

Conceptual interpretation of foreign keys

Jean-Luc Hainaut

May 20101

Abstract

Foreign keys form a major structuring construct in relational databases and in standard files.
In reverse engineering processes, they have long been interpreted as the implementation of
many-to-one relationship types. Though one could naively think they are useless, or at least
unnecessary, in hierarchical and network models, foreign keys also appear very frequently in
IMS, CODASYL, TOTAL/IMAGE and even in OO databases. Besides the standard version
of foreign key, according to which a set of columns (fields) in a table (file) is used to designate
rows (records) in another table, a careful analysis of existing (both modern and legacy) data-
bases puts into light a surprisingly large variety of non standard forms of foreign keys. Most
of them are quite correct, and perfectly fitted to the requirements the developer had in mind.
However, their conceptual interpretation can prove much more difficult to formalize than the
standard forms.

The aim of this study is to classify, to analyze and to interpret some of the most frequent vari-
ants of foreign keys that have been observed in operational files and databases.

1. The first version appeared as Chapter 12 of Introduction to Database Reverse Engineering, 2002

2 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

1 Introduction

The term foreign key was introduced to designate a frequent structural pattern observed in re-
lational databases. Considering a relation schema S with candidate (most often primary) key
A on the one hand, and a set F of attributes of relation schema R on the other hand, F is a
foreign key of R to S if, at any time, for each tuple r from the extension of R, such that r.F is
not null, a tuple s exists in the extension of S such that r.F = s.A (Figure 1). This property
means that the set of values of F that appears in the extension of R is a part of the set of values
of A of the extension of S. A foreign key induces an inclusion constraint the right-hand side
of which is the value set of a candidate (primary) key. The foreign key F acts as a reference
to the tuples of S. Hence the name referential constraint commonly given to the inclusion
property. Maintaining this constraint ensures the so-called referential integrity of the data-
base.

Figure 1: Two representations of the concept of foreign key in the relational model: attribute R.F is
a reference to S, a role that is expressed by an inclusion constraint (left) or the tag ref (right).

F is called a foreign key to suggest that it is a copy of the (primary) key of a foreign relation.
Of course, both tables can be the same, in which case the foreign key references tuples of its
own table.

The concept of a set of fields used as a reference to records is not limited to the relational
model, and can be found in practically all databases. Of course, it is an integral part of all
value-based models, that is, models in which all the information is represented by explicit
field values, and by aggregates of values. The pure relational model (excluding the object-
relational variants) is value-based, but all standard file structure models also are of that kind.
To define relationships between records or rows, we generally use reference fields.

Other models include specific constructs to associate data entities. Such is the case of the CO-
DASYL DGTG models, and their numerous commercial avatars (IDMS, IDS, IDS2, UDS,
Vax DBMS, etc.) and of IBM IMS model , in which records (or segments) can be linked
through association mechanisms the implementation of which (generally pointer-based) can
be ignored to a large extend by the programmers. Object-oriented databases also offer struc-
tures for associating objects, namely through object-attributes or explicit associations. TO-
TAL/IMAGE databases make use of a mixed construct, based on explicit associations in one
direction, and foreign keys in the other one.

In pure relation schemas, a foreign key will generally be noted by the referential
constraint they define (e.g., R[F] ⊆ S[A]). In DMS-independent schemas, we will prefer
the more neutral notation R.F → S.A , or, when there is no ambiguity about the target

 S(A ,B,C)
 R(D ,E,F)
 R[F] ⊆ S[A]

 S
A
B
C
id: A

 R
D
E
F
id: D
ref: F

1 Introduction 3

25/4/2010  J-L Hainaut 2010

identifier, R.F → S . This notation should not be confused with that of functional depen-
dency, which is similar.

Basic and derived foreign keys
The origin of a foreign key, say F, as it appears in the schema in concern is an important issue.
In some cases, F has been declared in the DDL source program, so that it can be considered
a basic property expressing, in most cases, a many-to-one relationship type.

In other cases, F has been recovered in the Data Structure Extraction phase through elicitation
techniques such as those discussed in Section XX. Such foreign keys can be basic or derived
(Figure 2). Indeed, a derived foreign key exhibits the same static and dynamic characteristics
as basic ones. In particular, data analysis and program analysis2 can detect both types of for-
eign keys.

DEPT(D#,NAME)
ACCOUNT(A#,D#,AVAIL)
EXPENSE(E#,AMOUNT,A#,D#)
ACCOUNT[D#] ⊆ DEPT[D#] (FK1)
EXPENSE[A#,D#] ⊆ ACCOUNT[A#,D#] (FK2)
EXPENSE[D#] ⊆ DEPT[D#] (FK3)

Figure 2: Basic (FK1, FK2) and derived (FK3) foreign keys. Derived foreign keys must be discard-
ed.

If all the basic foreign keys have been recovered, then identifying derived foreign keys is an
easy task, when considering the following inference rules of inclusion constraints:

 1.let M and N be two lists of domains such that N ⊆ M, and R and S two relation
schemas defined on supersets of M

R[M] ⊆ S[M] ⇒ R[N] ⊆ S[N]

 2.let J, K, L be subsets of an arbitrary set P,
J ⊆ K ∧ K ⊆ L ⇒ J ⊆ L

Applying these rules to the schema 2 leads to the expressions,

EXP[A#,D#] ⊆ ACT[A#,D#] ⇒ EXP[D#] ⊆ ACT[D#]

EXP[D#] ⊆ AC[D#] ∧ AC[D#] ⊆ DEPT[D#] ⇒ EXP[D#] ⊆ DEPT[D#]

. . . that prove that FK3 is derivable from FK1 and FK2, and therefore can be discarded.

Conversely, some derived foreign keys may happen to be kept in the schema, and erroneously
considered basic, if not all their basic foreign keys have been elicited. In this case, the schema
is both incomplete and flawed and will rapidly lead to data inconsistencies, should it be used
for example to migrate the data to a new database governed by this schema. For instance, due
to careless data structure extraction, the schema of Figure 2 could have included the foreign

2. Through such constructs as by-pass joins:
 select * from DEPT D, EXPENSE E where D.D# = E .D# .

4 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

keys FK1 and FK3 only.

Fortunately, heuristics exist which can locate some of such patterns, and help the analyst re-
build the correct schema (see Section 7.5).

Two puzzling observations
1. One of the most surprising observations in actual non value-based databases, is that they

most often include foreign keys, despite the availability of explicit constructs to express
associations. For instance, many CODASYL databases, and almost all medium to large
size IMS databases include hundreds to thousands of foreign keys. As a consequence,
studying foreign keys and their interpretation must be considered a major domain of
interest in data reverse engineering, whatever the physical model according to which the
legacy data are organized.

2. The second, even more disturbing, observation, is that, besides standard foreign keys
described here above as the implementation of many-to-one relationship types, database
developers have used this apparently straightforward concept to code a large variety of
sophisticated structures. Though some patterns can be considered truly perverse, most
of them are clever implementations of complex structures that have never been described
in the literature. This proves, if need be, that reverse engineering can provide invaluable,
and often original, techniques for database design.

Structure of this chapter
We will first discuss the most frequent standard (Section 2) and non-standard (Section 3) for-
eign key patterns, as well as inclusion constraints (Section 4) and propose natural and intui-
tive interpretations. Then, we will address complex and tricky structures (Section 5) that
cannot be solved by simple transformations, and temporal foreign keys (6). Finally we will
examine some awkward and even incorrect patterns (Section 7). A series of tables will syn-
thesize the main patterns (Section 8), while exercises will conclude the study.

Terminology
This report, just like many of those which cope with the conceptualization process, develops
techniques that concern both logical and conceptual constructs. We will in particular use the
terms relations, tables, record types, files, segments and entity types on the one hand, and
fields, attributes and columns on the other hand. The question is, should we use all these
terms, or, on the contrary, should we base the discussion on a unique set of generic terms that
are valid whatever the model of the legacy database? For instance, must we define a foreign
key as a set of attributes that reference tuples of a relation (relational theory), as a set of col-
umns referencing rows in a table (RDBMS), as a set of fields referencing records in a file
(COBOL files), or as a set of attributes referencing entities of a given type (GER model)?

Obviously, we should adopt a common vocabulary, in order to make the techniques devel-
oped as general as possible and applicable to as many past, current and future models as pos-

1 Introduction 5

25/4/2010  J-L Hainaut 2010

sible. Hence the following conventions that will be used throughout this chapter, with some
minor exceptions, notably when we deal with specific models, in which case we naturally
adopt the proper terminology.

we use the term to denote, according to the context

entity tuple, row, record, segment, entity, object, etc.

entity type relation, table, record type, segment type, entity type,
object class (or type), etc.

attribute attribute, column, field, etc.

identifier candidate key, unique key, (alternate) record key, etc.

primary identifier primary key, record key, etc.

foreign key any kind of attribute set used to reference entities.

6 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

2 Standard foreign keys and basic variants

2.1 The standard foreign key

The most common form of foreign key strictly obeys the definition stated in the relational the-
ory. It is made up of a group of one or several mandatory attributes that targets the primary
key of a relation. The components of both keys, considered pairwise, are defined on the same
domains. Since it has been described in all database introductory textbooks, even the most
elementary ones, this form will be called standard. Figure 3 (left) shows a typical standard
foreign key.

Figure 3: The standard foreign key pattern and its conceptual interpretation.

The transformational interpretation is straightforward (Figure 3, right): the foreign key com-
ponents are removed, and replaced with a functional3 relationship type. The cardinality of
the source role (for.SHIPMENT) is [1-1] and that of the target role (for.ORDER) is [0-N].

From this pattern, we can derive several variants that will be described in this section. They
are independent, so that they can occur simultaneously. Their synthesis is presented in Sec-
tion 8.1.

2.2 Optional foreign key

In its simplest form, such a foreign key comprises one optional attribute. It translates in the
same way as standard pattern, i.e., into a functional relationship type, except for the source
role, which now is optional (cardinality [0-1]), as shown in Figure 4.

