, attributes and columns on the other hamtle question is, should we use all these
terms, or, on the contrary, should we base theudgon on a unique set of generic terms that
are valid whatever the model of the legacy databdser instance, must we define a foreign
key as a set ddttributes that reference tuples of arelation (relational theory), as a setafl-
umns referencing rows in a table (RDBMS), as a set dfelds referencing records in a file
(COBOL files), or as a set aftributes referencing entities of a given type (GER model)?

Obviously, we should adopt a common vocabulangriater to make the techniques devel-
oped as general as possible and applicable to ag paet, current and future models as pos-

(] J-L Hainaut 2010 25/4/2010

1 Introduction 5

sible. Hence the following conventions that wil bsed throughout this chapter, with some
minor exceptions, notably when we deal with spedifiodels, in which case we naturally
adopt the proper terminology.

we use the term to denote, according to the context
entity tuple, row, record, segment, entity, object, etc.
entity type relation, table, record type, segment type, etyipe,

object class (or type), etc.

attribute attribute, column, field, etc.
identifier candidate key, unique key, (alternate) record &&y,
primary identifier primary key, record key, etc.
foreign key any kind of attribute set used to reference eumtitie

25/4/2010 (] J-L Hainaut 2010

6 Conceptual interpretation of foreign keys

2 Standard foreign keys and basic variants

2.1 The standard foreign key

The most common form of foreign key strictly obéys definition stated in the relational the-
ory. Itis made up of a group of one or severahdadory attributes that targets the primary
key of a relation. The components of both keyssatered pairwise, are defined on the same
domains. Since it has been described in all databdroductory textbooks, even the most
elementary ones, this form will be callsdndard. Figure 3 (left) shows a typical standard
foreign key.

SHIPMENT ORDER ORDER
ShipID CustiD CustiD
Customer ProdNumber SHIPMENT ProdNumber
ltemCode ObDate ShipID 1—10—N ODate
OrderDate Qty ShipDate | | oty
ShipDate id: CustiD id: ShipiD id: CustiD
id: ShipID ProdNumber ProdNumber
ref: Customer / ODate ODate

ltemCode
OrderDate

Figure 3: The standard foreign key pattern and its conceptual interpretation.

The transformational interpretation is straightfard (Figure 3, right): the foreign key com-
ponents are removed, and replaced with a funcﬁo’eﬂtionship type. The cardinality of
the source role (for.SHIPMENT) is [1-1] and thatloé target role (for. ORDER) is [0-N].

From this pattern, we can derive several varidraswill be described in this section. They
are independent, so that they can occur simultatgotheir synthesis is presented in Sec-
tion 8.1.

2.2 Optional foreign key

In its simplest form, such a foreign key comprisesoptional attribute. It translates in the
same way as standard pattern, i.e., into a furattietationship type, except for the source
role, which now is optional (cardinality [0-1]), akown in Figure 4.

3. Let us recall that we call functional amgny-to-one relationship type, since it expressdaration
between its roles. As a particular casme-to-one relationship types also are functional. On the
contrary,one-to-many, many-to-many, N-ary relationship types as well as those withikaites are
callednon-functional.

(] J-L Hainaut 2010 25/4/2010

2 Sandard foreign keys and basic variants 7

VEHICLE SALESMAN VEHICLE
VehiclD SManID VehicD SALESMAN
Make Name < |Make SManID
Model Address Model 70-10—Nf Name

Data id: SManID Data Address
Driver[0-1] / id: VehiclD id: SManID
id: VehiclD

ref: Driver

Figure 4: An optional foreign key expresses an optional relationship type.

2.3 Optional multi-component foreign key

If the foreign key comprises several optional htttés, then an additionabexistence con-
straint must hold among these components to makgahsformation valid. The interpreta-
tion is through an optional relationship type (F&6).

Unfortunately, in most cases we encountered, oglionulti-component foreign keys were
incompletely extracted, in that the coexistencestamts were not identified. Any database
that includes entities in which some attributes\atkied (i.e., they haveon null values)
while the others are not, cannot be interpretedralitg to the rule stated above.

If the coexistence constraint cannot be assertedidgin the Data Structure Extraction phase,
then four casésmust be considered, defining the partitioning B®UBENT instances into
four subtypes, among which STUD_TY only can besttverce of a (mandatory) foreign key.

DISSERTATION
Title
STUDENT DISSERTATION Year
StudID Title Advisor
Name Year id: Title
Option Advisor Year
Title[0-1] id: Title = \
Year[0-1] Year STUDENT 0-N
id: StudID StudiD
ref: Title Name |01 @
Year Option
COoex id: StudID

Figure 5: An optional multi-component foreign key should comprise optional components among
which a coexistence constraint holds. It translates into an optional relationship type.

e Title=null & Year=null = subset of the STUDENT entities that do not fall in
STUD T nor STUD_Y; this subtype, with

4. In general 2 where n is the number of components of the for&iy.

25/4/2010 (] J-L Hainaut 2010

8 Conceptual interpretation of foreign keys

attributes {StdID, Name, Option}, can be left
declared,;

e Title#null & Year=null = subtype STUD T with mandatory attributes
{StdID, Name, Option, Title};

o Title=null & YearZnull = subtype STUD_Y with mandatory attributes
{StdID, Name, Option, Year};

e Title#null & YearZnull = subtype STUD_TY with mandatory attributes
{sStdID, Name, Option, Title, Year}.

A valid presentation of this partitioning is illuated in the Figure 6. Interpreting the man-
datory foreign key is as usual. The pattern inclvliome attributes are optional while others
are mandatory will be analyzed in Section 7.4.

2.4 Total, or equality, foreign key

Each value of #otal (or equality) foreign key is the primary key value of a target entityd
conversely. In other words, the primary key of each targeitg must match at least one
source entity. This foreign key expresses a aiatiip type whose target role is mandatory
(Figure 7, right), that is, its cardinality is [1{de., [1-N] or [1-1]).

2.5 ldentifying foreign key

An identifying foreign key also is aridentifier of the source entity type. The resulting rela-
tionship type ine-to-one (Figure 8, right), that is, the cardinality of ttegget role is [K-1]
(i.e., [0-1] or [1-1]).

STUDENT

StudID

Name

Option

id: StudID
STUDENT DISSERTATION STUD_T STUD_Y
StudID Title Title Year
Name Year DISSERTATION
Option Advisor A A Title
Title[0-1] id: Title — Year
Year[0-1] Year Advisor
id: StudID STUD_TY id: Title
ref: Title ref: STUD_T.Tile / Year

vear STUD_Y.Year

Figure 6: Surprisingly, removing (or forgetting) the coexistence constraint leads to a much more

(] J-L Hainaut 2010 25/4/2010

2 Sandard foreign keys and basic variants 9

complex data structure. The right side schema makes all the properties of the left side schema ex-
plicit.

DETAIL ORDER
OrdNum OrdNumber DETAIL ORDER
ProdNum OrdDate ProdNum OrdNumber
Qty id: OrdNumber PR Qty 71_11_'\F OrdDate
id: OrdNum id: from. ORDER id: OrdNumber
ProdNum ProdNum
equ: OrdNum

Figure 7: A total, or equality foreign key (tagged with keyword equ instead of ref), translates into a
mandatory target role.

VEHICLE SALESMAN
VehiclD zl\/hﬂ \)’i‘ﬂ'lgLE SALESMAN
Make ame ehic

SManID
N - S CTORS
Data id: SManID Address
Driver Data id: SManiD
id: VehiclD id: VehicID ’
id": Driver

ref

Figure 8: A foreign key which also is an identifier translates into a one-to-one relationship type.

An interesting pattern sometimes occurs, in whighftireign key also is the primary (or a
secondary) identifier of the source entity typeg(Fe 9). Some authors propose algorithms
in which this pattern is interpreted as an IS-Aatieh from the source side (subtype) to the
target one (supertype). This interpretation obsipis not always valid as witnessed by our
example. This point is discussed in SeckoaXXX.

CUSTOMER C_STATISTICS]
CustiD CustID CUSTOMER
Name TotalAmount CustiD C_STATISTICS
Address LastBuyDate P Name *0'1 1-1- TotalAmount
— — Address LastBuyDate
id: CustiD <+~ |id: CustiD -

ref id: CustlD

Figure 9: A source entity type whose primary identifier is a foreign key looses this identifier.

2.6 Cyclic foreign key

The source entity type also is the target entipetyeading to a pattern often knownsal$-
referencing entity type. The foreign key translates into a cyclic relasibip type (Figure 10).

25/4/2010 (] J-L Hainaut 2010

10 Conceptual interpretation of foreign keys

Most such foreign keys are optional. Indeed, $sissume that, in our exampdach product
hasa substitute, a fact that would be expressed by a mandatoejgoikey. To insert an entity
concerning a product, we would have to set théatt Substitute to the Product code of its
substitute, which must already be recorded in ttalthse. Three problems arise: (1) prod-
ucts must be recorded in a specific order so timtibove-mentioned constraint is met, (2) a
product that has no substitute (yet) cannot berdech (3) as a particular case, the first prod-
uct cannot be recorded.

If a cyclic foreign key happens to be mandatorgntfurther analyzing it through Data Ex-
traction techniques certainly is worth the effarcheck whether it actually is mandatory.

PRODUCT]
ProductCode substitute 01
Name 0-N
Price =
QtyonHand PRODUCT
Substitute[0-1] ProductCode
JE id: ProductCode Name
ref: Substitute Price
QtyonHand
id: ProductCode

Figure 10: A cyclic foreign key is interpreted as a cyclic relationship type.

5. Unless it is considered its own substitute!

U J-L Hainaut 2010

25/4/2010

3 Non-standard foreign keys 11

3 Non-standard foreign keys

These patterns are direct extensions of the basicept, or extensions that accommodate
more complex source or target structures. Theydaadho particularly difficult problems, but
must be carefully detected and interpreted.

3.1 Secondary foreign key

Thesecondary foreign key targets a secondary identifier of the target giyipe instead of its
primary identifier. The interpretation is the saawefor standard foreign keys (Figure 11).
Though this form is an integral part of the relatibtheory (that mentionsandidate target
keys only), the practice favors the use of priniays, hence the qualifieon-standard.

INVOICE PATIENT PATIENT
InvNum RegNumber INVOICE RegNumber
InvDate SSNumber InvNum 71—1O-I\F SSNumber
Patient Name =4 InvDate Name
id: InvNum id: RegNumber id: InvNum id: RegNumber
ref: Patient ———>id": SSNumber id": SSNumber

Figure 11: Target secondary identifiers behave just like primary ones.

Unlike primary identifiers, secondary identifierancbe made up of optional components.
This poses no particular interpretation problemsepkdortotal foreign key patterns, that
must first be transformed as shown in Figure 12.

Figure 12: A total (equ) foreign key targeting an optional secondary identifier requires some clean-

ing before being interpreted correctly.

3.2 Multi-target foreign key

A multi-target foreign key references more than one target entity type,atoeidich source en-

25/4/2010

PERFORMANCE PERSON
PERFORMANCE PERSON GolfLicNumber PID
GolfLicNumber PID Year Name
Year Name BestScore Address
BestScore Address id: Year id: PID
id: Year GolfLicNumber[0-1] GolfLicNumber
GolfLicNumber id: PID equ: GolfLicNumber
equ: GolfLicNumber —> id": GolfLicNumber
GOLFER
GolfLicNumber

id": GolfLicNumber

[J-L Hainaut 2010

12 Conceptual interpretation of foreign keys

tity simultaneously references an entity of eachdatype. Since this pattern is equivalent
to a series of as many foreign keys as there agettantity types (Figure 13), we will discuss
the latter variant. There are two ways to interfinet pattern.

SERVICE EXPENSE BUDGET SERVICE EXPENSE BUDGET
ServicelD ExpNum BudgetlD ServicelD ExpNum BudgetlD
Name Date Nature Name Date Nature
id: ServicelD Amount Amount id: ServicelD Amount Amount

Origin id: BudgetID Origin id: BudgetlD
id: ExpNum J> id: ExpNum
L— ref: Origin ref: Origin
ref: Origin |

Figure 13: The two variants of multi-target foreign key. An expense has been incurred by a service,
and has been charged to a budget. Budgets happen to be identified by the ID of their service. The
same foreign key Origin designates both the service that incurs the expense, and the budget which
it has been charged to.

The first approach is the most straightforward emakists in defining a relationship type for
each foreign key, removing their common componehts) defining an integrity constraint

that ensures that the values of the target idendifare the same (Figure 14, left). If the for-
eign key is optional, then the roles {by. EXPENSEEOfPENSE} are optional too and a co-

existence constraint must be stated among the fi}eSERVICE, on.BUDGET}.

The second approach derives from the observatairetich foreign key is trivially embedded
in the other one (since {A3{A3}). Therefore, the pattern belongs to trabedded foreign
key family, and can be solved according to the intetgdion we will develop in Section 7.5.
Hence the schema of Figure 14, right, or its symicadtversion, where EXPENSE is asso-
ciated with SERVICE instead. It is based on thepdigesis that foreign key
EXPENSE.Origin~ SERVICE is a transitive foreign key deriving froxpéicit foreign key
EXPENSE.Origin-~ BUDGET and implicit foreign key BUDGET.BudgetlID SER-
VICE, still unidentified.

SERVICE BUDGET SERVICE BB;JDEJET
- udge
ServicelD BudgetlD ServicelD ,0_11-17 Nature
Name Nature Name A t
id- Serviceld Amount id: ServicelD 'drﬁgug)
i id: BudgetID ¢ u‘ge
0-N EXPENSE 0N EXPENSE 0-N
ExpNum ExpNum
1-1— Date 71-1 Date 71.1
Amount Amount
id: ExpNum id: ExpNum
for e 0 EXPENSE, e.by.SERVICE.ServicelD = for b 0 BUDGET,
e.on.BUDGET.BudgetID b.BudgetID = b.of.SERVICE.ServicelD

Figure 14: Two interpretations of a multi-target foreign key.

(] J-L Hainaut 2010 25/4/2010

3 Non-standard foreign keys 13

3.3 Alternate foreign key

Each value of anlternate foreign key references an entity in one among several targiye
types (Figure 15). The entity type that is actuedfferenced is determined by a definite con-
dition on the source entity, for instance on thieatructure of the foreign key.

EMPLOYEE

EmpID

Name

Address VEHICLE

id: EmpID PlateNumber
Model

SERVICE Date

ServicelD Owner

Name id: PlateNumber

id: ServicelD ref: Owner

Figure 15: Each value of the foreign key VEHICLE.Owner references either an EMPLOYEE entity
or a SERVICE entity.

This pattern can be interpreted as a functionatimiship type with a multi-ET role (Figure
16, left) or as an equivalent set of relationdlgjpes among which an exclusive constraint
holds (Figure 16, right).

SERVICE EMP:_DOYEE
- mp
ServicelD
SERVICE EMPLOYEE Name 2331 .

- EmpID id: ServicelD ress
ServicelD Name : id: EmpID
Name I ;

Address 0-N 0-N

id: ServicelD owner” | id: EmpID

o1 o1

1-1 VEHICLE
‘ PlateNumber
VEHICLE Model
PlateNumber Date
Model id: PlateNumber
Date exact-1: E_owned.EMPLOYEE
id: PlateNumber S_owned.SERVICE

Figure 16: Two equivalent interpretations of an alternate foreign key.

3.4 Hierarchical foreign key to an entity type

Surprisingly, foreign keys are very frequent inrhrehical and network database schemas,

25/4/2010 (] J-L Hainaut 2010

14 Conceptual interpretation of foreign keys

despite the fact that the DBMSs offer explicit donsts to represent relationship types. If
the target entity type has been given an absaligetifier comprising attributes only, these
foreign keys can be considered standard. Howétee target is identified relatively to one
of its parent entity types, the foreign key mugerence entities through their hierarchical
identifiers (e.g., theiconcatenated key in IMS). Though their detection is delicate,ithie-
terpretation is straightforward.

Figure 17 expresses the fact that if two serviea®lihe same name, they belong in different
departments. So, the department name and thesarame of a definite service suffice to
uniquely designate it. If expenses are associattbdthe services that incur them, each EX-
PENSE entity must include a reference (a foreigy) k@ one SERVICE entity. This foreign
key is made of a department name (DptName) andviceename (ServName). It is inter-
preted as the relationship typg

DEPARTMENT DEPARTMENT
DptName DptName
Location Location
id: DptName id: DptName
| \
O-N 0-N
@ EXPENSE @
ExplD
11 Date = 11
‘ Amount ‘

SERVICE DptName SERVICE EXPENSE
ServName ServName ServName ExplD
Budget id: ExpID Budget fO—Nl—lf Date
id: in.DEPARTMENT ref: DptName id: in.DEPARTMENT Amount

ServName ServName ServName id: ExplD

Figure 17: Left: each SERVICE entity references a SERVICE through its hierarchical identifier.
Right: this hierarchical foreign key translates into a relationship type.

3.5 Hierarchical foreign key to a multivalued attribute

Record types as they appear in standard files aft@mpensate the lack of explicitter-
record relationships by complaxtra-record hierarchical field structures. In particular, mul
tivalued compound fields, possibly at several Isyate popular structures to implement a hi-
erarchy of entity types. In such a structure, saiegendent entities can be represented by
instances of multivalued fields, instead of by ndiual records. Referencing these entities
from within other records consists in designatimgse values. Hence the concept of foreign
keys referencing field values instead of recordows.

Figure 18 (left) describes a typical example. ARIER record represents a customer order
that includes from 0 to 20 details. Each of théskils mention a different Item in a certain
quantity. This structure is represented by the BRDecord type which includes the multi-

(] J-L Hainaut 2010 25/4/2010

3 Non-standard foreign keys 15

valued field Detail. This field has distinct Iterode values (this property is declared through
an attribute identifier). To identify a unique Bétwalue, the programmer must supply a val-
ue of OrdID to locate the parent record and a vafutemCode to identify the right field val-
ue. For each detail, some shipments can be matle tustomer. Therefore, each shipment
is associated with a detail. Each SHIPMENT rectedignates its parent Detail value
through the hierarchical foreign key {OrdID,ltem@&jd

By transforming this multivalued attribute into amtity type, we get the source patteriiof
erarchical foreign key to an entity type (Section 3.4). Hence the immediate interpretation
Figure 18 (right).

ORDER
OrdID
Date
id: OrdID
[
0-20
SHIPMENT ORDER SHIPMENT
ShipNumber OrdID ShipNumber
Date Date Date 11
ordiD Detail[0-20] ordiD ‘
ltemCode ltemCode A IltemCode DETAIL
Qty Qty Qty ltemCode
id: ShipNumber id: OrdID id: ShipNumber Qty
ref: OrdID | {>{id(Detall): ref: OrdID id: in.ORDER
ItemCode ItemCode ItemCode ItemCode

Figure 18: Left: each SHIPMENT entity references a definite value of the attribute Detail of an OR-
DER entity. Right: this reference is easy to interpret once the multivalued attribute has been trans-
formed into an entity type.

3.6 Computed foreign key

A component of @omputed foreign key is an indirect reference to the corresponding asmp
nent of the target identifier. For example, a Dakie can be used to denote a Year, or a
Customer ID can be used to denote a City (theditiie designated customer). We will call
(a bit inappropriatelyomputed foreign keys such patterns. There can be several ways to de-
rive the explicit foreign key from the actual on@/e will illustrate the most common ones
through two examples: computation and table lookup.

The first example (Figure 19, left) expresses #aah purchase is assigned to a fiscal year.
However, the PURCHASE entity type does not incladeexplicit foreign key to FISCAL-
YEAR. Instead, the stored value is {Date} from wahithe actual foreign key, denoted by
f(Date), can be computed through time manipulatiorctions.

In the second example (Figure 19, right), purchasediable to a definite tax rate, depending
on the country of the customer and on the yeauaflmse. The actual foreign key should be

25/4/2010 (] J-L Hainaut 2010

16 Conceptual interpretation of foreign keys

{Country,Year}, but is stored as {Customer,Yearstead. However, the actual value can
be computed from the stored one by consideringtttatCountry of a PURCHASE is the
CountryName of the CITY of the CUSTOMER of the PURASE. Hence the foreign key
notation {f(Customer),Year}.

TAX-RATE CITY
Country CitylD
Year CityName
Rate ContryName
id: Country id: CitylD
Year
PURCHASE CUSTOMER
PurchiD CustomerID
FISCAL-YEAR PURCHASE Customer Name
Year PurchiD Year City
Budget Agent Amount id: CustomerID
id: Year Date id: PurchlD f ref: City
Amount ref: Customer
id: PurchID ref: f(Customer)
ref. f(Date) Year

Figure 19: Two examples of computed foreign keys. Left: the value of PURCHASE.Date can be
used to identify a fiscal year. Right: the value of PURCHASE.Customer allows us to get the Cit-
yName of the concerned customer; this value, combined with a Year value, is used to identify a tax
rate.

The computed foreign keys are transformed intdicelahip types. However, the source ar-
guments of the foreign key must often be kept,ilegtb some kind of redundancy which
must be described by an explicit integrity consitai

The first pattern can be processed in the waysritbestin Figure 20. In the right side trans-

lation, the attribute Date has been trimmed in otdesliminate the redundancy induced by
its Year component.

PURCHASE PURCHASE
FISCAL-YEAR PurchID PurchID
Year 7O-N1-17 Agent FISCAL-YEAR Agent
Budget Date Year 0 N1 1 Date
id: Year Amount Budget Month

id: PurchID id: Year Day

Amount

for p(O0PURCHASE, id: PurchiD

p.for.FISCAL-YEAR.Year = f(p.Date)

Figure 20: Two equivalent translations of the computed foreign key of Figure 19, left.

(] J-L Hainaut 2010 25/4/2010

3 Non-standard foreign keys 17

The second pattern can be translated as illustiatéidure 21 (left). By extracting the com-
mon attribute Country in TAX-RATE and CountryNamedITY as a single autonomous en-
tity type, we can propose the more expressive sataiigure 21, right.

COUNTRY

0-N—— ContryName —0-N
i id: ContryName
TAX-RATE CITY 11 1-1
- |
Country CitylD
Year CityName TAX-RATE _ CITY
Rate ContryName Year Cityld
id: Country id: CitylD Rate CityName
Year ‘ id: in.COUNTRY id: CitylD
I 0-N Year I
0-N w 0-N
1-1 l"l 1-1 1-1
| |
PURCHASE CUSTOMER PURCHASE CUSTOMER
PurchID CustomerID PurchID CustomerID
Year Name Year Name
Amount id: CustomerID Amount id: CustomerID
id: PurchiD id: PurchlD
1-10-N 11 by o-N
for pPO0PURCHASE: for pOPURCHASE:
p.at_rate. TAX-RATE.Country p.at. TAX-RATE.for. COUNTRY
= p.by.CUSTOMER.in.CITY.CountryName = p.by. CUSTOMER.in.CITY.in.COUNTRY

Figure 21: Interpreting the lookup computed foreign key of Figure 19, right.

3.7 Non-1NF foreign keys

A so-calledfirst normal form (1NF) relation is defined on simple domains only. more
practical words, its attributes are atomic andIsivglued. Many DMS provide more com-
plex constructs that allow developers to define poamd and/or multivalued attributes.
They allow defininghon-1NF structures. Such is the case of file manager&AEYL, IMS

and object managers. In addition, even 1NF scheaasnclude hidden, or implicit, non-
1NF constructs, as shown in SectbRXXXXX.

Quite naturally, some non-1NF attributes are, olude, foreign keys as well. For instance,
a component of a compound attribute, or a multiedlattribute, can be used to reference en-
tities. These attributes are called non-1NF fordigys.

The examples of Figure 22 include respectivelylemel-2 foreign key (left) and two multi-

25/4/2010 (] J-L Hainaut 2010

18 Conceptual interpretation of foreign keys

valued foreign keys (right), one of them beinghatfirst level and the other one at the second
level.