⇔

3. Let us recall that we call functional any many-to-one relationship type, since it expresses a function
between its roles. As a particular case, one-to-one relationship types also are functional. On the
contrary, one-to-many, many-to-many, N-ary relationship types as well as those with attributes are
called non-functional.

SHIPMENT
ShipID
Customer
ItemCode
OrderDate
ShipDate
id: ShipID
ref: Customer

ItemCode
OrderDate

ORDER
CustID
ProdNumber
ODate
Qty
id: CustID

ProdNumber
ODate

0-N1-1 for

SHIPMENT
ShipID
ShipDate
id: ShipID

ORDER
CustID
ProdNumber
ODate
Qty
id: CustID

ProdNumber
ODate

2 Standard foreign keys and basic variants 7

25/4/2010  J-L Hainaut 2010

Figure 4: An optional foreign key expresses an optional relationship type.

2.3 Optional multi-component foreign key

If the foreign key comprises several optional attributes, then an additional coexistence con-
straint must hold among these components to make the transformation valid. The interpreta-
tion is through an optional relationship type (Figure 5).

Unfortunately, in most cases we encountered, optional multi-component foreign keys were
incompletely extracted, in that the coexistence constraints were not identified. Any database
that includes entities in which some attributes are valued (i.e., they have non null values)
while the others are not, cannot be interpreted according to the rule stated above.

If the coexistence constraint cannot be asserted through the Data Structure Extraction phase,
then four cases4 must be considered, defining the partitioning of STUDENT instances into
four subtypes, among which STUD_TY only can be the source of a (mandatory) foreign key.

Figure 5: An optional multi-component foreign key should comprise optional components among
which a coexistence constraint holds. It translates into an optional relationship type.

• Title = null & Year = null ⇒ subset of the STUDENT entities that do not fall in
STUD_T nor STUD_Y; this subtype, with

⇔

4. In general 2n, where n is the number of components of the foreign key.

⇔

VEHICLE
VehicID
Make
Model
Data
Driver[0-1]

id: VehicID
ref: Driver

SALESMAN
SManID
Name
Address

id: SManID

0-N0-1 driven by

VEHICLE
VehicID
Make
Model
Data
id: VehicID

SALESMAN
SManID
Name
Address
id: SManID

STUDENT
StudID
Name
Option
Title[0-1]
Year[0-1]
id: StudID
ref: Title

Year
coex

DISSERTATION
Title
Year
Advisor
id: Title

Year 0-N

0-1 writes

STUDENT
StudID
Name
Option
id: StudID

DISSERTATION
Title
Year
Advisor
id: Title

Year

8 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

attributes {StdID, Name, Option}, can be left
declared;

• Title ≠ null & Year = null ⇒ subtype STUD_T with mandatory attributes
{StdID, Name, Option, Title};

• Title = null & Year ≠ null ⇒ subtype STUD_Y with mandatory attributes
{StdID, Name, Option, Year};

• Title ≠ null & Year ≠ null ⇒ subtype STUD_TY with mandatory attributes
{StdID, Name, Option, Title, Year}.

A valid presentation of this partitioning is illustrated in the Figure 6. Interpreting the man-
datory foreign key is as usual. The pattern in which some attributes are optional while others
are mandatory will be analyzed in Section 7.4.

2.4 Total, or equality, foreign key

Each value of a total (or equality) foreign key is the primary key value of a target entity and
conversely. In other words, the primary key of each target entity must match at least one
source entity. This foreign key expresses a relationship type whose target role is mandatory
(Figure 7, right), that is, its cardinality is [1-J] (i.e., [1-N] or [1-1]).

2.5 Identifying foreign key

An identifying foreign key also is an identifier of the source entity type. The resulting rela-
tionship type is one-to-one (Figure 8, right), that is, the cardinality of the target role is [K-1]
(i.e., [0-1] or [1-1]).

Figure 6: Surprisingly, removing (or forgetting) the coexistence constraint leads to a much more

⇒

STUDENT
StudID
Name
Option
Title[0-1]
Year[0-1]
id: StudID
ref: Title

Year

DISSERTATION
Title
Year
Advisor
id: Title

Year

STUD_Y
Year

STUD_TY
ref: STUD_T.Title

STUD_Y.Year

STUD_T
Title

STUDENT
StudID
Name
Option
id: StudID

DISSERTATION
Title
Year
Advisor
id: Title

Year

2 Standard foreign keys and basic variants 9

25/4/2010  J-L Hainaut 2010

complex data structure. The right side schema makes all the properties of the left side schema ex-
plicit.

Figure 7: A total, or equality foreign key (tagged with keyword equ instead of ref), translates into a
mandatory target role.

Figure 8: A foreign key which also is an identifier translates into a one-to-one relationship type.

An interesting pattern sometimes occurs, in which the foreign key also is the primary (or a
secondary) identifier of the source entity type (Figure 9). Some authors propose algorithms
in which this pattern is interpreted as an IS-A relation from the source side (subtype) to the
target one (supertype). This interpretation obviously is not always valid as witnessed by our
example. This point is discussed in Section XXXXX.

Figure 9: A source entity type whose primary identifier is a foreign key looses this identifier.

2.6 Cyclic foreign key

The source entity type also is the target entity type, leading to a pattern often known as self-
referencing entity type. The foreign key translates into a cyclic relationship type (Figure 10).

⇔

⇔

⇔

ORDER
OrdNumber
OrdDate
id: OrdNumber

DETAIL
OrdNum
ProdNum
Qty
id: OrdNum

ProdNum
equ: OrdNum

1-N1-1 from

ORDER

OrdNumber
OrdDate

id: OrdNumber

DETAIL
ProdNum
Qty
id: from.ORDER

ProdNum

VEHICLE
VehicID
Make
Model
Data
Driver
id: VehicID
id': Driver

ref

SALESMAN
SManID
Name
Address
id: SManID

1-1 0-1driven by

VEHICLE

VehicID
Make
Model
Data
id: VehicID

SALESMAN

SManID
Name
Address
id: SManID

C_STATISTICS
CustID
TotalAmount
LastBuyDate
id: CustID

ref

CUSTOMER
CustID
Name
Address
id: CustID

1-10-1 of
C_STATISTICS

TotalAmount
LastBuyDate

CUSTOMER

CustID
Name
Address
id: CustID

10 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Most such foreign keys are optional. Indeed, let us assume that, in our example, each product
has a substitute, a fact that would be expressed by a mandatory foreign key. To insert an entity
concerning a product, we would have to set the attribute Substitute to the Product code of its
substitute, which must already be recorded in the database. Three problems arise: (1) prod-
ucts must be recorded in a specific order so that the above-mentioned constraint is met, (2) a
product that has no substitute (yet) cannot be recorded, (3) as a particular case, the first prod-
uct cannot be recorded.5

If a cyclic foreign key happens to be mandatory, then further analyzing it through Data Ex-
traction techniques certainly is worth the effort to check whether it actually is mandatory.

Figure 10: A cyclic foreign key is interpreted as a cyclic relationship type.

5. Unless it is considered its own substitute!

⇔
PRODUCT

ProductCode
Name
Price
QtyonHand
Substitute[0-1]
id: ProductCode
ref: Substitute

0-N
substitute

0-1

replaces

PRODUCT

ProductCode
Name
Price
QtyonHand
id: ProductCode

3 Non-standard foreign keys 11

25/4/2010  J-L Hainaut 2010

3 Non-standard foreign keys

These patterns are direct extensions of the basic concept, or extensions that accommodate
more complex source or target structures. They induce no particularly difficult problems, but
must be carefully detected and interpreted.

3.1 Secondary foreign key

The secondary foreign key targets a secondary identifier of the target entity type instead of its
primary identifier. The interpretation is the same as for standard foreign keys (Figure 11).
Though this form is an integral part of the relational theory (that mentions candidate target
keys only), the practice favors the use of primary keys, hence the qualifier non-standard.

Figure 11: Target secondary identifiers behave just like primary ones.

Unlike primary identifiers, secondary identifiers can be made up of optional components.
This poses no particular interpretation problems except for total foreign key patterns, that
must first be transformed as shown in Figure 12.

Figure 12: A total (equ) foreign key targeting an optional secondary identifier requires some clean-
ing before being interpreted correctly.

3.2 Multi-target foreign key

A multi-target foreign key references more than one target entity type, so that each source en-

⇔

⇔

PATIENT
RegNumber
SSNumber
Name
id: RegNumber
id': SSNumber

INVOICE
InvNum
InvDate
Patient
id: InvNum
ref: Patient

1-1 0-Nto

PATIENT

RegNumber
SSNumber
Name

id: RegNumber
id': SSNumber

INVOICE

InvNum
InvDate

id: InvNum

PERFORMANCE
GolfLicNumber
Year
BestScore
id: Year

GolfLicNumber
equ: GolfLicNumber

PERSON
PID
Name
Address
GolfLicNumber[0-1]

id: PID
id': GolfLicNumber

PERFORMANCE
GolfLicNumber
Year
BestScore
id: Year

GolfLicNumber
equ: GolfLicNumber

GOLFER
GolfLicNumber
id': GolfLicNumber

PERSON
PID
Name
Address
id: PID

12 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

tity simultaneously references an entity of each target type. Since this pattern is equivalent
to a series of as many foreign keys as there are target entity types (Figure 13), we will discuss
the latter variant. There are two ways to interpret this pattern.

Figure 13: The two variants of multi-target foreign key. An expense has been incurred by a service,
and has been charged to a budget. Budgets happen to be identified by the ID of their service. The
same foreign key Origin designates both the service that incurs the expense, and the budget which
it has been charged to.

The first approach is the most straightforward and consists in defining a relationship type for
each foreign key, removing their common components, then defining an integrity constraint
that ensures that the values of the target identifiers are the same (Figure 14, left). If the for-
eign key is optional, then the roles {by.EXPENSE,on.EXPENSE} are optional too and a co-
existence constraint must be stated among the roles {by.SERVICE, on.BUDGET}.

The second approach derives from the observation that each foreign key is trivially embedded
in the other one (since {A3}⊆{A3}). Therefore, the pattern belongs to the embedded foreign
key family, and can be solved according to the interpretation we will develop in Section 7.5.
Hence the schema of Figure 14, right, or its symmetrical version, where EXPENSE is asso-
ciated with SERVICE instead. It is based on the hypothesis that foreign key
EXPENSE.Origin→ SERVICE is a transitive foreign key deriving from explicit foreign key
EXPENSE.Origin→ BUDGET and implicit foreign key BUDGET.BudgetID→ SER-
VICE, still unidentified.

Figure 14: Two interpretations of a multi-target foreign key.

for e ∈ EXPENSE, e.by.SERVICE.ServiceID =
e.on.BUDGET.BudgetID

for b ∈ BUDGET,
b.BudgetID = b.of.SERVICE.ServiceID

Y

X

ref: X

SERVICE
ServiceID
Name

id: ServiceID

EXPENSE
ExpNum
Date
Amount
Origin

id: ExpNum
ref: Origin

BUDGET
BudgetID
Nature
Amount

id: BudgetID

SERVICE
ServiceID
Name

id: ServiceID

EXPENSE
ExpNum
Date
Amount
Origin

id: ExpNum
ref: Origin
ref: Origin

BUDGET
BudgetID
Nature
Amount

id: BudgetID

1-1

0-N

on1-1

0-N

by

SERVICE

ServiceID
Name

id: ServiceID

EXPENSE

ExpNum
Date
Amount

id: ExpNum

BUDGET

BudgetID
Nature
Amount

id: BudgetID

1-1

0-N

on

1-10-1 of

SERVICE

ServiceID
Name

id: ServiceID

EXPENSE

ExpNum
Date
Amount

id: ExpNum

BUDGET

BudgetID
Nature
Amount

id: BudgetID

3 Non-standard foreign keys 13

25/4/2010  J-L Hainaut 2010

3.3 Alternate foreign key

Each value of an alternate foreign key references an entity in one among several target entity
types (Figure 15). The entity type that is actually referenced is determined by a definite con-
dition on the source entity, for instance on the value structure of the foreign key.

Figure 15: Each value of the foreign key VEHICLE.Owner references either an EMPLOYEE entity
or a SERVICE entity.

This pattern can be interpreted as a functional relationship type with a multi-ET role (Figure
16, left) or as an equivalent set of relationship types among which an exclusive constraint
holds (Figure 16, right).

Figure 16: Two equivalent interpretations of an alternate foreign key.

3.4 Hierarchical foreign key to an entity type

Surprisingly, foreign keys are very frequent in hierarchical and network database schemas,

X

X
ref: X

VEHICLE
PlateNumber
Model
Date
Owner

id: PlateNumber
ref: Owner

SERVICE
ServiceID
Name
id: ServiceID

EMPLOYEE
EmpID
Name
Address
id: EmpID

0-N
owner

1-1

owned

VEHICLE

PlateNumber
Model
Date

id: PlateNumber

SERVICE

ServiceID
Name
id: ServiceID

EMPLOYEE

EmpID
Name
Address
id: EmpID

0-1

0-N

S_owned

0-1

0-N

E_owned

VEHICLE

PlateNumber
Model
Date
id: PlateNumber
exact-1: E_owned.EMPLOYEE

S_owned.SERVICE

SERVICE

ServiceID
Name
id: ServiceID

EMPLOYEE

EmpID
Name
Address
id: EmpID

14 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

despite the fact that the DBMSs offer explicit constructs to represent relationship types. If
the target entity type has been given an absolute identifier comprising attributes only, these
foreign keys can be considered standard. However, if the target is identified relatively to one
of its parent entity types, the foreign key must reference entities through their hierarchical
identifiers (e.g., their concatenated key in IMS). Though their detection is delicate, their in-
terpretation is straightforward.

Figure 17 expresses the fact that if two services have the same name, they belong in different
departments. So, the department name and the service name of a definite service suffice to
uniquely designate it. If expenses are associated with the services that incur them, each EX-
PENSE entity must include a reference (a foreign key) to one SERVICE entity. This foreign
key is made of a department name (DptName) and a service name (ServName). It is inter-
preted as the relationship type by.

Figure 17: Left: each SERVICE entity references a SERVICE through its hierarchical identifier.
Right: this hierarchical foreign key translates into a relationship type.

3.5 Hierarchical foreign key to a multivalued attribute

Record types as they appear in standard files often compensate the lack of explicit inter-
record relationships by complex intra-record hierarchical field structures. In particular, mul-
tivalued compound fields, possibly at several levels, are popular structures to implement a hi-
erarchy of entity types. In such a structure, some dependent entities can be represented by
instances of multivalued fields, instead of by individual records. Referencing these entities
from within other records consists in designating these values. Hence the concept of foreign
keys referencing field values instead of records or rows.

Figure 18 (left) describes a typical example. An ORDER record represents a customer order
that includes from 0 to 20 details. Each of these details mention a different Item in a certain
quantity. This structure is represented by the ORDER record type which includes the multi-

⇔1-1

0-N

in

SERVICE

ServName
Budget
id: in.DEPARTMENT

ServName

EXPENSE
ExpID
Date
Amount
DptName
ServName
id: ExpID
ref: DptName

ServName

DEPARTMENT

DptName
Location

id: DptName

0-N

1-1

in

1-10-N by

SERVICE

ServName
Budget
id: in.DEPARTMENT

ServName

EXPENSE

ExpID
Date
Amount
id: ExpID

DEPARTMENT

DptName
Location
id: DptName

3 Non-standard foreign keys 15

25/4/2010  J-L Hainaut 2010

valued field Detail. This field has distinct ItemCode values (this property is declared through
an attribute identifier). To identify a unique Detail value, the programmer must supply a val-
ue of OrdID to locate the parent record and a value of ItemCode to identify the right field val-
ue. For each detail, some shipments can be made to the customer. Therefore, each shipment
is associated with a detail. Each SHIPMENT record designates its parent Detail value
through the hierarchical foreign key {OrdID,ItemCode}.

By transforming this multivalued attribute into an entity type, we get the source pattern of Hi-
erarchical foreign key to an entity type (Section 3.4). Hence the immediate interpretation of
Figure 18 (right).

Figure 18: Left: each SHIPMENT entity references a definite value of the attribute Detail of an OR-
DER entity. Right: this reference is easy to interpret once the multivalued attribute has been trans-
formed into an entity type.

3.6 Computed foreign key

A component of a computed foreign key is an indirect reference to the corresponding compo-
nent of the target identifier. For example, a Date value can be used to denote a Year, or a
Customer ID can be used to denote a City (the City of the designated customer). We will call
(a bit inappropriately) computed foreign keys such patterns. There can be several ways to de-
rive the explicit foreign key from the actual one. We will illustrate the most common ones
through two examples: computation and table lookup.

The first example (Figure 19, left) expresses that each purchase is assigned to a fiscal year.
However, the PURCHASE entity type does not include an explicit foreign key to FISCAL-
YEAR. Instead, the stored value is {Date} from which the actual foreign key, denoted by
f(Date), can be computed through time manipulation functions.

In the second example (Figure 19, right), purchases are liable to a definite tax rate, depending
on the country of the customer and on the year of purchase. The actual foreign key should be

⇔

SHIPMENT
ShipNumber
Date
OrdID
ItemCode
Qty

id: ShipNumber
ref: OrdID

ItemCode

O
O

id: O

ORDER
OrdID
Date
Detail[0-20]

ItemCode
Qty

id: OrdID
id(Detail):

ItemCode

0-20

1-1

inSHIPMENT
ShipNumber
Date
OrdID
ItemCode
Qty

id: ShipNumber
ref: OrdID

ItemCode

ORDER

OrdID
Date

id: OrdID

DETAIL

ItemCode
Qty
id: in.ORDER

ItemCode

16 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

{Country,Year}, but is stored as {Customer,Year} instead. However, the actual value can
be computed from the stored one by considering that the Country of a PURCHASE is the
CountryName of the CITY of the CUSTOMER of the PURCHASE. Hence the foreign key
notation {f(Customer),Year}.

Figure 19: Two examples of computed foreign keys. Left: the value of PURCHASE.Date can be
used to identify a fiscal year. Right: the value of PURCHASE.Customer allows us to get the Cit-
yName of the concerned customer; this value, combined with a Year value, is used to identify a tax
rate.

The computed foreign keys are transformed into relationship types. However, the source ar-
guments of the foreign key must often be kept, leading to some kind of redundancy which
must be described by an explicit integrity constraint.

The first pattern can be processed in the ways described in Figure 20. In the right side trans-
lation, the attribute Date has been trimmed in order to eliminate the redundancy induced by
its Year component.

Figure 20: Two equivalent translations of the computed foreign key of Figure 19, left.

for p∈PURCHASE,
p.for.FISCAL-YEAR.Year = f(p.Date)

PURCHASE
PurchID
Agent
Date
Amount

id: PurchID
ref: f(Date)

FISCAL-YEAR
Year
Budget
id: Year

TAX-RATE
Country
Year
Rate
id: Country

Year

PURCHASE
PurchID
Customer
Year
Amount
id: PurchID
ref: Customer
ref: f(Customer)

Year

CUSTOMER
CustomerID
Name
City
id: CustomerID
ref: City

CITY
CityID
CityName
ContryName
id: CityID

1-10-N for

PURCHASE

PurchID
Agent
Date
Amount

id: PurchID

FISCAL-YEAR

Year
Budget

id: Year
0-N 1-1for

PURCHASE

PurchID
Agent
Date

Month
Day

Amount
id: PurchID

FISCAL-YEAR

Year
Budget

id: Year

3 Non-standard foreign keys 17

25/4/2010  J-L Hainaut 2010

The second pattern can be translated as illustrated in Figure 21 (left). By extracting the com-
mon attribute Country in TAX-RATE and CountryName in CITY as a single autonomous en-
tity type, we can propose the more expressive schema of Figure 21, right.

Figure 21: Interpreting the lookup computed foreign key of Figure 19, right.