BOOK PERSON CUSTOMER ORDER ITEM
BookID PID CustlD ordID ItemID
Title Name Name Date Name
Borrowing[0-1] Address Address Detail[0-20] UnitPrice
Borrower id: PID Order[0-N] ltemCode id: ltemID
Date id: CustiD Qty

id: BookID ref: Order[*] |—>id: OrdID

ref: Borrowing.Borrower ref: Detail[*].ltemCode

Figure 22: Three examples of non-1NF foreign keys.

We consider four main situations, from which a# tither patterns can be solved easily.

1. The foreign key is a@omponent of a level-1, mandatory, single-valued, compound
attribute: disaggregate the parent attribute first (casellustrated).

2. The foreign key is eomponent of a level-1, optional, single-valued, compound attribute
(Figure 22, left; foreign key BOOK.Borrowing.Borrew: disaggregate the parent
attribute (leading to Figure 23, a) or transforrimib an entity type first (leading to Fig-
ure 23, b).

3. The foreign key is #evel-1 multivalued attribute (Figure 22, right; foreign key CUS-
TOMER.Order[*]): interpret this foreign key as a myato-many relationship type (lead-
ing to relationship typelace in Figure 24).

4. The foreign key is eomponent of a level-1, multivalued, compound attribute (Figure 22,
right; foreign key ORDER.Detail[*].temCode): trdosm the parent multivalued
attribute into an entity type first (leading to igntype Detail and relationship typeaf
andref in Figure 24).

PERSON BOOK PERSON PERSON
PID BookID PID PID
Name Title Name Name
%dtgless id: B?okID gddgless Address
id: id: —
BOOK ‘ 0-1 id: PID
BookiD O-N o ‘ \
Title O-N 0-N
Date[0-1] —0-1 0 1 BOOK
id: BookID | BookID | 01
coex: by.PERSON Borrowing 11 o Title W
Date Date id: BookID

(@ (b) (©

Figure 23: Three semantically equivalent interpretations of the first example, ordered by increasing
expressivity. The schema (a) derives from an initial disaggregation of Borrowing, the schema (b) is

(] J-L Hainaut 2010 25/4/2010

3 Non-standard foreign keys 19

obtained from the transformation of the attribute Borrowing into an entity type, while the schema (c)
refines the second one by transforming the new entity type into a relationship type.

These techniques must be iteratively applied timilresulting pattern can be solved through
standard interpretation. It is important to obsgettvat a multivalued foreign key basically
represents many-to-many relationship type (Figure 24), unless it is alscldred an identi-
fier of its entity type, in which case it transksiato aone-to-many relationship type.

EUS“TDOMER ORDER ITEM
us
Name —O-NO_N, OrdID ltemID
Address Date Name
id- id: OrdID UnitPrice
id: CustID ‘ p—
- I
0-20 0-N
oL AN]
id: ref.ITEM
of. ORDER

Figure 24: The two multivalued foreign keys of Figure 22 (right) have been interpreted. Note that
place is many-to-many, since a given value of ORDER.OrdID can appear as CUSTOMER.Order[*]
in more than one CUSTOMER entity.

25/4/2010 (] J-L Hainaut 2010

20 Conceptual interpretation of foreign keys

4 Inclusion constraints

A foreign key is a structure that enforces a spegise of inclusion constraint, where the tar-
get set is that of an identifier of the target gntype. Several authors include the study of
some inclusion patterns into the foreign key donfBitit, XX]. We will analyze two vari-
ants of this concept.

4.1 Inclusion constraint

The values of an attribute (or of a list of atttém) of an entity type are included into the set
of values of an attribute (or of a list thereof)amfother entity type. In the example of Figure
25, the entity type SUPPLY provides the conditifspsantity and price) at which each sup-
plier can supply each item; a customer order caasbigned to a supplier only if this supplier
can supply the item ordered.

Though true (i.e., non referential) inclusion coasits can be kept in the conceptual schema,
it is best to try to express them into explicit stmacts. The simplest approach consists in rep-
resenting each target tuple by an explicit entitgrefore transforming the inclusion con-
straint into a referential constraint. Applyingsttechnique to our example, we transform the
couple of attributes SUPPLIER.(Supplier,ltem) iato entity type through the value repre-
sentation variant. The source couple ORDER.(Sapfim) automatically transforms into
a standard foreign key that can be further prongsss usual.

OFFER
Supplier
Item
id: Supplier
Item
1-‘N
SUPPLY
ORDER Supplier o
OrderID Item ORDER
Supplier Qty OrderID 1-1
Item Price Supplier |
Qty id: Supplier - Item SUPPLY
Customer ltem Customer Qty
id: OrderlD Qty id: OrderID Price
incl: Supplier gr: Supplier ref: Supplier id: of. OFFER
Item Item Item Qty

Figure 25: An inclusion constraint (left): the couple of values of (Supplier,ltem) of each ORDER in-
stance must appear in at least one SUPPLY entity. This constraint is replaced with a pure referential
constraint (via a standard foreign key) through transforming the target attributes into an entity type.

(] J-L Hainaut 2010 25/4/2010

4 Inclusion constraints 21

4.2 Domain sharing

Two attributes share the same domain of valueshwieppens to be particularly meaningful
in the application domain, so that, at some tithey ttan take the same values. Most often, it
has been found by program analysis, for instan@&QL join-based query.

Figure 26 (left) illustrates the situation. Annités offered in all the shops of a chain at a def-
inite price. The shops of a chain are locatedwnts, and have a given size. Obviously, the
attributes OFFER.Chain and SHOP.Name can share oomaiues, as testified by the fol-
lowing programming patterns found in several pratgga

select *

from OFFER O, SHOP S

where O.Chain = S.Name
However, no stricter constraints (such as OFFEROh&HOP.Name) can be stated.

A common interpretation can be described as folidveth attributes are extracted as entity
types, which are then integrated into the uniquityetype CHAIN (Figure 26, right). A strict
equivalence would require at-least-one constraint on CHAIN, since only chains that ap-
pear in OFFER or in SHOP or in both are represeintéte left side schema. This constraint
can generally be dropped.

For obvious reason, some authors consider thisngagsas the explicitation of hiddeniomr
plicit objects (here CHAIN).

CHAIN
Name: ChainName
id: Name
0-N 0-N
1-1 1-1
OFFER SHOP
Item: char (12) Name: ChainName OFFER SHOP
Chain: ChainName Town: char (32) Item: char (1) Town: char (32)
Price: num (5) Size: num (6) Price: num (5) Size: num (6)
id: Item id: Name id: by.CHAIN id: of. CHAIN
Chain Town ltem Town

Figure 26: The entity types OFFER and CHAIN share the same domain ChainName through their
attribute OFFER.Chain and SHOP.Name. This domain is represented by the explicit entity type
CHAIN.

25/4/2010 (] J-L Hainaut 2010

22 Conceptual interpretation of foreign keys

5 Complex foreign key patterns

This section will describe foreign key patternstth@ more complex to understand and to
conceptualize. They generally require initial smmations to make their semantics clearer.

STUDENT SCHOOL
StudID SchoolName
Name Address
Country Category

School id: SchoolName
id: StudID />
cond_ref: School

for s 0 STUDENT: s.Country = "Belgium" = s.School 0 SCHOOL.SchoolName

Figure 27: The attribute STUDENT.School references a SCHOOL entity only if the STUDENT entity
describes a Belgian student. Otherwise it gives the name of the unregistered school the non-Bel-
gian student comes from.

5.1 Conditional foreign key

If a foreign key is conditional, it references &ns only under a definite condition, otherwise,
it is given another interpretation. The schem&igftire 27 illustrates the concept: for each
student, the administration records the school framich s/he originates. If the student is
Belgian, then the school must be one of the knoeigiBn institutions.

Analysis

Clearly, the attribute STUDENT.School encompassesdifferent semantics, depending on
some filtering conditionkeing Belgian or not). We replace this attribute with two exclusive
optional attributes Belgian-School and Foreign-®&thd-or any STUDENT entity, there is

either a Belgian-School value or a Foreign-Schadlie. BelgianSchool has a not null value
if and only if Country is set to "Belgium”. Thelua of BelgianSchool is a foreign key to

School. This expansion is illustrated in Figure(2®).

(] J-L Hainaut 2010 25/4/2010

Complex foreign key patterns

23

STUDENT SCHOOL
StudID SchoolName STUDENT SCHOOL
Name Address StudID SchoolName
Country Category Name Address
BelgianSchool[0-1] id: SchoolName id: StudID | | Category
ForeignSchool[0-1] id: SchoolName
id: StudID f /A\
ref: BelgianSchool
exact-1: BelgianSchool
ForgignSchool FOREIGN _BELGIAN
Country BelgianSchool
for s 0 STUDENT: ForeignSchool ref: BelgianSchool |-

s.Country = "Belgium" < s.Belgium-

School 0 SCHOOL.SchoolName for f 0 FOREIGN: f.Country # "Belgium"

Figure 28: The dual semantics of the attribute STUDENT.School leads to defining two distinct at-
tributes (left) or two subtypes of students (right).

This schema suggests partioning the students\docategories, namely Belgian students
and Foreign students (Figure 28, left). The fardigy can then be processed in the standard
way.

5.2 Overlapping identifier - foreign key

The foreign key shares some attributes with antifienof the entity type. We distinguish
two patterns.

1. All the components of the foreign key also appedhe identifier.
2. Neither the foreign key nor the identifier inctuthe other one.

The first pattern in which the foreign key is cogtply included into the identifier can be pro-
cessed in the standard way. The components dbtagn key that appear in the identifier
are replaced with the target role of the correspancelationship type (see Figure 7 for a sim-
ilar example; see also the synthesis of Section 8.2

The second pattern (Figure 29) is more delicatdeéd, the foreign key cannot be completely
replaced with a relationship type as in the presisituation, since some (but not all) of its
components belong to the identifier.

25/4/2010 (] J-L Hainaut 2010

24 Conceptual interpretation of foreign keys

DETAIL ITEM
OrderID ltemCode
ltemCode Date
Date Price
Qty id: ltemCode
id: OrderID Date

ltemCode
ref: ltemCode

Date

Figure 29: The identifier and the foreign key of the entity type DETAIL share the common attribute
ItemCode. The foreign key cannot be replaced with a relationship type as in standard patterns.

Analysis

According to the usual approach, the foreign keyusthbe replaced by a relationship type,
which would be absurd since it would imply replagim the identifier, the common compo-
nents with a part only of the relationship type.sbive the problem, we include the new at-
tribute ItemCode_R that is a pure copy of the commatribute(s), so that we can separate
the identifier components from those of the fordigg, which costs us an additional integrity
constraint (Figure 30, left).

We can now transform the foreign key into a retatup type. Since the redundancy has not
been removed but merely transformed, we must egpres an integrity constraint (Figure
30, right).

ITEM
ltemCode
DETAIL ITEM Date
OrderID ltemCode Price
. -~ id: ltemCode
ltemCode Date Date
ltemCode_R Price ‘
Date id: ltemCode P, DETAIL 0-N
Qty Date OrderID
id: OrderID ltemCode 141
ltemCode Qty [0
ref: ltemCode_R id: OrderID
Date ItemCode
for d O DETAIL: for d O DETAIL:
d.ItemCode = d.ltemCode_R d.ItemCode = d.ref.ITEM.ltemCode

Figure 30: The identifier and the foreign key are separated thanks to the duplication of the common
attributes. This redundancy remains in the conceptual schema.

In a similar, but more complex, pattern XXXXXXXXXXH¥XXX XXX

(] J-L Hainaut 2010 25/4/2010

5 Complex foreign key patterns 25

5.3 Overlapping foreign keys

Two foreign keys overlap if they share one or sahattributes and if none is a subset of the
other. In the example of Figure 31, each line gbioe belongs to an invoice and references
a line of order. Both invoice and line of ordeference the order they originate from.