3.7 Non-1NF foreign keys

A so-called first normal form (1NF) relation is defined on simple domains only. In more
practical words, its attributes are atomic and single-valued. Many DMS provide more com-
plex constructs that allow developers to define compound and/or multivalued attributes.
They allow defining non-1NF structures. Such is the case of file managers, CODASYL, IMS
and object managers. In addition, even 1NF schemas can include hidden, or implicit, non-
1NF constructs, as shown in Section XXXXXXX.

Quite naturally, some non-1NF attributes are, or include, foreign keys as well. For instance,
a component of a compound attribute, or a multivalued attribute, can be used to reference en-
tities. These attributes are called non-1NF foreign keys.

The examples of Figure 22 include respectively one level-2 foreign key (left) and two multi-

for p∈PURCHASE:
p.at_rate.TAX-RATE.Country
= p.by.CUSTOMER.in.CITY.CountryName

for p∈PURCHASE:
p.at.TAX-RATE.for.COUNTRY
= p.by.CUSTOMER.in.CITY.in.COUNTRY

1-1

0-N

in

1-1 0-Nby

1-1

0-N

at_rate

TAX-RATE

Country
Year
Rate
id: Country

Year

PURCHASE

PurchID
Year
Amount

id: PurchID

CUSTOMER

CustomerID
Name

id: CustomerID

CITY

CityID
CityName
ContryName

id: CityID

0-N

1-1

in

1-1

0-N

in

1-1

0-N

in

0-N1-1 by

0-N

1-1

at_rate

TAX-RATE

Year
Rate
id: in.COUNTRY

Year

PURCHASE

PurchID
Year
Amount

id: PurchID

CUSTOMER

CustomerID
Name

id: CustomerID

COUNTRY

ContryName

id: ContryName

CITY

CityID
CityName

id: CityID

18 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

valued foreign keys (right), one of them being at the first level and the other one at the second
level.

Figure 22: Three examples of non-1NF foreign keys.

We consider four main situations, from which all the other patterns can be solved easily.

1. The foreign key is a component of a level-1, mandatory, single-valued, compound
attribute: disaggregate the parent attribute first (case not illustrated).

2. The foreign key is a component of a level-1, optional, single-valued, compound attribute
(Figure 22, left; foreign key BOOK.Borrowing.Borrower): disaggregate the parent
attribute (leading to Figure 23, a) or transform it into an entity type first (leading to Fig-
ure 23, b).

3. The foreign key is a level-1 multivalued attribute (Figure 22, right; foreign key CUS-
TOMER.Order[*]): interpret this foreign key as a many-to-many relationship type (lead-
ing to relationship type place in Figure 24).

4. The foreign key is a component of a level-1, multivalued, compound attribute (Figure 22,
right; foreign key ORDER.Detail[*].ItemCode): transform the parent multivalued
attribute into an entity type first (leading to entity type Detail and relationship types of
and ref in Figure 24).

Figure 23: Three semantically equivalent interpretations of the first example, ordered by increasing
expressivity. The schema (a) derives from an initial disaggregation of Borrowing, the schema (b) is

(a) (b) (c)

PERSON
PID
Name
Address
id: PID

BOOK
BookID
Title
Borrowing[0-1]

Borrower
Date

id: BookID
ref: Borrowing.Borrower

ORDER
OrdID
Date
Detail[0-20]

ItemCode
Qty

id: OrdID
ref: Detail[*].ItemCode

ITEM
ItemID
Name
UnitPrice
id: ItemID

CUSTOMER
CustID
Name
Address
Order[0-N]
id: CustID
ref: Order[*]

0-N

0-1 by

PERSON

PID
Name
Address

id: PID
BOOK

BookID
Title
Date[0-1]
id: BookID
coex: by.PERSON

Date

1-1

0-1

of

1-1

0-N

by

PERSON

PID
Name
Address
id: PID

Borrowing

Date

BOOK

BookID
Title
id: BookID

0-1

0-N

Borrowing

Date

PERSON

PID
Name
Address
id: PID

BOOK

BookID
Title

id: BookID

3 Non-standard foreign keys 19

25/4/2010  J-L Hainaut 2010

obtained from the transformation of the attribute Borrowing into an entity type, while the schema (c)
refines the second one by transforming the new entity type into a relationship type.

These techniques must be iteratively applied until the resulting pattern can be solved through
standard interpretation. It is important to observe that a multivalued foreign key basically
represents a many-to-many relationship type (Figure 24), unless it is also declared an identi-
fier of its entity type, in which case it translates into a one-to-many relationship type.

Figure 24: The two multivalued foreign keys of Figure 22 (right) have been interpreted. Note that
place is many-to-many, since a given value of ORDER.OrdID can appear as CUSTOMER.Order[*]
in more than one CUSTOMER entity.

1-1

0-N

ref

0-N 0-Nplace

1-1

0-20

of

ORDER
OrdID
Date
id: OrdID

ITEM

ItemID
Name
UnitPrice
id: ItemID

Detail

Qty
id: ref.ITEM

of.ORDER

CUSTOMER

CustID
Name
Address
id: CustID

20 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

4 Inclusion constraints

A foreign key is a structure that enforces a special case of inclusion constraint, where the tar-
get set is that of an identifier of the target entity type. Several authors include the study of
some inclusion patterns into the foreign key domain [Petit, XX]. We will analyze two vari-
ants of this concept.

4.1 Inclusion constraint

The values of an attribute (or of a list of attributes) of an entity type are included into the set
of values of an attribute (or of a list thereof) of another entity type. In the example of Figure
25, the entity type SUPPLY provides the conditions (quantity and price) at which each sup-
plier can supply each item; a customer order can be assigned to a supplier only if this supplier
can supply the item ordered.

Though true (i.e., non referential) inclusion constraints can be kept in the conceptual schema,
it is best to try to express them into explicit constructs. The simplest approach consists in rep-
resenting each target tuple by an explicit entity, therefore transforming the inclusion con-
straint into a referential constraint. Applying this technique to our example, we transform the
couple of attributes SUPPLIER.(Supplier,Item) into an entity type through the value repre-
sentation variant. The source couple ORDER.(Supplier,Item) automatically transforms into
a standard foreign key that can be further processing as usual.

Figure 25: An inclusion constraint (left): the couple of values of (Supplier,Item) of each ORDER in-
stance must appear in at least one SUPPLY entity. This constraint is replaced with a pure referential
constraint (via a standard foreign key) through transforming the target attributes into an entity type.

⇔

SUPPLY
Supplier
Item
Qty
Price
id: Supplier

Item
Qty

gr: Supplier
Item

ORDER
OrderID
Supplier
Item
Qty
Customer
id: OrderID
incl: Supplier

Item

1-N

1-1

of

SUPPLY

Qty
Price
id: of.OFFER

Qty

ORDER
OrderID
Supplier
Item
Customer
id: OrderID
ref: Supplier

Item

OFFER

Supplier
Item
id: Supplier

Item

4 Inclusion constraints 21

25/4/2010  J-L Hainaut 2010

4.2 Domain sharing

Two attributes share the same domain of values which happens to be particularly meaningful
in the application domain, so that, at some time, they can take the same values. Most often, it
has been found by program analysis, for instance as an SQL join-based query.

Figure 26 (left) illustrates the situation. An item is offered in all the shops of a chain at a def-
inite price. The shops of a chain are located in towns, and have a given size. Obviously, the
attributes OFFER.Chain and SHOP.Name can share common values, as testified by the fol-
lowing programming patterns found in several programs:

select *
from OFFER O, SHOP S
where O.Chain = S.Name

However, no stricter constraints (such as OFFER.Chain ⊆ SHOP.Name) can be stated.

A common interpretation can be described as follows: both attributes are extracted as entity
types, which are then integrated into the unique entity type CHAIN (Figure 26, right). A strict
equivalence would require an at-least-one constraint on CHAIN, since only chains that ap-
pear in OFFER or in SHOP or in both are represented in the left side schema. This constraint
can generally be dropped.

For obvious reason, some authors consider this reasoning as the explicitation of hidden or im-
plicit objects (here CHAIN).

Figure 26: The entity types OFFER and CHAIN share the same domain ChainName through their
attribute OFFER.Chain and SHOP.Name. This domain is represented by the explicit entity type
CHAIN.

⇔
SHOP

Name: ChainName
Town: char (32)
Size: num (6)
id: Name

Town

OFFER
Item: char (12)
Chain: ChainName
Price: num (5)
id: Item

Chain

1-1

0-N

of

1-1

0-N

by

SHOP

Town: char (32)
Size: num (6)
id: of.CHAIN

Town

OFFER

Item: char (1)
Price: num (5)
id: by.CHAIN

Item

CHAIN

Name: ChainName

id: Name

22 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

5 Complex foreign key patterns

This section will describe foreign key patterns that are more complex to understand and to
conceptualize. They generally require initial transformations to make their semantics clearer.

for s ∈ STUDENT: s.Country = "Belgium" ⇒ s.School ∈ SCHOOL.SchoolName

Figure 27: The attribute STUDENT.School references a SCHOOL entity only if the STUDENT entity
describes a Belgian student. Otherwise it gives the name of the unregistered school the non-Bel-
gian student comes from.

5.1 Conditional foreign key

If a foreign key is conditional, it references entities only under a definite condition, otherwise,
it is given another interpretation. The schema of Figure 27 illustrates the concept: for each
student, the administration records the school from which s/he originates. If the student is
Belgian, then the school must be one of the known Belgian institutions.

Analysis
Clearly, the attribute STUDENT.School encompasses two different semantics, depending on
some filtering condition (being Belgian or not). We replace this attribute with two exclusive
optional attributes Belgian-School and Foreign-School. For any STUDENT entity, there is
either a Belgian-School value or a Foreign-School value. BelgianSchool has a not null value
if and only if Country is set to "Belgium". The value of BelgianSchool is a foreign key to
School. This expansion is illustrated in Figure 28 (left).