INVOICE LINE-of-INVOICE LINE-of-ORDER
OrderNumber OrderNumber OrderNumber
InvoiceNumber InvoiceNumber ltemCode
Date LineNumber Qty
Amount ItemCode id: OrderNumber
id: OrderNumber Qty ItemCode

InvoiceNumber Amount

id: OrderNumber
InvoiceNumber
LineNumber

ref: OrderNumber

InvoiceNumber
ref: OrderNumber
IltemCode

Figure 31: The overlapping foreign keys share the common attribute OrderNumber. Neither foreign
key can be replaced with a relationship type without the other being destroyed.

ORDER
0-N—— OrderNumber ~ —0-N
o id: OrderNumber @
INVOICE LINE-of-ORDER 1-\1 1‘_1
OrderNumber OrderNumber INVOICE LINE-of-ORDER
InvoiceNumber ItemCode InvoiceNumber
Date Qty Date IltemCode
Amount id: OrderNumber Amount Qty
id: OrderNumber IltemCode id: for. ORDER id: from.-ORDER
InvoiceNumber InvoiceNumber temCode
I 0-N T \
O-N 0N O-N
LINE-of-INVOICE LINE-of-INVOICE
@ LineNumber o @ LineNumber o
t
I gn)\,ount i 11— gr?\/ount —
id: from.INVOICE id: from.INVOICE
LineNumber LineNumber

for | O LINE-of-INVOICE:
I.from.INVOICE.for ORDER
= |.for.LINE-of-ORDER.from.ORDER

for | O LINE-of-INVOICE:
I.from.INVOICE.OrderNumber
= |.for.LINE-of-ORDER.OrderNumber

Figure 32: Two valid interpretation of overlapping foreign keys. Both include redundancies.

25/4/2010 (] J-L Hainaut 2010

26 Conceptual interpretation of foreign keys

Analysis

Because of the common attribute OrderNumber, ndntheoforeign keys can be replaced
completely with a relationship type. Followingesmsoning that is close to that of Section 5.2,
we duplicate the common attribute into OrderNumbgwe express this redundancy by an
integrity constraint, then we substitute the netsitatte for the previous one in the second
foreign key. We can now translate each indeperfdesign key into a relationship type (Fig-
ure 32, left). If the common attribute represemtsnaportant concept, it can be extracted as
an autonomous entity type, namely ORDER in our gptaniThe redundancy constraint is
modified accordingly (Figure 32, right).

5.4 Non-minimal FK

This pattern does not concern the foreign keyfitbelt rather the referenced primary identi-
fier. Indeed, the latter is a superset of anotiménjmal, identifier, and therefore is not min-
imal. It goes as follows (Figure 33).

1. A LECTURE entity represents the fact that a lemtteaches a given subject. A lecturer
is allowed to teach one subject only. This fachagified by the secondary identifier
{Lecturer}. A (trivial) primary identifier comprisg {Suject,Lecturer} has been defined
for technical reasons we will explain below.

2. A REGISTRATION entity states that a student igytat a subject by a lecturer. Making
{Subject,Lecturer} a foreign key to LECTURE ensutbsit this lecturer actually is
allowed to teach this subject.

REGISTRATION LECTURE
Student Subject
Subject Lecturer
Lecturer id: Subject

id: Student Lecturer
Subject id": Lecturer
ref: Subject

Lecturer

Figure 33: Unexpectedly, the foreign key references a non minimal primary identifier.

Analysis

This apparently disturbing pattern is a cleveikttizimplement 3NF schemas that are not in
BCNF°. The basic reasoning can be sketched as follows.

We must first recall some basic facts.

6. A relation R is in third normal form (3NF) if n@n-key attributes functionally depend on a strict
subset of a candidate key, or on non-key attributess in Boyce-Codd normal form (BCNF) if,
for each functional dependencies that holds in 8)eft hand side is a candidate key. All BCNF
are in 3NF, but not conversely. See Chapter XXXXXX.

(] J-L Hainaut 2010 25/4/2010

(€3]

Complex foreign key patterns 27

Standard RDBMS ensure two major integrity comstsaonly, namely unique keys (or
identifiers) and foreign keys. Therefore, any ¢mist that can be reduced to these
structures can be explicitly implemented into SQLAII the other constraints must be
coded as CHECK predicates, TRIGGERS, STORED PROG®EER®Jor as procedural
code sections scattered throughout the prograrhis i3 the case for non-key functional
dependencies, i.e., dependencies whose minimaideid side is not an identifier.

3NF schemas include primary and foreign keys,caryl can therefore be completely
implemented in SQL-2.
Some relational schemas are in 3NF but not in BGXd therefore lead to data redun-
dancy problems. Unfortunately, decomposing therBCNF induces a new brand of
problems: though all intra-relation FDs are keyduhgach determinant is a full, mini-
mal primary key), some FDs of the 3NF schema atHecause they were defined on
attributes that are now distributed among sevelations. The most popular example is
the following.

registr(Student,Subject,Lecturer)

Lecturer [— Subject

Student,Subject 0 - Lecturer
The keys are {Student,Subject} and {Student,LealurEhe schema is trivially in 3NF
since it has no non-key attributes. However, themninant of one of the FDs is not a
key. Therefore, the schema is not in BCNF.

Three solutions can be proposed to implementsttiiema.

A. registr(Student,Subject ,Lecturer)
Lecturer 0O - Subject
B. registr(Student,Subject ,Lecturer)
lecture(Lecturer ,Subject)
registr[Lecturer,Subject] O lecture
C. registr(Student,Lecturer)
lecture(Lecturer ,Subject)
registr*lecture: Student,Subject O - Lecturer
Each schema has its advantages and its drawbéitksever, one of them only, namely
B, can be adapted in such a way that all the iftfegonstraints are translatable into pure
SQL-2 constructs.
The revised version of B is obtained as followsieav primary key comprising all the
attributes of lecture is defined, while the oridikay is expressed as a mere candidate
key (secondary id). The inclusion constraint daentbe translated into a foreign key.
Hence the following schema,

B'. registr(Student,Subject ,Lecturer)
lecture(Lecturer ,Subject)
primary-id(lecture): {Lecturer,Subject}
secondary-id(lecture): {Lecturer}
registr[Lecturer,Subject] O lecture

25/4/2010 (] J-L Hainaut 2010

28 Conceptual interpretation of foreign keys

This schema is the exact relational interpretadiRigure 33.

Following this discussion, we can propose a tramsétion in which the foreign key regis-
tr.(Lecturer,Subject) is replaced with relationshipefor. However, the attribute Subject
cannot be removed since it participates in the anjnidentifier of REGISTRATION. This
situation is a special case oferlapping identifier - foreign key (Section 5.2) and can be
solved accordingly. The result is shown in Figdde

;E(;IS;I'RATION (ECTURE
uden
i Lecturer
-SUb ec 71-10-N7 Subject
id: Student >

Subject id: Lecturer

forr 0 REGISTRATION: r.Subject = r.forLECTURE.Subject

Figure 34: Conceptual expression of the schema of Figure 33. Deriving from a 3NF but non-BCNF
schema, it includes a redundancy that must be expressed explicitly.

5.5 Partially reciprocal foreign keys

This pattern of interleaved foreign keys is a cea@nd elegant way to represent a bijective
(one-to-one) relationship set included into anotfedationship set. When considering its
conceptual equivalent, the source relational schapgears much more concise and free
from complex additional integrity constraints. Ortfinately, the price to be paid for this
conciseness is that its meaning is far from intaiti

The schema of Figure 35 expresses that citie®asatdd in countries (or states) and that one
of the cities of each country is its capital. JaVeities can have the same name (e.g., Paris,
Venice), but not in the same country.

COUNTRY CITY
CountryName CityName
Capital Country
Area Population

id: CountryName id: CityName
ref: Capital X Country

CountryName ref: Country
Figure 35: The foreign keys COUNTRY.(Capital,CountryName) and CITY.Country are partially re-
ciprocal.

Analysis

A deeper analysis of the pattern shows that twoontat additional properties can be in-
ferred from the declared structures.

First, we observe that the foreign key COUNTRY .(iCdCountryName) is a non-minimal
identifier, since it is a superset of the primatgritifier of COUNTRY. Though this property

(] J-L Hainaut 2010 25/4/2010

5 Complex foreign key patterns 29

is derived and need not be specified, we represienthe schema of Figure 36 to clarify the
reasoning.

Secondly, the foreign key CITY.Country is totaldanust be represented by the &gg in-
stead ofref. Indeed, interpreting the entity types of the scaef Figure 35 as relations, we
can express the foreign keys as,

COUNTRY[CountryName,Capital] O CITY[Country,CityName]
CITY[Country] 0 COUNTRY[CountryName]
The first constraint also implies,
COUNTRY[CountryName] O CITY[Country]
so that,
COUNTRY[CountryName] = CITY[Country]

The schema of Figure 36 has been enriched witte thexperties.

COUNTRY
CITY
CountryName -
] CityName
Capital
Country
Area !
Population

'd CountryName id: CityName
id": Capital
CountryName Country
equ: Country

ref

Figure 36: The partially reciprocal foreign keys pattern refined.

Transforming the foreign keys into relationshipagpmmust be carried out carefully, because
each foreign key references an identifier thatv®lived in the other foreign key, so that both
keys must be replaced simultaneously. In additiehall the components of the keys can be
replaced with the relationship types. Indeed, &iITY.Country and COUNTRY.Capital
can be replaced, COUNTRY.CountryName must be Kmgtause it is the primary ID of
COUNTRY. The attributes and relationship typetafsformed structure are shown in Fig-
ure 37.

We have transformed the foreign keys into relatijmaypes, except for the component
CountryName, which is an unavoidable redundancystilhhave to be declared. Examining
the source schema, we observe that each COUNTRYY eaferences a CITY entity that pre-
cisely references it. Indeed, for any COUNTRY trdi, the referenced CITY entitly (its
capital) has a Country value which is equad.@ountryName. Consequently, in the inter-
preted schema of Figure 37, any instaragl) (of capital is an instance dh as well. Hence
the inclusion integrity constraint that translates redundancy.

25/4/2010 (] J-L Hainaut 2010

30 Conceptual interpretation of foreign keys

1-N

= gr: COUNTRY
CITY

COUNTRY - CITY
CountryName CityName
Population
- id: in.COUNTRY
id: CountryName Id: Ci.t oo
11 o1 y

[\ incl: CITY
COUNTRY

Figure 37: The conceptual interpretation of partially reciprocal foreign keys is less concise but clear-
er than its relational source of Figure 35.

5.6 Inverse foreign keys

Normally, in a relational database, a foreign kefrdtn source table B to target table A is a
construct that allows programmers to get an A nmmfa B row, and conversely. Provided
both the foreign key and its matching candidate &eysupported by indexes, the database
engine can provide equally fast access in bottctiines.

This is not necessarily true in more primitive dai@nagers, such as elementary file manage-
ment systems. In this case, access from B toalldasved, but there is no means to get B
records from A quickly. The most obvious approachsists in defining an inverse foreign
key from A to B. Such a key often is multivalueld. addition, object-oriented DBMS gen-
erally implement inter-object links by includingdabased attribute into object type B, or an
B-based attribute in object type A, or both. Ie thtter case, these attributes act as inverse
references. Some OO-DBMS even offer a way to decke inverse property explicitly.

According to the example of Figure 38 (left), custrs have placed orders (CUSTOM-
ER.Orders) and each order has an owner (ORDER.Qw&e inverse constraint (with tag
inv) specifies that any order o is one of the ordéth@owner of o, i.e.,

for o 0 ORDER, ¢ O CUSTOMER, o.Customer = c.CustID < 0.OrderID [c.Orders

CUSTOMER

CustID ORDER

Name OrderlD

Address Date CUSTOMER ORDER

Orders[0-N] Customer OrderID

. e CustlD

id: CustID >& id: OrderID = Name Date

id": rC:fderS[*] ref: ((::usttomer Address F(Zjusct)O:eer
inv: Customer — id: Order|

inv: Orders[*] /— id: CustD =+ | ref: Customer

Figure 38: Two inverse foreign keys provide bi-directional navigation but induce data redundancy.
Discarding one of these foreign keys removes this redundancy.

(] J-L Hainaut 2010 25/4/2010

5 Complex foreign key patterns 31

Analysis

A first observation will help us understand theieas patternsa foreign key is single-valued
iff itsinverseisan identifier. If the source schema does not comply with thigperty, then
it is either inconsistent or insufficiently refined

Since any of the foreign keys is a pure redundémey the information point of view, it can
be removed (Figure 38, right). To comply with stard practice, it is best to keep the single-
valued foreign key, if any. In case of ambiguipreferably keep the mandatory key.
Through this cleaning operation, we get a patteat has already been described, either a
standard foreign key or a non-1NF foreign key. Wileconsider the three typical situations.

First case: both inverse foreign keys are single-valued. gkding to the property recalled
above, each key is an identifier (a property geheieft implicit’). We keep one of the for-
eign key, preferably that which is mandatory, if §Rigure 39). The result translate imme-
diately into aone-to-one relationship type.

It is interesting to note that this pattern (witkemtifiers ignored) is proposed by some text-
books and CASE tools as the preferred implememtatioone-to-one relationship types.
Needless to say that this proposal is particulankward since the cleaned schema can be
implemented in SQL-2 without any such trick.

gUS;LOMER ORDER

Name OrderlD ORDER
Date CUSTOMER OrderlD

Address Customer P ve—

Orders[0-1] i orderD CustiD Date

id: CustiD - Order Name Customer

id" Orders id": Customer Address ?d: OrderlD

ref . ref id: CustiD k&~ |id": Customer
.o | ——{inv: Customer ref
inv: Orders

Figure 39: When both inverse foreign keys are single-valued, they must be identifiers as well.

Second case: one of the inverse foreign keys is multivalu&ince this foreign key is the in-
verse of a single-valued foreign key, it is an tifear as well. We keep the single-value key
(Figure 38), which can be transformed intmany-to-one relationship type.

Third case: both foreign keys are multivalued. One of therkept (Figure 40), which yields
amany-to-many relationship type.

7. In which case the foreign keys produce twamy-to-one relationship types. Since they are inverse
of each other, they specialize intmme-to-one relationship type (if a function is the inverseaof
function, it is a bijection).

25/4/2010 (] J-L Hainaut 2010

32

Conceptual interpretation of foreign keys

gUﬁEOMER ORDER
us
oo OrderID
Name Date CUSTOMER ORDER
Address Customer[0-N] CustlD OrderlD
Orders[0-N] — Name Date
id: CustID id: OrderID Customer

. ref: Customer[*] Address —
ref: Orders[*] inv: Customer[] id- CustiD id: OrderlD
inv: Orders[*] |—— | : ref: Customer

Figure 40: Both inverse foreign keys are multi-valued.

5.7 Meta foreign keys
A meta-FK is an attribute or of set of attributeach value of which identifies a set of entity
types.

<to develop>

This pattern was discovered in the database obliia; an e-learning platform: each course
is represented by a set of MySQL (single-row) tal#es a consequence, the size of the sche-
ma is dependent on the number of rows in somesable

(] J-L Hainaut 2010 25/4/2010

6 Temporal foreign keys 33

6 Temporal foreign keys

<to develop as a special casdmrval FK>

This section will address a special case of compfdreign keys that is so common that it
deserves a special treatment, namelytéhporal foreign keys. Other special domains can
be considered in the same way, but we will limé thscussion to this popular category.

Most databases include, in some way, a temporamsion, in particular when the history of
the real world facts and events has to be recordiethporal data can be more complex than
current data, that merely record the current stitiee world. When the data in one table ref-
erence data in another table, the temporal dimereaxs to a new definition of the foreign
key. Indeed, the referential constraint must bisféed, not only for the current data, but also
for the data considered at any time in the pake domain of temporal databases is very rich
and complex [Snodgrass, 2000], so that we will desmnly some of the most basic aspects
of temporal foreign keys.

Standard representation of temporal data

Though there are many ways to organize historie#h,dwe will consider the most usual
structure illustrated in the Figure 41. The talldPROJECT contains the successive states
of a set of projects (only the states of the ptd#©OTECH are shown). Two timestamp col-
umns, namelgtart andend, indicate for each row the period during which ¢kege described
by the other columns remained (or remains) constahts validity period is represented by
a semi-open temporal intervaart,end[in such a way that the state was valid from the in
stantstart (included) and was finished at timeat (not included). For instance, the row p2
indicates that, at instant 41, the project BIOTEednged its theme (froBiotechnology to
Genetic engineering) and its budget (from 180,000 to 160,000). Th&esremained un-
changed until the instant preceding 47, at whioket{row p3) the budget was reduced by
40,000. Arend value of 9999 represents the far future, sotti@torresponding state is the
current state of the project. Itis assumed tiahistory of a project is continuous and shows
no gap, i.e., non extremal periods during whichimiormation was recorded; in addition, no
two states of the same project overlap.

25/4/2010 (] J-L Hainaut 2010

34 Conceptual interpretation of foreign keys

H_PROJECT

TITLE start | end THEME BUDGET

pl| BIOTECH 10 41 Biotechnology 180,000
p2| BIOTECH 41 47 Genetic engineering | 160,000
p3| BIOTECH 47 84 Genetic engineering | 120,000
p4| BIOTECH 84 135 Genetic engineering | 140,000
p5| BIOTECH | 135 | 9999 Biotechnology 140,000

Figure 41: Excerpts from the table H_PROJECT, recording the successive states of the project
BIOTECH, among others. The timestamp values are abstract integers to simplify the discussion.

Temporal foreign key

Now, we want to record the successive states opalption of employees. The table of Fig-

ure 42 shows some rows describing the evolutiothefemployee M158. The column

PROJECT aims at referencing the project on whithegimployee worked, or still is working,

during each state. We can guess that this referisnmwot as simple as in standard databases,

in which only the current states of projects anghkeyees are recorded. Let us consider the
row e2 of H_EMPLOYEE. It informs us that, from fasts 40 to 65, the employee M158
worked on the project BIOTECH. Two observations:

1. this information is valid, since this project wagtive during this period: the life period
of the project, namely [10,9999], encompasses #fidity period [40,65[of the state e2
of the employee;

2. therow e2 in H_EMPLOYEE references three sué¢eessates of this project; indeed, it
has a period [40,65[that overlap (i.e., shardsest one common instant with) three suc-
cessive periods of H_PROJECT, namely [10,41], [A[ladhd [47,84].

H_EMPLOYEE

CODE | start end NAME | STATUS | ADDRESS | PROJECT

el| M158 15 40 Mercier Paris BIOTECH

T
e2| M158 40 65 Mercier P Paris BIOTECH
e3| M158 65 108 Mercier P Paris SURVEYOR
e4| M158 108 9999 | Mercier P Paris BIOTECH

Figure 42: The table H_EMPLOYEE records the history of employees. In particular, it informs
(through the column PROJECT) on which project each employee was working on during each state.

These observations allow us to state the definiicthetemporal referential integrity. The
contents of the tables are valid, as far as tenhpeierential integrity is concerneff,

(] J-L Hainaut 2010 25/4/2010

6 Temporal foreign keys 35

0e 0OH_EMPLOYEE,
Op1, p2 OH_PROJECT,

e.PROJECT = p1.TITLE = p2.TITLE

[l pl.start <e.start < pl.end

[l p2.start < e.start < p2.end
Note that this definition is valid for target tabléhat satisfy the no-gap, no-overlap hypothe-
sis. Otherwise, the definition is more complexe Bechema of these tables is shown in Figure
43. The tadref is used to denote the temporal foreign key.

H_EMPLOYEE H_PROJECT
CODE TITLE
start start
end end
NAME THEME
STATUS BUDGET
ADDRESS id: TITLE
PROJECT start
id: CODE
start

tref: PROJECT

start

Figure 43: The column PROJECT is a temporal foreign key to the temporal table H_PROJECT.

| nterpretation of atemporal foreign key

There is no standard definition nor representatiiodeclare temporal structures at the con-
ceptual level. We will use the graphical notatiéthe temporal ERA model defined in [De-
tienne, 2001], shown in Figure 44, top. Alterhgteve can use stereotypes to mark the
constructs as temporal (Figure 44, bottom). Tlsebemas indicate that the temporal foreign
key is interpreted as a temporal relationship tylpethis section, we have implicitly adopted
thevalid time interpretation, according to which the time perida state is the set of instant
at which the states was known to be valid in tfas wercP.

Degenerated forms of temporal foreign key

First of all, let us observe that the standardee@ntation used in Figure 41 is redundant. In-
deed, except for the current state of an entity,viddue ofend of a state is also the value of
gtart of the next state. Therefore, the colustart is sufficient to represent the history of an
entity. The table ITEM_PRICE in Figure 45 storke tvolution of the prices of a set of
items. The column Date indicates from which daeegrice of the item was applicable, until
another price was assigned. The column Curresgtiso O for all the past prices and to 1 for
the current price. Though such a column is noessary, it is often added for performance

8. As opposed to theansaction time, that represents the period during which the staie recorded
in the database. More of this in [Snodgrass, 2@@0hstance.

25/4/2010 (] J-L Hainaut 2010

36 Conceptual interpretation of foreign keys

reasons.

EMPLOYEEN
CODE PROJECTNV
NAME TITLE
STATUSH —1—10-N— THEMEN
ADDRESS/NV BUDGET/N
PROJECTN id: TITLE
id: CODE

«valid»

EMPLOYEE «valid»
CODE PROJECT
NAME 1-1 «valid» O-N TITLE
«valid» STATUS | ~ works on | «valid» THEME
«valid» ADDRESS «valid» BUDGET
«valid» PROJECT id: TITLE
id: CODE

Figure 44: Two equivalent graphical representation of the conceptual structures derived from the
schema of Figure 43. The objects marked with the symbols "/v" or "«valid »" are temporal.

In the standard representation (Figure 43), thegtamp columnstart andend basically are
technical data introduced to represent and proeetity histories, and do not correspond to
intrinsic properties of the entities. Many (if radt) schemas include temporal columns that
represent natural events of the application domBaor.instance, in the schema of Figure 45,
the column ORDER.Date gives the date on which eaaér was placed. Such columns often
are qualified by the termser-defined time, since their temporal semantics is known by the
users of the data only. However, nothing prevest® interpret a user-defined time column
to participate in a temporal foreign key: thankdwevalues of temNum and Date in the table
ORDER, the matching row in ITEM_PRICE giving thécprapplicable can be identified eas-
ily. Hence the declaration of the temporal foreigy of the Figure 45.

ORDER ITEM_PRICE
OrdNum ltemNum
Date Date
ItemNum Price
Qty Current
id: OrdNum id: ltemNum
tref: ltemNum / Date

Date

Figure 45: Both tables use a degenerated form of timestamping to represent historical data.

(] J-L Hainaut 2010 25/4/2010

7 Pathological foreign keys 37

7 Pathological foreign keys

Though some of the foreign key patterns analyzddrscan be considered unusual, puzzling

or tricky, each of them is a correct and logic@ht@cal answer to a standard or complex

structural problem. Unfortunately, legacy logisahemas sometimes include awkward, or

even wrong, foreign key patterns that can leadrimneous conceptual schemas if processed
carelessly.

In some situations, the problem can originate ftera different causes. First, the flawed
structure actually exists in the legacy databaséharesult of an erroneous design or coding
decision, and has been correctly reported in thieéd schema we are conceptualizing. Sec-
ondly, the structure does not exist in the dataliasgehas been introduced in the logical sche-
ma due to insufficient analysis during the Datai&tre Extraction phase. It is important to
identify the exact source of the problem, e.gouigh more detailed data analysis.