STUDENT
StudID
Name
Country
School

id: StudID
cond_ref: School

SCHOOL
SchoolName
Address
Category

id: SchoolName

5 Complex foreign key patterns 23

25/4/2010  J-L Hainaut 2010

Figure 28: The dual semantics of the attribute STUDENT.School leads to defining two distinct at-
tributes (left) or two subtypes of students (right).

This schema suggests partioning the students into two categories, namely Belgian students
and Foreign students (Figure 28, left). The foreign key can then be processed in the standard
way.

5.2 Overlapping identifier - foreign key

The foreign key shares some attributes with an identifier of the entity type. We distinguish
two patterns.

1. All the components of the foreign key also appear in the identifier.

2. Neither the foreign key nor the identifier include the other one.

The first pattern in which the foreign key is completely included into the identifier can be pro-
cessed in the standard way. The components of the foreign key that appear in the identifier
are replaced with the target role of the corresponding relationship type (see Figure 7 for a sim-
ilar example; see also the synthesis of Section 8.2).

The second pattern (Figure 29) is more delicate. Indeed, the foreign key cannot be completely
replaced with a relationship type as in the previous situation, since some (but not all) of its
components belong to the identifier.

for s ∈ STUDENT:
s.Country = "Belgium" ⇔ s.Belgium-
School ∈ SCHOOL.SchoolName

⇔

for f ∈ FOREIGN: f.Country ≠ "Belgium"

SCHOOL
SchoolName
Address
Category

id: SchoolName

 STUDENT
StudID
Name
Country
BelgianSchool[0-1]
ForeignSchool[0-1]

id: StudID
ref: BelgianSchool
exact-1: BelgianSchool

ForeignSchool

P

STUDENT
StudID
Name

id: StudID

SCHOOL
SchoolName
Address
Category

id: SchoolName

FOREIGN
Country
ForeignSchool

BELGIAN
BelgianSchool

ref: BelgianSchool

24 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure 29: The identifier and the foreign key of the entity type DETAIL share the common attribute
ItemCode. The foreign key cannot be replaced with a relationship type as in standard patterns.

Analysis
According to the usual approach, the foreign key should be replaced by a relationship type,
which would be absurd since it would imply replacing, in the identifier, the common compo-
nents with a part only of the relationship type. To solve the problem, we include the new at-
tribute ItemCode_R that is a pure copy of the common attribute(s), so that we can separate
the identifier components from those of the foreign key, which costs us an additional integrity
constraint (Figure 30, left).

We can now transform the foreign key into a relationship type. Since the redundancy has not
been removed but merely transformed, we must express it as an integrity constraint (Figure
30, right).

Figure 30: The identifier and the foreign key are separated thanks to the duplication of the common
attributes. This redundancy remains in the conceptual schema.

In a similar, but more complex, pattern XXXXXXXXXXXXXXXXXX

for d ∈ DETAIL:
d.ItemCode = d.ItemCode_R

⇔

for d ∈ DETAIL:
d.ItemCode = d.ref.ITEM.ItemCode

ITEM
ItemCode
Date
Price
id: ItemCode

Date

DETAIL
OrderID
ItemCode
Date
Qty
id: OrderID

ItemCode
ref: ItemCode

Date

ITEM
ItemCode
Date
Price
id: ItemCode

Date

DETAIL
OrderID
ItemCode
ItemCode_R
Date
Qty
id: OrderID

ItemCode
ref: ItemCode_R

Date

1-1

0-N

ref

ITEM

ItemCode
Date
Price
id: ItemCode

Date

DETAIL

OrderID
ItemCode
Qty
id: OrderID

ItemCode

5 Complex foreign key patterns 25

25/4/2010  J-L Hainaut 2010

5.3 Overlapping foreign keys

Two foreign keys overlap if they share one or several attributes and if none is a subset of the
other. In the example of Figure 31, each line of invoice belongs to an invoice and references
a line of order. Both invoice and line of order reference the order they originate from.

Figure 31: The overlapping foreign keys share the common attribute OrderNumber. Neither foreign
key can be replaced with a relationship type without the other being destroyed.

Figure 32: Two valid interpretation of overlapping foreign keys. Both include redundancies.

for l ∈ LINE-of-INVOICE:
l.from.INVOICE.OrderNumber
= l.for.LINE-of-ORDER.OrderNumber

for l ∈ LINE-of-INVOICE:
l.from.INVOICE.for.ORDER
= l.for.LINE-of-ORDER.from.ORDER

LINE-of-ORDER
OrderNumber
ItemCode
Qty
id: OrderNumber

ItemCode

LINE-of-INVOICE
OrderNumber
InvoiceNumber
LineNumber
ItemCode
Qty
Amount

id: OrderNumber
InvoiceNumber
LineNumber

ref: OrderNumber
InvoiceNumber

ref: OrderNumber
ItemCode

INVOICE
OrderNumber
InvoiceNumber
Date
Amount
id: OrderNumber

InvoiceNumber

1-1

0-N

from

1-1

0-N

for

LINE-of-ORDER

OrderNumber
ItemCode
Qty
id: OrderNumber

ItemCode

LINE-of-INVOICE

LineNumber
Qty
Amount
id: from.INVOICE

LineNumber

INVOICE

OrderNumber
InvoiceNumber
Date
Amount
id: OrderNumber

InvoiceNumber

1-1

0-N

from

0-N

1-1

from

1-1

0-N

for

0-N

1-1

for

ORDER

OrderNumber

id: OrderNumber

LINE-of-ORDER

ItemCode
Qty
id: from.ORDER

ItemCode

LINE-of-INVOICE

LineNumber
Qty
Amount
id: from.INVOICE

LineNumber

INVOICE

InvoiceNumber
Date
Amount
id: for.ORDER

InvoiceNumber

26 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Analysis
Because of the common attribute OrderNumber, none of the foreign keys can be replaced
completely with a relationship type. Following a reasoning that is close to that of Section 5.2,
we duplicate the common attribute into OrderNumber_L, we express this redundancy by an
integrity constraint, then we substitute the new attribute for the previous one in the second
foreign key. We can now translate each independent foreign key into a relationship type (Fig-
ure 32, left). If the common attribute represents an important concept, it can be extracted as
an autonomous entity type, namely ORDER in our example. The redundancy constraint is
modified accordingly (Figure 32, right).

5.4 Non-minimal FK

This pattern does not concern the foreign key itself, but rather the referenced primary identi-
fier. Indeed, the latter is a superset of another, minimal, identifier, and therefore is not min-
imal. It goes as follows (Figure 33).

1. A LECTURE entity represents the fact that a lecturer teaches a given subject. A lecturer
is allowed to teach one subject only. This fact is notified by the secondary identifier
{Lecturer}. A (trivial) primary identifier comprising {Suject,Lecturer} has been defined
for technical reasons we will explain below.

2. A REGISTRATION entity states that a student is taught a subject by a lecturer. Making
{Subject,Lecturer} a foreign key to LECTURE ensures that this lecturer actually is
allowed to teach this subject.

Figure 33: Unexpectedly, the foreign key references a non minimal primary identifier.

Analysis
This apparently disturbing pattern is a clever trick to implement 3NF schemas that are not in
BCNF6. The basic reasoning can be sketched as follows.

We must first recall some basic facts.

6. A relation R is in third normal form (3NF) if no non-key attributes functionally depend on a strict
subset of a candidate key, or on non-key attributes. It is in Boyce-Codd normal form (BCNF) if,
for each functional dependencies that holds in R, the left hand side is a candidate key. All BCNF
are in 3NF, but not conversely. See Chapter XXXXXX.

REGISTRATION
Student
Subject
Lecturer
id: Student

Subject
ref: Subject

Lecturer

LECTURE
Subject
Lecturer
id: Subject

Lecturer
id': Lecturer

5 Complex foreign key patterns 27

25/4/2010  J-L Hainaut 2010

1. Standard RDBMS ensure two major integrity constraints only, namely unique keys (or
identifiers) and foreign keys. Therefore, any constraint that can be reduced to these
structures can be explicitly implemented into SQL-2. All the other constraints must be
coded as CHECK predicates, TRIGGERS, STORED PROCEDURES or as procedural
code sections scattered throughout the programs. This is the case for non-key functional
dependencies, i.e., dependencies whose minimal left-hand side is not an identifier.

2. 3NF schemas include primary and foreign keys only, and can therefore be completely
implemented in SQL-2.

3. Some relational schemas are in 3NF but not in BCNF, and therefore lead to data redun-
dancy problems. Unfortunately, decomposing them in BCNF induces a new brand of
problems: though all intra-relation FDs are key-based (each determinant is a full, mini-
mal primary key), some FDs of the 3NF schema are lost because they were defined on
attributes that are now distributed among several relations. The most popular example is
the following.

registr(Student,Subject,Lecturer)
Lecturer → Subject
Student,Subject → Lecturer

The keys are {Student,Subject} and {Student,Lecturer}. The schema is trivially in 3NF
since it has no non-key attributes. However, the determinant of one of the FDs is not a
key. Therefore, the schema is not in BCNF.

4. Three solutions can be proposed to implement this schema.

A. registr(Student,Subject ,Lecturer)
Lecturer → Subject

B. registr(Student,Subject ,Lecturer)
lecture(Lecturer ,Subject)
registr[Lecturer,Subject] ⊆ lecture

C. registr(Student,Lecturer)
lecture(Lecturer ,Subject)
registr*lecture: Student,Subject → Lecturer

Each schema has its advantages and its drawbacks. However, one of them only, namely
B, can be adapted in such a way that all the integrity constraints are translatable into pure
SQL-2 constructs.

The revised version of B is obtained as follows: a new primary key comprising all the
attributes of lecture is defined, while the original key is expressed as a mere candidate
key (secondary id). The inclusion constraint can then be translated into a foreign key.
Hence the following schema,

B'. registr(Student,Subject ,Lecturer)
lecture(Lecturer ,Subject)
primary-id(lecture): {Lecturer,Subject}
secondary-id(lecture): {Lecturer}
registr[Lecturer,Subject] ⊆ lecture

28 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

This schema is the exact relational interpretation of Figure 33.