7.1 Loosely-matching foreign key

The relational literature suggests (to say thet)ahat a foreign key and its corresponding
candidate key be defined on the same domain. rilgsis not always applied in practical
databases, which often rely on the looser rulelibtit keys must beomparablein some way.
The following correspondences have been found iBGDand SQL data structures:

Foreign key Target identifier Evaluation
char(8) ghar(8) dom(FK) = dom(ID): standard pattern
char(8) num(8) dom(FK) O dom(ID): potential compatibility
num(8) char(8) dom(FK) OO dom(ID): compatibility
char(12) dhar(8) dom(FK) O dom(ID): potential compatibility
char(8) ghar(12) dom(FK) OO dom(ID): compatibility
char(10) dompound dom(FK) O dom(ID): potential compatibility
num(4)
char(6)
compound char(10) dom(FK) OO dom(ID): compatibility
num(4)
char(6)

Figure 46: Some frequent pattern of source and target domains. The expression dom(M) denotes
the set of potential values of attribute(s) M.

Quite obviously, the problem is the elicitationsoich loose foreign keys rather than their in-
terpretation. Note that this problem can be comsitlas &omputed foreign key pattern (Sec-
tion 3.6), and processed accordingly. In this cdsefunction is some kind chsting.

25/4/2010 (] J-L Hainaut 2010

38 Conceptual interpretation of foreign keys

7.2 99% correct foreign key

Such a construct should be a foreign key, and Hgtissa foreign key most of the time. In
other words, each key value is expected to referancentity, but data analysis shows some
exceptions, i.e., values which do no match anyetaggtities. No explanation is given, except
possible data errors. This pattern is fairly clwsthe conditional foreign key situation (Sec-
tion 5.1).

In the example of Figure 47, most CUSTOMER entitieference a CATEGORY entity.
Some of them however have been found to have Categdues that fail to denote any
known category.

CUSTOMER CATEGORY
CustlD CatName
Name Rebate

Category id: CatName
id: CustID /
99%ref: Category

Figure 47: Most CUSTOMER entities have a Category value that references a CATEGORY entity.

Analysis

Two scenarios must be distinguished. Accordinth&ofirst one, the data errors can be ig-
nored, and the construct is considered a plairigorkey and processed accordingly. This
approach follows the idea that reverse enginedrasically is a decisional process based on
a collection of hints. The second scenario potdslthat the exceptions must be taken into
consideration, and represented explicitly. We asslthis second approach, which is imper-
ative when data must be migra?ed

We replace the attribute Category with two exclasoptional attributes Category and
Wrong_Category (Figure 48, left). For any CUSTOMERIty, there is either a Category
value or a Wrong_Category value. The value of @atgis a correct foreign key, which is
interpreted in the usual way, while the value oWy _Category is erroneous, and is left un-
interpreted (Figure 48, right).

If needed, the final schema can explicitly showtthe kinds of CUSTOMER entities (Figure
49).

9. lIdentifying and discarding erroneous data in daigration is a process calledta cleaning.

(] J-L Hainaut 2010 25/4/2010

7 Pathological foreign keys 39

CATEGORY
CatName
CUSTOMER Rebate

CustiD CATEGORY id: CatName

Name CatName CUSTOMER

Category[0-1] Rebate CustiD 0-N

Wrong_Category[0-1] : =

id: CustiD id: CatName P Name

A /> Wrong_Category[0-1] —0-1 o
ref: Category id: CustD
exact-1: Category)
exact-1: of. CATEGORY
Wrong_Category Wrong_Category
for c 0 CUSTOMER: for c 0 CUSTOMER: c.Wrong_Category

c.Wrong_Category [0 CATEGORY.CatName 0 CATEGORY.CatName

Figure 48: Each customer has a correct category reference, (in which case the latter translates into
a relationship type), or it has a wrong category.

CUSTOMER CATEGORY
CustiD CatName
Name Rebate
id: CustID id: CatName
I ON
P
1-1
CUSTOMER(wrong) CUSTOMER
Category[0-1] ‘ (correct) ‘

for c 0 CUSTOMER(wrong): c.Category 0 CATEGORY.CatName

Figure 49: This schema clearly distinguishes the correct data from the wrong ones.

7.3 Transitive foreign key

A transitive foreign key is the composition of two or more other foreigiykeBeing derived,
such a foreign key can be removed. Dependindh@mdlationship between these keys, the
attributes forming the transitive foreign key canrbmoved or not.

Many transitive foreign keys have not been expjiaefined in the legacy database, but have
been discovered through program and/or data asalyshniques.

Analysis
There are two different patterns, that requireedéht processing. The first pattern is illus-

trated by the Figure 50, which models a situatiowhich invoices depend on orders and or-
ders are placed by customers. Since the orderadlf customer are identified by a unique

25/4/2010 (] J-L Hainaut 2010

40 Conceptual interpretation of foreign keys

number, the identifier of the order is used to makeice entities reference their orders.
Consequently, each INVOICE entity includes theneiee of the CUSTOMER entity, itself
referenced by its ORDER entity. This referencetisinsitive foreign key. It can be discard-
ed without any information loss. However, theihtite that composes this foreign key must
be preserved, since it belongs to another, basieigh key. Since there are no explicit re-
dundant attributes, this pattern is calfeth-redundant transitive foreign key. It could have
been explicitly declared by the developer, or, npsbably, it was discovered during the
Data Structure Extraction phase. This kind ofgitawe foreign key can be formally identi-
fied through the rules of Section 1.

In the example of the second pattern (Figure Soheustomer is in contact with an employ-
ee who is in charge of his/her problems. The eyg® depends on a given department. The
developer gave the entity type CUSTOMER the attetiDepartment aimed at referencing
the department of the employee of the customeis féheign key too is transitive. However,
its attribute itself is redundant and can be rerdptence the namedundant transitive for-

eign key. Since it is supported by a specific attribukgs transitive foreign key was inten-
tional, most probably for performance reasons. fféesitivity property cannot be formally
identified and must be discovered through programa/dnalysis techniques.

After such cleaning, the schema can be processedgh any other method described in the
former sections.

CUSTOMER

CustD CUSTOMER

Name ORDER EUSHD

- ame

id: CustIlD CusiiD id- CusiD ORDER
— OrdNum CustiD

INVOICE Date OrdNum

inviD id: CustiD = INVOICE Date
CustlD OrdNum InviD id: CustID
OrdNum ref: CustiD CustiD OrdNum
Date OrdNum ref: CustlD
Amount Date

id: InvID Amount

ref: CustiD id: InviD

ref: CustiD ref: CustlD

OrdNum OrdNum

Figure 50: Non-redundant transitive foreign key: the customer of an invoice is the customer of the
order of this invoice. Cleaning the schema consists in removing the transitive foreign key.

(] J-L Hainaut 2010 25/4/2010

7 Pathological foreign keys 41

DEPARTMENT
DepartiD
Name
id: D tID
& Jepar [~} EMPLOYEE
EmpID
Name DEPARTMENT EMPLOYEE
CUSTOMER Depart = DepartiD
CustID - Name EmpID
N id: EmpID Name
ame : id: DepartD
Agent ref: Depart P Depart
Department id: EmplD
id: CustID ref: Depart
ref: Department | CUSTOMER
ref: Agent CustiD
Name
for c 0 CUSTOMER, e 0 EMPLOYEE, Agent
d 0 DEPARTMENT: id: CustiD
c.Agent = e.EmpID [e.Depart = d.DepartID re.f' Agent
—> c.Department = d.DepartiD A9

Figure 51: Redundant transitive foreign key: the department of a customer is the department of the
employee in charge of this customer. Cleaning the schema consists in removing the transitive for-
eign key and its attribute components.

7.4 Partly optional foreign key

In a partly optional foreign key, some, but not eimponents of a multiple-component for-
eign key are optional. Though this form is petifelegal in SQL-2, it violates the principles
of optional foreign keys. In particular, therésgxo known ERA/SQL translation rules that
can produces such a pattern.

As an example, we consider the schema of Figur¢hd2,describes a situation in which a
collection of dissertation titles are proposechtst year students. A dissertation is identified
by its title and the year it is being, or has bgenposed. Students are characterized by their
name and the year they have to choose a dissersitgect. When they have made this
choice, they are given the title of this disseotati Technically speaking, when attribute Dis-
sert of a STUDENT entity is null, then this entigferences no DISSERTATION entity,
while when Dissert is not null, then (Dissert,Yeaferences a DISSERTATION entity.

Analysis

The source schema is awkward. Indeed, the compopél standard foreign key must all
be mandatory (not null) or all optional (nullabléh the latter case, the components are sub-
ject to a coexistence constraint (see Section 2\8) must first clarify the schema by consid-
ering two kinds of STUDENT entities, namely thodgiet have no Dissert values and which
do not reference any DISSERTATION entity, and thek&h have a value for their attribute
Dissert, and therefore reference a DISSERTATIONenT he latter students form the class

25/4/2010 (] J-L Hainaut 2010

42 Conceptual interpretation of foreign keys

of last-year students.

STUDENT DISSERTATION
StudID Title

Name Year
Dissert[0-1] Advisor
Year id: Title

id: StudID Year

ref: Dissert

Year

Figure 52: The foreign key (Dissert,Year) is made up of optional and mandatory attributes.

We define the subtype LAST-YEAR-STUDENT as the ecfion of STUDENT entities
which have a not null Dissert value. The mandatdtgibutes Dissert and Year of this new
entity type form a standard foreign key targetingBERTATION (Figure 53, left). Note
that the attribute Year of LAST-YEAR-STUDENT is rdtSTUDENT.Year to indicate that
it is inherited from STUDENT.

The cleaned schema now includes a standard fokeigrhat is easily transformed (Figure
53, right).

STUDENT DISSERTATION
StudID Title STUDENT D‘ISSERTATION
Name Year StudID Title
Year Advisor Name Ye—a.r
id: StudID id: Title _Year AdVI_SOT
id: StudID id: Title

Year
Year
= \
0-N

LAST-YEAR-STUDENT
Dissert LAST-YEAR-STUDENT %1-1 @

ref: Dissert for s 0 LAST-YEAR-STUDENT
ors - - -
STUDENT.Year s.Year = s.writes.DISSERTATION.Year

Figure 53: Cleaning a partly optional foreign key by making the subtype LAST-YEAR-STUDENT
explicit.

7.5 Embedded foreign key

An embedded foreign key is made up of attributasdlso are components of another foreign
key. As we shall see it generally suggests bathrsitive foreign key, and a missing foreign
key. This pattern is frequent in database schemtese foreign keys have been elicited
through program and data analysis. Except in béekygned schemas, the embedded foreign
key has not been declared explicitly.

The schema of Figure 54 describes invoices thatmtbpn orders and that are sent to cus-

(] J-L Hainaut 2010 25/4/2010

7 Pathological foreign keys 43

tomers. We observe that the component of thedoregy INVOICE.Customer formpop-
er subset of the foreign key INVOICE.(Customer,Order).

ORDER INVOICE CUSTOMER
Sender InvNum CustID
OrdNum Date Name
Date Amount Address
Amount Customer id: CustlD
id: Sender Order

OrdNum id: InvNum
Q\ ref: Customer
Order
ref: Customer

Figure 54: An embedded foreign key is an evidence of an incompletely refined physical schema.

Analysis
An idea emerges immediately: couldn't ORDER.Sernmen foreign key to CUSTOMER?
Obviously, if we can prove that ORDER.Sender. CUSTOMER, then the foreign key IN-
VOICE.Customef]l -~ CUSTOMER is transitive and can be removed (sed@®e¢.3). Let
us write the set relations that express the forkeys:
1. INVOICE.[Customer,Orderfl ORDER.[Sender,OrdNum]

= INVOICE.[Customer]d ORDER.[Sender]
2. INVOICE.[Customer[d] CUSTOMER.[CustID]
Unfortunately, from these expressions, we canrfet ithat ORDER.Sendét — CUSTOM-
ER. However, unless the population of INVOICEnspy, some values of ORDER.Sender
(among them, those which appear in INVOICE.Custyraeg CUSTOMER.CustID values
aswell. So, we can distinguish two kinds of ORDdtfRties: those that reference CUSTOM-
ER entities (their Sender values are in CUSTOMER!IDY) and those which do not. The
former are collected in the CUST-ORDER entity typgure 55, left). Now, the schema ex-
hibits an explicit transitive foreign key which cha removed.

The conceptual interpretation of the modified scaésmmmediate (Figure 55, right).

The source pattern can also be interpreted in an@thy. Instead of sticking strictly to this
schema, we use it as an evidence of the possitdégh key ORDER.Sendét — CUS-
TOMER, which so far is a mere hypothesis. Shoutdswcceed in proving that it is an im-
plicit foreign key, we could add it to the schemaad remove the transitive foreign key
INVOICE.Customef] - CUSTOMER (Figure 56).

25/4/2010 (] J-L Hainaut 2010

44 Conceptual interpretation of foreign keys

ORDER CUSTOMER ORDER CUSTOMER
Sender CustiD Sender CustID
OrdNum Name OrdNum Name
Date Address Date Address
Amount id: CustlD Amount id: CustlD
id: Sender id: Sender 0-N

OrdNum OrdNum
INVOICE = @
InvNum
Date A 11
Amount INVOICE
Customer InvNum
CUST-ORDER Order O—Nl—l— Date
id: ORDER.Sender id: InvNum Amount
ORDER.OrdNum ref: Customer id: InvNum
ref ORDER Sender ref: Customer for co) CUST-ORDER:
co.Sender = co.from.CUSTOMER.CustID

Figure 55: The missing foreign key has been added, leading to the known pattern of non-redundant
transitive foreign key.

CUSTOMER

CustIlD
Name
Address

O'N id: CustID

1-1
ORDER INVOICE
OrdNum
InvNum

Date
—0-N 1-1—
Amount Date

- Amount
id: from.CUSTOMER id- InvN
OrdNum Id- nvifum

Figure 56: Turning the evidence into a decision: ORDER.Sender definitely is a foreign key to CUS-
TOMER.

7.6 Reflexive foreign key
This pattern includes a perfectly valid, thowhictly useless foreign key. It is presented
here for three reasons.

» This structure has been reported as an explidiglglared foreign key in an actual
ORACLE application. Hopefully through code geninait

e It is a explicit implementation of the reflexivifgroperty of foreign keys: A[A1[]
AJA1L].

« We found it nice to close a rather serious seatiih a touch of humdP.

(] J-L Hainaut 2010 25/4/2010

7 Pathological foreign keys 45

A
AL A
A2 = AL
id: A1 A2
ref id: A1

Figure 57: Art need not be useful.

Note that this pattern should not be confused wyttlic foreign keys through which it may
happen thasome entities reference themselves.

10. Quite frustratingly, humorous issues in the ldasa realm often require some laborious comments
before being enjoyed at their full potential. Buishgenerally the reward is worth the journey.

25/4/2010 (] J-L Hainaut 2010

46 Conceptual interpretation of foreign keys

8 Synthetic tables

In this last section, we collect the most commaeiffn key variants into a series of tables,
then we analyze the relationship between a forkéynand the local identifiers.

8.1 Summary of the most common foreign key patterns

Considering that a foreign key can be
« single-valued or multivalued,
 identifying or non-identifying,

e mandatory or optional,
 total (equality) or not,

we get the 16 basic combinations described in Bable 4 here below. We observe that the
combinations of first two characteristics yieldspectively many-to-one, one-to-one, one-to-
many andmany-to-many relationship types. This analysis is based onmrthst common car-
dinalities of both attributes and roles, namelJ0F1-1], [0-N] and [1-N]. Considering other
cardinality patterns can be deduced without problem

Foreign key pattern Interpretation Comment see
5 A 5 A Mandatory foreign key 2.1
BL AL Bl AL This standard patter.n gives
B2 A2 B2 _1'1_®‘0'N‘ A2 a many-to-one relationsh(p
Al id: Al id: B1 id: A1| | type with a mandatory role
id: B1 / and an optional role.
ref: Al
B A 5 A The FK is optional, so that 2.2
BL AL B1 AL the role of r.B is optiona|
B2 A2 B2 _0'1_®‘0'N‘E too. The other role still i5
Al[0-1] id: A1 id: B1 id: A1| | optional.
id: B1
ref: Al

(] J-L Hainaut 2010 25/4/2010

8 Synthetic tables 47
B A 5 A A total foreign key transt 2.4
Bl AL B1 Al lates into a relationship
B2 A2 B2 _1'1_®‘1'N‘E type with two mandator
Al id: Al id: B1 id: A1| | roles.
id: B1
equ: Al
B A 5 A Total, optional foreign key. 2.2
Bl AL Bl AL Gives a mandatory role and 2.4
B2 A2 B2 _0'1@‘1"\“ A2 an optional role.
Al[0-1] id: A1 id: B1 id: Al
id: B1 /
equ: Al

Table 1: Interpreting single-valued, non-identifying, foreign

keys into many-to-one rel-types.

Foreign key pattern Interpretation Comment see
B A 5 A A smgle-vglued . forglgr 25
Bl AL BI AL key which is an identifie
Al A2 B2 —1'1—€>—°‘1— A2 translates into a one-to-one
B2 id: AL id: BL id: AL| | relationship type.
id: B1
id: A1 />
ref
B A B A Same as above + Table 1 2
BL AL BL AL 2.2
AL[0-1] A2 B2 _0'1@0'1_ A2
B2 id: A1 id: B1 id: A1
id: B1
id: A1
ref
B A 5 A Same as above + Table 1 2
BL AL BL AL 2.4
AL A2 B2 —1-1—@—1-1— 2
B2 id: A1 id: B1 id: Al
id: B1
id: A1 /
equ
5 A 5 A Same as above + Table 1 2
Bl Al Bl Al 2.2
AL[0-1] A2 B2 —0'1—®—1'1— A2 24
B2 id: A1 id: B1 id: Al
id: B1
id: A1 /
equ
25/4/2010 [J-L Hainaut 2010

48 Conceptual interpretation of foreign keys

Table 2: Interpreting single-valued, identifying, foreign keys into one-to-one rel-types.

Foreign key pattern Interpretation Comment see
B A B A A r_nult_lvalugd fo_r(_elgn key 2.5
B Al Bl AL which is an identifier trans-
A1[0-N] A2 B2 _O'N_@M_ A2 lates into a one-to-many
B2 id: A1 id: B1 id: A1 relationship type.
id: B1
id: A1[*]
ref
+
B A 5 A Same as above + Table 1 2
Bl Al Bl Al
AL[LN] A2 B2 —1»N—®—°’1— A2
B2 id: A1 id: B1 id: AL
id: B1
id A1[]
ref
B A B A Same as above + Table 1 2
B1 Al B1 Al
A1[0-N] A2 B2 'O'N_®_l'1_ A2
B2 id: A1 id: B1 id: A1
id: B1
id A1[]
equ
B A B A Same as above + Table 1| see
Bl Al Bl Al
A1[1-N] A2 B2 'LN_@_H_ A2
B2 id: A1 id: B1 id: A1
id: B1
id": A1[]
equ

Table 3: Interpreting multivalued, identifying, foreign keys into one-to-many rel-types.

Foreign key pattern Interpretation Comment see

A multivalued foreign key 2.5
B A 5 A which is not an identifie

Bl Al Bl AL ;

B2 A2 B2 _1'N_®_°‘N‘ A2 translates into a many-to-

Al[1-N] id: Al id: B1 id: A1| | many relationship type.

id: B1 />

ref: A1[*]

(] J-L Hainaut 2010 25/4/2010

8 Synthetic tables 49

B A s A Same as above + Table 1 2(5
B1 Al B1 Al
B2 A2 B2 _O’N@O"\" A2
A1[0-N] id: A1 id: B1 id: Al
id: B1
ref: A1[*]
B A B A Same as above + Table 1 2(5
B1 Al B1 Al
B2 A2 B2 '1'N_®'1'N' A2
AL[1-N] id: A1 id: B1 id: A1
id: B1 /
equ: A1[*]
B A 5 A Same as above + Table 1 2(5
Bl Al Bl Al
B2 A2 B2 _O’N_@LN_ A2
A1[0-N] id: A1 id: B1 id: Al
id: B1
equ: Al[*]

Table 4: Interpreting multivalued, non identifying, foreign keys into many-to-many rel-types.

8.2 Relationship between a foreign key and the identifiers

Both an identifier and a foreign key comprise aofetttributes from the same entity type. It
is quite natural to wonder whether the relationdeetn these sets matters. Considering any
two non empty sets E1 and E2, there are five bratitions:

 Eln E2=0
« E10E2
 E1=E2
« E10E2

 ElnE2#0 UOE1-E220 OE2-E120

Table 5 explores these five relations and linkstléth foreign key patterns described in the
previous sections.

Foreign key pattern Interpretation Comment see

The foreign key and the 2.1
B A B A . - -

BL A Bl <1 identifier are disoined.

B2 A2 B2 _1_1_®_0_N_§ There is no relationship

B3 A3 B3 A3 between the identifier and

B4 id: AL id: B1 id. A1| | the derived relationship

id: B1 / type.

ref: B4

25/4/2010 (] J-L Hainaut 2010

50 Conceptual interpretation of foreign keys

B A B The foreign keyisa proper | 2.4
Bl AL 53 A subset of the identifier. In
B2 A2 Al the transformed schema,|it
B2 A2 B3)
B3 A3 B4 '1'1‘®‘°'N‘ 2; is replaced with the reld-

B4 id: A1 id: T.A S tionship type in the identi
id: BL B2 d-ALL | fier,

B2
ref: B1

B A The identifier and the fo 2.5
A . A
Bl AL B AT eign key_comprlses the
B2 A2 B3 A2 same attributes. The|
B3 A3 B4 —1-1—®—o-1—£ derived relationship type is
B4 id: A1 dTA d A1l | one-to-one and the identi-
id: B1 / A2 A2| | fier disappears.
B2

B A A The identifier is aproper | 5.5
B bset of the foreign k

B1 AL AL b 1gn Key,
B2 A2 Bl A2 which therefore is a non-
B3 A3 B3 ‘“‘@‘0'1—5 minimal identifier. It par
B4 i AL B4 id Az] | tially translates into a one-
id: B1 A2 id: B1 A2| |to-one relationship type.
ref: B1 for b OB. b.BL = brAAL Since Bl cannot bg

B2 or » 0.BL=D.LA. removed, it is redundant,

hence the constraint.
The identifier and the for- 5.2

B A B A i K h
BT AL BL AL eign key share a commgn
2 2 B2 A2 attribute, but have each|a
B3 A3 B4 ‘1'1_®‘°‘N‘ A3 proper attribute.
B4 id: A id: B1 id: A1| | The foreign key partially
id: B / A2 B2 A2| |translates into a many-tp-

B2 _ one relationship type.
ref: B2 forb 0B, b.B2=bh.rA.Al Since B2 cannot be

B3 removed, it is redundant,

hence the constraint.

Table 5: The five relationships between a foreign key and the local identifiers.

Exercises

Here follow some logical schemas including forekgys. Unless suggested otherwise, the
reader is invited to build, for each of them, aniealent conceptual schema. Note that some
schemas do not mimic exactly the patterns studiglis chapter. In such cases, the reader
will design his/her own techniques following tharfireworks suggested above.

(] J-L Hainaut 2010 25/4/2010

8 Synthetic tables 51

Exercise 1. A first simple schema

This one is quite easy, since it includes stanflaielgn keys only (Ex-1). Nevertheless,
some attention could help.

DEPARTMENT SERVICE EMPLOYEE IN_CHARGE FILE
DepName DepName EmpID FileNum FileNum
Location ServName Name EmpID Title
id: DepName Head DepName StartDate Customer
id: DepName ServName ClosingDate[0-1] id: FileNum
ServName id: EmpID id: FileNum
ref: DepName ref: DepName EmpID
ServName id": FileNum
equ
ref: EmpID

Figure Ex-1: A collection of standard foreign keys.

Exercise 2. Distributing water

A water distribution network is made up of noded aipes linking nodes in a directed
tree structure. The fluid flows from the root nddethe leaf nodes. In a pipe, it flows
from the source node to the sink node. The piftesteed to a common source node are
uniquely numbered. Among the outgoing pipes ohesaurce node, one is considered
its main pipe (Ex-2).