Following this discussion, we can propose a transformation in which the foreign key regis-
tr.(Lecturer,Subject) is replaced with relationship type for. However, the attribute Subject
cannot be removed since it participates in the primary identifier of REGISTRATION. This
situation is a special case of overlapping identifier - foreign key (Section 5.2) and can be
solved accordingly. The result is shown in Figure 34.

for r ∈ REGISTRATION: r.Subject = r.for.LECTURE.Subject

Figure 34: Conceptual expression of the schema of Figure 33. Deriving from a 3NF but non-BCNF
schema, it includes a redundancy that must be expressed explicitly.

5.5 Partially reciprocal foreign keys

This pattern of interleaved foreign keys is a concise and elegant way to represent a bijective
(one-to-one) relationship set included into another relationship set. When considering its
conceptual equivalent, the source relational schema appears much more concise and free
from complex additional integrity constraints. Unfortunately, the price to be paid for this
conciseness is that its meaning is far from intuitive.

The schema of Figure 35 expresses that cities are located in countries (or states) and that one
of the cities of each country is its capital. Several cities can have the same name (e.g., Paris,
Venice), but not in the same country.

Figure 35: The foreign keys COUNTRY.(Capital,CountryName) and CITY.Country are partially re-
ciprocal.

Analysis
A deeper analysis of the pattern shows that two important additional properties can be in-
ferred from the declared structures.

First, we observe that the foreign key COUNTRY.(Capital,CountryName) is a non-minimal
identifier, since it is a superset of the primary identifier of COUNTRY. Though this property

1-1 0-Nfor

REGISTRATION

Student
Subject
id: Student

Subject

LECTURE

Lecturer
Subject

id: Lecturer

COUNTRY
CountryName
Capital
Area

id: CountryName
ref: Capital

CountryName

CITY
CityName
Country
Population
id: CityName

Country
ref: Country

5 Complex foreign key patterns 29

25/4/2010  J-L Hainaut 2010

is derived and need not be specified, we represent it in the schema of Figure 36 to clarify the
reasoning.

Secondly, the foreign key CITY.Country is total, and must be represented by the tag equ in-
stead of ref. Indeed, interpreting the entity types of the schema of Figure 35 as relations, we
can express the foreign keys as,

COUNTRY[CountryName,Capital] ⊆ CITY[Country,CityName]

CITY[Country] ⊆ COUNTRY[CountryName] .

The first constraint also implies,

COUNTRY[CountryName] ⊆ CITY[Country]

so that,

COUNTRY[CountryName] = CITY[Country] .

The schema of Figure 36 has been enriched with these properties.

Figure 36: The partially reciprocal foreign keys pattern refined.

Transforming the foreign keys into relationship types must be carried out carefully, because
each foreign key references an identifier that is involved in the other foreign key, so that both
keys must be replaced simultaneously. In addition, not all the components of the keys can be
replaced with the relationship types. Indeed, while CITY.Country and COUNTRY.Capital
can be replaced, COUNTRY.CountryName must be kept, because it is the primary ID of
COUNTRY. The attributes and relationship types of transformed structure are shown in Fig-
ure 37.

We have transformed the foreign keys into relationship types, except for the component
CountryName, which is an unavoidable redundancy that still have to be declared. Examining
the source schema, we observe that each COUNTRY entity references a CITY entity that pre-
cisely references it. Indeed, for any COUNTRY entity a, the referenced CITY entity b (its
capital) has a Country value which is equal to a.CountryName. Consequently, in the inter-
preted schema of Figure 37, any instance (a,b) of capital is an instance of in as well. Hence
the inclusion integrity constraint that translates the redundancy.

COUNTRY
CountryName
Capital
Area

id: CountryName
id': Capital

CountryName
ref

CITY
CityName
Country
Population
id: CityName

Country
equ: Country

30 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure 37: The conceptual interpretation of partially reciprocal foreign keys is less concise but clear-
er than its relational source of Figure 35.

5.6 Inverse foreign keys

Normally, in a relational database, a foreign key K from source table B to target table A is a
construct that allows programmers to get an A row from a B row, and conversely. Provided
both the foreign key and its matching candidate key are supported by indexes, the database
engine can provide equally fast access in both directions.

This is not necessarily true in more primitive data managers, such as elementary file manage-
ment systems. In this case, access from B to A is allowed, but there is no means to get B
records from A quickly. The most obvious approach consists in defining an inverse foreign
key from A to B. Such a key often is multivalued. In addition, object-oriented DBMS gen-
erally implement inter-object links by including a A-based attribute into object type B, or an
B-based attribute in object type A, or both. In the latter case, these attributes act as inverse
references. Some OO-DBMS even offer a way to declare the inverse property explicitly.

According to the example of Figure 38 (left), customers have placed orders (CUSTOM-
ER.Orders) and each order has an owner (ORDER.Owner). The inverse constraint (with tag
inv) specifies that any order o is one of the orders of the owner of o, i.e.,

for o ∈ ORDER, c ∈ CUSTOMER, o.Customer = c.CustID ⇔ o.OrderID ∈ c.Orders

Figure 38: Two inverse foreign keys provide bi-directional navigation but induce data redundancy.
Discarding one of these foreign keys removes this redundancy.

⇔

1-11-N

in

gr: COUNTRY
CITY

1-1 0-1

capital

incl: CITY
COUNTRY

COUNTRY

CountryName
Area

id: CountryName

CITY

CityName
Population
id: in.COUNTRY

CityName

ORDER
OrderID
Date
Customer

id: OrderID
ref: Customer
inv: Customer

 CUSTOMER
CustID
Name
Address
Orders[0-N]

id: CustID
id': Orders[*]

ref
inv: Orders[*]

ORDER
OrderID
Date
Customer

id: OrderID
ref: Customer

CUSTOMER
CustID
Name
Address

id: CustID

5 Complex foreign key patterns 31

25/4/2010  J-L Hainaut 2010

Analysis
A first observation will help us understand the various patterns: a foreign key is single-valued
iff its inverse is an identifier. If the source schema does not comply with this property, then
it is either inconsistent or insufficiently refined.

Since any of the foreign keys is a pure redundancy from the information point of view, it can
be removed (Figure 38, right). To comply with standard practice, it is best to keep the single-
valued foreign key, if any. In case of ambiguity, preferably keep the mandatory key.
Through this cleaning operation, we get a pattern that has already been described, either a
standard foreign key or a non-1NF foreign key. We will consider the three typical situations.

First case: both inverse foreign keys are single-valued. According to the property recalled
above, each key is an identifier (a property generally left implicit7). We keep one of the for-
eign key, preferably that which is mandatory, if any (Figure 39). The result translate imme-
diately into a one-to-one relationship type.

It is interesting to note that this pattern (with identifiers ignored) is proposed by some text-
books and CASE tools as the preferred implementation of one-to-one relationship types.
Needless to say that this proposal is particularly awkward since the cleaned schema can be
implemented in SQL-2 without any such trick.

Figure 39: When both inverse foreign keys are single-valued, they must be identifiers as well.

Second case: one of the inverse foreign keys is multivalued. Since this foreign key is the in-
verse of a single-valued foreign key, it is an identifier as well. We keep the single-value key
(Figure 38), which can be transformed into a many-to-one relationship type.

Third case: both foreign keys are multivalued. One of them is kept (Figure 40), which yields
a many-to-many relationship type.

7. In which case the foreign keys produce two many-to-one relationship types. Since they are inverse
of each other, they specialize into a one-to-one relationship type (if a function is the inverse of a
function, it is a bijection).

⇔

ORDER
OrderID
Date
Customer

id: OrderID
id': Customer

ref
inv: Customer

CUSTOMER
CustID
Name
Address
Orders[0-1]

id: CustID
id': Orders

ref
inv: Orders

ORDER
OrderID
Date
Customer

id: OrderID
id': Customer

ref

CUSTOMER
CustID
Name
Address

id: CustID

32 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure 40: Both inverse foreign keys are multi-valued.

5.7 Meta foreign keys

A meta-FK is an attribute or of set of attributes, each value of which identifies a set of entity
types.

<to develop>

This pattern was discovered in the database of Claroline, an e-learning platform: each course
is represented by a set of MySQL (single-row) tables. As a consequence, the size of the sche-
ma is dependent on the number of rows in some tables.

⇔

ORDER
OrderID
Date
Customer[0-N]

id: OrderID
ref: Customer[*]
inv: Customer[*]

 CUSTOMER
CustID
Name
Address
Orders[0-N]

id: CustID
ref: Orders[*]
inv: Orders[*]

ORDER
OrderID
Date
Customer

id: OrderID
ref: Customer

CUSTOMER
CustID
Name
Address

id: CustID

6 Temporal foreign keys 33

25/4/2010  J-L Hainaut 2010

6 Temporal foreign keys

<to develop as a special case of Interval FK>

This section will address a special case of computed foreign keys that is so common that it
deserves a special treatment, namely the temporal foreign keys. Other special domains can
be considered in the same way, but we will limit the discussion to this popular category.

Most databases include, in some way, a temporal dimension, in particular when the history of
the real world facts and events has to be recorded. Temporal data can be more complex than
current data, that merely record the current state of the world. When the data in one table ref-
erence data in another table, the temporal dimension leads to a new definition of the foreign
key. Indeed, the referential constraint must be satisfied, not only for the current data, but also
for the data considered at any time in the past. The domain of temporal databases is very rich
and complex [Snodgrass, 2000], so that we will describe only some of the most basic aspects
of temporal foreign keys.

Standard representation of temporal data
Though there are many ways to organize historical data, we will consider the most usual
structure illustrated in the Figure 41. The table H_PROJECT contains the successive states
of a set of projects (only the states of the project BIOTECH are shown). Two timestamp col-
umns, namely start and end, indicate for each row the period during which the state described
by the other columns remained (or remains) constant. This validity period is represented by
a semi-open temporal interval [start,end[in such a way that the state was valid from the in-
stant start (included) and was finished at timed end (not included). For instance, the row p2
indicates that, at instant 41, the project BIOTECH changed its theme (from Biotechnology to
Genetic engineering) and its budget (from 180,000 to 160,000). This state remained un-
changed until the instant preceding 47, at which time (row p3) the budget was reduced by
40,000. An end value of 9999 represents the far future, so that the corresponding state is the
current state of the project. It is assumed that the history of a project is continuous and shows
no gap, i.e., non extremal periods during which no information was recorded; in addition, no
two states of the same project overlap.