Derive a conceptual schema from the following fefal schema that attempts to
express this application domain.

PIPE
SourceNode
NODE Number
Nogell_) SinkNode
MainPipe[0-1] Length
Posmon id: SourceNode
id: NodelD Number
ref: Nov.:iell_:) id": SinkNode
MainPipe ref
ref: SourceNode

Figure Ex-2: Partly reciprocal foreign keys.

Exercise 3. Children and the social security

In a social security system, children depend oprmtar(who are members), and are asso-
ciated with accounts, as expressed in the reldtesteema Ex-3. Derive a correct con-
ceptual schema from this schema.

25/4/2010 (] J-L Hainaut 2010

52 Conceptual interpretation of foreign keys

MEMBER
%g:\:l—m CHILD
Address PID
Employer Name
id: RegNum Parent
Account
\ id: PID
ACCOUNT ref: Parent
MembNum ref: Parent
AccntNum Account
Date
id: MembNum
AccntNum

Figure Ex-3: Nothing missing?

Exercise 4. Offering products and assigning orders

Propose a conceptual schema equivalent to theniolipschema (Ex-4), recovered from
a set of flat files.

ASSIGNMENT
Supplier
OFFER PRODUCT Product ORDER
Supplier ProdCode Order OrdNum
Product Description Qty Customer
Price id: ProdCode id: Supplier Date
id: Supplier Product id: OrdNum
Product Order
ref: Product ref: Product
ref: Supplier :
PP SUPPLIER| ~~—_|ref: (F;“(deum
SupplD raer
Name ref: Supplier
Address / ref: Order
id: SuppID

Figure Ex-4: Nothing in excess?

Exercise 5. Ordering in quantities

An order is correct if it corresponds to an avdéakupply, that is, if there exists a sup-
plier that can supply the item ordered in the giaspecified in the order. The table
SUPPLY gives, for each supplier and each item it €hip, the prices for increasing
guantities (e.g., for 1 unit, for (2 to) 5 unitey {6 to) 10 units, and so forth. The data-
base that records these facts is represented B ERerive an equivalent conceptual
schema.

(] J-L Hainaut 2010 25/4/2010

8 Synthetic tables 53

ORDER SUPPLY
OrderlD Supplier
Supplier Item
Item Oty
Qty Price
Customer id: Supplier
id: OrderIlD Item
ref: Supplier / Qty

ltem
f(Qty)

Figure Ex-5: Another computed foreign key.

Exercise 6. Delivering . ..

Give a correct interpretation of the inclusion doaisit of schema Ex-6.

Exercise 7. ... and shipping

The schema Ex-7 is an excerpts of the structuie lafge relational database for spare
part management that has been reengineered innaaceufacturing company.

ORDER-DETAIL DELIVERY

OrderNbr DeliveryNbr

ItemNbr OrderNbr

Qty Date

Amount Amount

id: OrderNbr id: DeliveryNbr
ItemNbr incl: OrderNbr

gr: OrderNbr <l/_

Figure Ex-6: An inclusion constraint.

25/4/2010 (] J-L Hainaut 2010

Conceptual interpretation of foreign keys

ORDER

DETAIL

Number

Date

Supplier
Ship_method[0-1]
Language[0-1]

Order_number
Line_number

LANGUAGE

Code
Description

F id: Code

SHIPMENT_TERMS

Code

Ship_term[0-1] Language

Pay_term[0-1] Pescnpnon

id: Number id: Code
Language

ref: Language
ref: Ship_term

N

H ref: Language

SUPPLIER

Code

Name

Address
Pay_terms
Ship_method
Language
Ship_terms
VAT_number[0-1]

<

id: Code

ref: Language

ref: Ship_terms
Language

ref: Ship_method
Language

ref: Pay_terms
Language

Item[0-1] Language
Quanttylo-1] ref: Supplier SHIPMENT_METHOD
id: Order_number ref: Ship_method Code
Line_number Language —
- Orde . Language
re]t: Order_number ref: an_term Description
fef ftem anguage id: Code
Language
ITEM H ref: Language
Code
Description PAYMENT_TERMS
Substitute[0-1] Code
Type Language
id: Code Number_of_days
ref: Substitute . id: Code
Language

Figure Ex-7: Languages are everywhere.

List of the foreign keys:

DETAIL.Order_NumbefdJ - ORDER
DETAIL.ItemO - ITEM
ITEM.Substitutel] - ITEM
ORDER.Ship_termi] — SHIPMENT_TERMS

ORDER.Pay_ternmil ~ PAYMENT_TERMS
ORDER.Language] - LANGAGE
ORDER.Supplief] - SUPPLIER

L ref: Language

SHIPMENT_TERMS.Languagél - LANGAGE
SHIPMENT_METHOD.Language] - LANGAGE
PAYMENT_TERMS.Languagel — LANGAGE
SUPPLIER.Ship_terml —» SHIPMENT_TERMS
ORDER.Ship_method - SHIPMENT_METHOD SUPPLIER.Ship_method - SHIPMENT_METHOD
SUPPLIER.Pay_terril ~ PAYMENT_TERMS
SUPPLIER.Languagé]l - LANGAGE

Exercise 8. More about non-minimal foreign keys

Prove that the schemas Ex-8 are equivalétitit: the left side schema is that of Figure
34. In addition, refer also to the theory of noliz&tion (notably, 3NF against BCNF).

U J-L Hainaut 2010

25/4/2010

8 Synthetic tables 55

gives
~{_id: SUBJECT 0-N
LECTURER |

1-1
I

LECTURER SUBJECT
Name Title
REGISTRATION id: Name registration id: Title

LECTURE o) |

id: STUDENT

Student

Subiect 71—10—N— % - 0-N SUBJECT 0-N
id: Student — incl: LECTURER
Subject id: Lecturer SUBJECT
STUDENT
for r] REGISTRATION: O-N Name
r.Subject = r.for, LECTURE.Subject id: Name

Figure Ex-8: Are these schemas equivalent?

Exercise 9. About partially reciprocal foreign keys

The schema Ex-9 is proposed as an interpretatitinecéchema of Figure 35. Evaluate
the correctness of this interpretation.

1-N Population

COUNTRY = gr: COUNTRY
CountryName CITY-NAME CITY-NAME
CountryName
Area Name

1-14—(incl: COUNTRY
CITY-NAME

Figure Ex-9: s this schema equivalent to the schema of Figure 35?

Exercise 10. Normalizing a legacy relational table

The Data Structure Extraction phase has extradtedtdable structure (Ex-10, left)
accompanied with a set of functional dependencies.

Since the table is not in 3NF, it has been decoeghasto normalized components that
we want to conceptualize (Ex-10, right). Howewbe resulting schema is not quite
equivalent to the source database. Indeed, thdestaBOND LEVEL and
CUST_CONTACT include historical data about respetii the price evolution of the
bonds and on the successive addresses of the arstoritherefore, the foreign keys
ORDER.(Bond,DateSold) and ORDER.(Customer,DateSarielfemporal foreign keys.
Considering this fact, and observing that the fymeieys share an attribute, propose a
conceptual schema for this relational schema.

25/4/2010 (] J-L Hainaut 2010

56 Conceptual interpretation of foreign keys

ORDER BOND_LEVEL BOND
ORDER OrdNum Bond Bond
OrdNum Bond Date DateEmitted
Bond DateSold Price id: Bond
DateEmitted P Number id: Bond
DateSold Customer Date
Price id: OrdNum ref: Bond
Number ref: Bond
Customer DateSold
Address ref: Customer CUST_CONTACT
id: OrdNum DateSold CustName
Date
Bond,DateSold 0 - Price Address
Customer, DateSold 00 - Address id: CustName
Bond 0 - DateEmitted Date

Figure Ex-10: Interpreting a normalized relational schema.

Exercise 11. Programmers write programs

The schema Ex-11 includes some nice non-standard@nplex foreign keys.

LANGUAGE PROGRAM APPLICATION
LangName ProgID AppName
Version ProgName RootProgName
Compiler AppName Service
id: LangName LangName id: AppName
Version Version ref: AppName
id: ProgID RootProgName
id: AppName
ProgName MODULE
ref: LangName ProgiD
Vversion ModName
ref: AppName Type[0-1] ERONGRAMMER
Programmers[0-N] w
Calls[0-N] Head[0-1]
ProgID -
ModName id: EmpNum
id ProgD ref: Head
ModName
ref: Programmers[*]
ref: Calls[*]
ref: ProgID

Figure Ex-11: A bunch of interesting foreign key patterns.

Exercise 12. Actual keys, at last!

This fragment is an excerpt from a key managemgpliGation written in MS Access for a
teaching and research department. To receive aafdmy (for an office, a library, a room,
a desk, etc.) an employee must have access t@canrdcHe can be attributed one copy only

(] J-L Hainaut 2010 25/4/2010

8 Synthetic tables 57

for each key. Propose a conceptual schema fod#tabase fragment.

EMPLOYEE ACCOUNT-ACCES] ACCOUNT
PersiD PersiD ActNum
id: PersID ActNum id: ActNum
id: PersID
ActNum
ref: ActNum
ref: PersID
ATTRIBUTION
PersiD KEY
KeyNum KeyNum
ActNum id: KeyNum
id: PersID
KeyNum
ref: KeyNum
ref: PersID
ActNum

Figure Ex-12: Attributing office keys to employees

Exercise 13. Inclusion constraints in the country

In Figure Ex-13, a value of the field DESCRIPTIO#Marences a sequence of text lines, each
in a different language, providing the descriptida hotel. Same for ACCESS, giving access
information. Find the underlying semantics of thisiema.

The set of TEXT_VERSION row:

with the same TEXT_ID value is

-either a DESCRIPTION) HOTEL

- or an ACCESS HOTEL_ID

for one HOTEL. H TEXT_VERSION NAME
TEXT_ID DESCRIPTION

LANGUAGE LANGUAGE ACCESS

ID LANGUAGE TEXT id: HOTEL_ID

FULL_NAME id: TEXT_ID id: DESCRIPTION

id: D_LANGUAGEfG— | LANGUAGE 34 _Inc
ref: LANGUAGE id: ACCESS
gr: TEXT_ID inc

Figure Ex-13: Express the semantics of inclusion constraints.

Exercise 14. Families

The schema of Figure 14 is intended to describdvienpfamily relationships among
persons. Derive from it a correct conceptual schem

25/4/2010 (] J-L Hainaut 2010

58 Conceptual interpretation of foreign keys

PERSON
PID
Start
Name
End
Surname
Sex
Address
Spouse[0-1]
Father[0-1]
Mother[0-1]
id: PID
Start
id": Spouse
Start
tref
tref: Start
Father
tref: Start
Mother

Figure Ex-14: A family structure

Exercise 15. Deriving generic rules

All the interpretation rules described in this cteshave been illustrated through actual
examples. This approach, though attractive, comd#e it difficult to identify other sim-
ilar problem patterns and to solve them. Henceidba to provide abstract problem/
solution patterns instead.

A
Al
A3
id: A1l
[
a-b
Al
A2[a-b] 1-1
B A21 - B |
B1 A22 Bl A2
B2 A3 B2 A21
B3 id: A1 B3 A22
ref: B2 id(A2): ref: B2 id: r.A
B3 Y B3 > a2

Figure Ex-15: Abstraction of the Hierarchical foreign key to a multivalued attribute rule of Fig-
ure 18. [a-b] denotes any valid cardinality range.

Figure Ex-15. shows how the interpretation of thearete example of Figure 18 can be

(] J-L Hainaut 2010 25/4/2010

8 Synthetic tables 59

generalized into an abstract rule that is easiapfly. Note that the constructs that play
no role in the interpretation, such as the idestitibf SHIPMENT, have been ignored.

Propose a similar abstraction for each of the nmoastmon interpretation rules of this
chapter.

25/4/2010 (] J-L Hainaut 2010

60

Conceptual interpretation of foreign keys

U J-L Hainaut 2010

25/4/2010