34 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure 41: Excerpts from the table H_PROJECT, recording the successive states of the project
BIOTECH, among others. The timestamp values are abstract integers to simplify the discussion.

Temporal foreign key
Now, we want to record the successive states of a population of employees. The table of Fig-
ure 42 shows some rows describing the evolution of the employee M158. The column
PROJECT aims at referencing the project on which this employee worked, or still is working,
during each state. We can guess that this reference is not as simple as in standard databases,
in which only the current states of projects and employees are recorded. Let us consider the
row e2 of H_EMPLOYEE. It informs us that, from instants 40 to 65, the employee M158
worked on the project BIOTECH. Two observations:

1. this information is valid, since this project was active during this period: the life period
of the project, namely [10,9999], encompasses the validity period [40,65[of the state e2
of the employee;

2. the row e2 in H_EMPLOYEE references three successive states of this project; indeed, it
has a period [40,65[that overlap (i.e., shares at least one common instant with) three suc-
cessive periods of H_PROJECT, namely [10,41[, [41,47[and [47,84[.

Figure 42: The table H_EMPLOYEE records the history of employees. In particular, it informs
(through the column PROJECT) on which project each employee was working on during each state.

These observations allow us to state the definition of the temporal referential integrity. The
contents of the tables are valid, as far as temporal referential integrity is concerned iff,

H_PROJECT
TITLE start end THEME BUDGET

.
p1 BIOTECH 10 41 Biotechnology 180,000
p2 BIOTECH 41 47 Genetic engineering 160,000
p3 BIOTECH 47 84 Genetic engineering 120,000
p4 BIOTECH 84 135 Genetic engineering 140,000
p5 BIOTECH 135 9999 Biotechnology 140,000

.

H_EMPLOYEE
CODE start end NAME STATUS ADDRESS PROJECT

.
e1 M158 15 40 Mercier T Paris BIOTECH
e2 M158 40 65 Mercier P Paris BIOTECH
e3 M158 65 108 Mercier P Paris SURVEYOR
e4 M158 108 9999 Mercier P Paris BIOTECH

. .

6 Temporal foreign keys 35

25/4/2010  J-L Hainaut 2010

∀ e ∈ H_EMPLOYEE,
∃ p1, p2 ∈ H_PROJECT,

e.PROJECT = p1.TITLE = p2.TITLE

∧ p1.start ≤ e.start < p1.end
∧ p2.start < e.start ≤ p2.end

Note that this definition is valid for target tables that satisfy the no-gap, no-overlap hypothe-
sis. Otherwise, the definition is more complex. The schema of these tables is shown in Figure
43. The tag tref is used to denote the temporal foreign key.

Figure 43: The column PROJECT is a temporal foreign key to the temporal table H_PROJECT.

Interpretation of a temporal foreign key
There is no standard definition nor representation to declare temporal structures at the con-
ceptual level. We will use the graphical notation of the temporal ERA model defined in [De-
tienne, 2001], shown in Figure 44, top. Alternately, we can use stereotypes to mark the
constructs as temporal (Figure 44, bottom). These schemas indicate that the temporal foreign
key is interpreted as a temporal relationship type. In this section, we have implicitly adopted
the valid time interpretation, according to which the time period of a state is the set of instant
at which the states was known to be valid in the real word8.

Degenerated forms of temporal foreign key
First of all, let us observe that the standard representation used in Figure 41 is redundant. In-
deed, except for the current state of an entity, the value of end of a state is also the value of
start of the next state. Therefore, the column start is sufficient to represent the history of an
entity. The table ITEM_PRICE in Figure 45 stores the evolution of the prices of a set of
items. The column Date indicates from which date the price of the item was applicable, until
another price was assigned. The column Current is set to 0 for all the past prices and to 1 for
the current price. Though such a column is not necessary, it is often added for performance

8. As opposed to the transaction time, that represents the period during which the state was recorded
in the database. More of this in [Snodgrass, 2000] for instance.

H_PROJECT
TITLE
start
end
THEME
BUDGET
id: TITLE

start

H_EMPLOYEE
CODE
start
end
NAME
STATUS
ADDRESS
PROJECT
id: CODE

start
tref: PROJECT

start

36 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

reasons.

Figure 44: Two equivalent graphical representation of the conceptual structures derived from the
schema of Figure 43. The objects marked with the symbols "/v" or "«valid »" are temporal.

In the standard representation (Figure 43), the timestamp columns start and end basically are
technical data introduced to represent and process entity histories, and do not correspond to
intrinsic properties of the entities. Many (if not all) schemas include temporal columns that
represent natural events of the application domain. For instance, in the schema of Figure 45,
the column ORDER.Date gives the date on which each order was placed. Such columns often
are qualified by the term user-defined time, since their temporal semantics is known by the
users of the data only. However, nothing prevents us to interpret a user-defined time column
to participate in a temporal foreign key: thanks to the values of ItemNum and Date in the table
ORDER, the matching row in ITEM_PRICE giving the price applicable can be identified eas-
ily. Hence the declaration of the temporal foreign key of the Figure 45.

Figure 45: Both tables use a degenerated form of timestamping to represent historical data.

1-1 0-Nworks on/v

0-N1-1
«valid»

works on

PROJECT/v

TITLE
THEME/v
BUDGET/v

id: TITLE

«valid»
PROJECT

TITLE
«valid» THEME
«valid» BUDGET

id: TITLE

EMPLOYEE/v

CODE
NAME
STATUS/v
ADDRESS/v
PROJECT/v

id: CODE

«valid»
EMPLOYEE

CODE
NAME
«valid» STATUS
«valid» ADDRESS
«valid» PROJECT

id: CODE

ORDER
OrdNum
Date
ItemNum
Qty

id: OrdNum
tref: ItemNum

Date

ITEM_PRICE
ItemNum
Date
Price
Current
id: ItemNum

Date

7 Pathological foreign keys 37

25/4/2010  J-L Hainaut 2010

7 Pathological foreign keys

Though some of the foreign key patterns analyzed so far can be considered unusual, puzzling
or tricky, each of them is a correct and logical technical answer to a standard or complex
structural problem. Unfortunately, legacy logical schemas sometimes include awkward, or
even wrong, foreign key patterns that can lead to erroneous conceptual schemas if processed
carelessly.

In some situations, the problem can originate from two different causes. First, the flawed
structure actually exists in the legacy database, as the result of an erroneous design or coding
decision, and has been correctly reported in the logical schema we are conceptualizing. Sec-
ondly, the structure does not exist in the database, but has been introduced in the logical sche-
ma due to insufficient analysis during the Data Structure Extraction phase. It is important to
identify the exact source of the problem, e.g., through more detailed data analysis.

7.1 Loosely-matching foreign key

The relational literature suggests (to say the least) that a foreign key and its corresponding
candidate key be defined on the same domain. This rule is not always applied in practical
databases, which often rely on the looser rule that both keys must be comparable in some way.
The following correspondences have been found in COBOL and SQL data structures:

Figure 46: Some frequent pattern of source and target domains. The expression dom(M) denotes
the set of potential values of attribute(s) M.

Quite obviously, the problem is the elicitation of such loose foreign keys rather than their in-
terpretation. Note that this problem can be considered as a Computed foreign key pattern (Sec-
tion 3.6), and processed accordingly. In this case, the function is some kind of casting.

Foreign key Target identifier Evaluation

char(8) char(8) dom(FK) = dom(ID): standard pattern

char(8) num(8) dom(FK) ⊇ dom(ID): potential compatibility

num(8) char(8) dom(FK) ⊆ dom(ID): compatibility

char(12) char(8) dom(FK) ⊇ dom(ID): potential compatibility

char(8) char(12) dom(FK) ⊆ dom(ID): compatibility

char(10) compound
 num(4)
 char(6)

dom(FK) ⊇ dom(ID): potential compatibility

compound
 num(4)
 char(6)

char(10) dom(FK) ⊆ dom(ID): compatibility

38 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

7.2 99% correct foreign key

Such a construct should be a foreign key, and actually is a foreign key most of the time. In
other words, each key value is expected to reference an entity, but data analysis shows some
exceptions, i.e., values which do no match any target entities. No explanation is given, except
possible data errors. This pattern is fairly close to the conditional foreign key situation (Sec-
tion 5.1).

In the example of Figure 47, most CUSTOMER entities reference a CATEGORY entity.
Some of them however have been found to have Category values that fail to denote any
known category.

Figure 47: Most CUSTOMER entities have a Category value that references a CATEGORY entity.

Analysis
Two scenarios must be distinguished. According to the first one, the data errors can be ig-
nored, and the construct is considered a plain foreign key and processed accordingly. This
approach follows the idea that reverse engineering basically is a decisional process based on
a collection of hints. The second scenario postulates that the exceptions must be taken into
consideration, and represented explicitly. We address this second approach, which is imper-
ative when data must be migrated9.

We replace the attribute Category with two exclusive optional attributes Category and
Wrong_Category (Figure 48, left). For any CUSTOMER entity, there is either a Category
value or a Wrong_Category value. The value of Category is a correct foreign key, which is
interpreted in the usual way, while the value of Wrong_Category is erroneous, and is left un-
interpreted (Figure 48, right).

If needed, the final schema can explicitly show the two kinds of CUSTOMER entities (Figure
49).

9. Identifying and discarding erroneous data in data migration is a process called data cleaning.

CUSTOMER
CustID
Name
Category

id: CustID
99%ref: Category

 CATEGORY
CatName
Rebate

id: CatName

7 Pathological foreign keys 39

25/4/2010  J-L Hainaut 2010

Figure 48: Each customer has a correct category reference, (in which case the latter translates into
a relationship type), or it has a wrong category.

for c ∈ CUSTOMER(wrong): c.Category ∉ CATEGORY.CatName

Figure 49: This schema clearly distinguishes the correct data from the wrong ones.

7.3 Transitive foreign key

A transitive foreign key is the composition of two or more other foreign keys. Being derived,
such a foreign key can be removed. Depending on the relationship between these keys, the
attributes forming the transitive foreign key can be removed or not.

Many transitive foreign keys have not been explicitly defined in the legacy database, but have
been discovered through program and/or data analysis techniques.

Analysis
There are two different patterns, that require different processing. The first pattern is illus-
trated by the Figure 50, which models a situation in which invoices depend on orders and or-
ders are placed by customers. Since the orders of each customer are identified by a unique

for c ∈ CUSTOMER:
c.Wrong_Category ∉ CATEGORY.CatName

⇔

for c ∈ CUSTOMER: c.Wrong_Category
∉ CATEGORY.CatName

 CATEGORY
CatName
Rebate

id: CatName

 CUSTOMER
CustID
Name
Category[0-1]
Wrong_Category[0-1]

id: CustID
ref: Category
exact-1: Category

Wrong_Category

0-1

0-N

of

CUSTOMER

CustID
Name
Wrong_Category[0-1]

id: CustID
exact-1: of.CATEGORY

Wrong_Category

CATEGORY

CatName
Rebate

id: CatName

1-1

0-N

of
P

CUSTOMER

CustID
Name

id: CustID

CUSTOMER(wrong)

Category[0-1]
CUSTOMER(correct)

CATEGORY

CatName
Rebate

id: CatName

40 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

number, the identifier of the order is used to make invoice entities reference their orders.
Consequently, each INVOICE entity includes the reference of the CUSTOMER entity, itself
referenced by its ORDER entity. This reference is a transitive foreign key. It can be discard-
ed without any information loss. However, the attribute that composes this foreign key must
be preserved, since it belongs to another, basic, foreign key. Since there are no explicit re-
dundant attributes, this pattern is called non-redundant transitive foreign key. It could have
been explicitly declared by the developer, or, most probably, it was discovered during the
Data Structure Extraction phase. This kind of transitive foreign key can be formally identi-
fied through the rules of Section 1.

In the example of the second pattern (Figure 51), each customer is in contact with an employ-
ee who is in charge of his/her problems. The employee depends on a given department. The
developer gave the entity type CUSTOMER the attribute Department aimed at referencing
the department of the employee of the customer. This foreign key too is transitive. However,
its attribute itself is redundant and can be removed, hence the name redundant transitive for-
eign key. Since it is supported by a specific attribute, this transitive foreign key was inten-
tional, most probably for performance reasons. The transitivity property cannot be formally
identified and must be discovered through program/data analysis techniques.

After such cleaning, the schema can be processed through any other method described in the
former sections.

Figure 50: Non-redundant transitive foreign key: the customer of an invoice is the customer of the
order of this invoice. Cleaning the schema consists in removing the transitive foreign key.

⇔

ORDER
CustID
OrdNum
Date
id: CustID

OrdNum
ref: CustID

INVOICE
InvID
CustID
OrdNum
Date
Amount

id: InvID
ref: CustID
ref: CustID

OrdNum

CUSTOMER
CustID
Name

id: CustID ORDER
CustID
OrdNum
Date
id: CustID

OrdNum
ref: CustID

INVOICE
InvID
CustID
OrdNum
Date
Amount

id: InvID
ref: CustID

OrdNum

CUSTOMER
CustID
Name

id: CustID

7 Pathological foreign keys 41

25/4/2010  J-L Hainaut 2010

Figure 51: Redundant transitive foreign key: the department of a customer is the department of the
employee in charge of this customer. Cleaning the schema consists in removing the transitive for-
eign key and its attribute components.

7.4 Partly optional foreign key

In a partly optional foreign key, some, but not all, components of a multiple-component for-
eign key are optional. Though this form is perfectly legal in SQL-2, it violates the principles
of optional foreign keys. In particular, there exist no known ERA/SQL translation rules that
can produces such a pattern.

As an example, we consider the schema of Figure 52, that describes a situation in which a
collection of dissertation titles are proposed to last year students. A dissertation is identified
by its title and the year it is being, or has been, proposed. Students are characterized by their
name and the year they have to choose a dissertation subject. When they have made this
choice, they are given the title of this dissertation. Technically speaking, when attribute Dis-
sert of a STUDENT entity is null, then this entity references no DISSERTATION entity,
while when Dissert is not null, then (Dissert,Year) references a DISSERTATION entity.

Analysis
The source schema is awkward. Indeed, the components of a standard foreign key must all
be mandatory (not null) or all optional (nullable). In the latter case, the components are sub-
ject to a coexistence constraint (see Section 2.3). We must first clarify the schema by consid-
ering two kinds of STUDENT entities, namely those which have no Dissert values and which
do not reference any DISSERTATION entity, and those which have a value for their attribute
Dissert, and therefore reference a DISSERTATION entity. The latter students form the class

for c ∈ CUSTOMER, e ∈ EMPLOYEE,
d ∈ DEPARTMENT:
c.Agent = e.EmpID ∧ e.Depart = d.DepartID
⇒ c.Department = d.DepartID

⇔
EMPLOYEE
EmpID
Name
Depart

id: EmpID
ref: Depart

DEPARTMENT
DepartID
Name

id: DepartID

CUSTOMER
CustID
Name
Agent
Department

id: CustID
ref: Department
ref: Agent

EMPLOYEE
EmpID
Name
Depart

id: EmpID
ref: Depart

DEPARTMENT
DepartID
Name

id: DepartID

CUSTOMER
CustID
Name
Agent

id: CustID
ref: Agent

42 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

of last-year students.

Figure 52: The foreign key (Dissert,Year) is made up of optional and mandatory attributes.

We define the subtype LAST-YEAR-STUDENT as the collection of STUDENT entities
which have a not null Dissert value. The mandatory attributes Dissert and Year of this new
entity type form a standard foreign key targeting DISSERTATION (Figure 53, left). Note
that the attribute Year of LAST-YEAR-STUDENT is noted STUDENT.Year to indicate that
it is inherited from STUDENT.

The cleaned schema now includes a standard foreign key that is easily transformed (Figure
53, right).

Figure 53: Cleaning a partly optional foreign key by making the subtype LAST-YEAR-STUDENT
explicit.

7.5 Embedded foreign key

An embedded foreign key is made up of attributes that also are components of another foreign
key. As we shall see it generally suggests both a transitive foreign key, and a missing foreign
key. This pattern is frequent in database schemas where foreign keys have been elicited
through program and data analysis. Except in badly designed schemas, the embedded foreign
key has not been declared explicitly.

The schema of Figure 54 describes invoices that depend on orders and that are sent to cus-

⇔

for s ∈ LAST-YEAR-STUDENT:
s.Year = s.writes.DISSERTATION.Year

DISSERTATION
Title
Year
Advisor
id: Title

Year

 STUDENT
StudID
Name
Dissert[0-1]
Year
id: StudID
ref: Dissert

Year

STUDENT
StudID
Name
Year

id: StudID

LAST-YEAR-STUDENT
Dissert
ref: Dissert

STUDENT.Year

DISSERTATION
Title
Year
Advisor
id: Title

Year

1-1

0-N

writes

STUDENT

StudID
Name
Year

id: StudID

LAST-YEAR-STUDENT

DISSERTATION

Title
Year
Advisor
id: Title

Year

7 Pathological foreign keys 43

25/4/2010  J-L Hainaut 2010

tomers. We observe that the component of the foreign key INVOICE.Customer form a prop-
er subset of the foreign key INVOICE.(Customer,Order).

Figure 54: An embedded foreign key is an evidence of an incompletely refined physical schema.

Analysis
An idea emerges immediately: couldn’t ORDER.Sender be a foreign key to CUSTOMER?
Obviously, if we can prove that ORDER.Sender → CUSTOMER, then the foreign key IN-
VOICE.Customer → CUSTOMER is transitive and can be removed (see Section 7.3). Let
us write the set relations that express the foreign keys:

1. INVOICE.[Customer,Order] ⊆ ORDER.[Sender,OrdNum]

 ⇒ INVOICE.[Customer] ⊆ ORDER.[Sender]

2. INVOICE.[Customer] ⊆ CUSTOMER.[CustID]

Unfortunately, from these expressions, we cannot infer that ORDER.Sender → CUSTOM-
ER. However, unless the population of INVOICE is empty, some values of ORDER.Sender
(among them, those which appear in INVOICE.Customer) are CUSTOMER.CustID values
as well. So, we can distinguish two kinds of ORDER entities: those that reference CUSTOM-
ER entities (their Sender values are in CUSTOMER.CustID) and those which do not. The
former are collected in the CUST-ORDER entity type (Figure 55, left). Now, the schema ex-
hibits an explicit transitive foreign key which can be removed.

The conceptual interpretation of the modified schema is immediate (Figure 55, right).

The source pattern can also be interpreted in another way. Instead of sticking strictly to this
schema, we use it as an evidence of the possible foreign key ORDER.Sender → CUS-
TOMER, which so far is a mere hypothesis. Should we succeed in proving that it is an im-
plicit foreign key, we could add it to the schema, and remove the transitive foreign key
INVOICE.Customer → CUSTOMER (Figure 56).

ORDER
Sender
OrdNum
Date
Amount
id: Sender

OrdNum

INVOICE
InvNum
Date
Amount
Customer
Order

id: InvNum
ref: Customer

Order
ref: Customer

CUSTOMER
CustID
Name
Address

id: CustID

44 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure 55: The missing foreign key has been added, leading to the known pattern of non-redundant
transitive foreign key.

Figure 56: Turning the evidence into a decision: ORDER.Sender definitely is a foreign key to CUS-
TOMER.

7.6 Reflexive foreign key

This pattern includes a perfectly valid, though strictly useless foreign key. It is presented
here for three reasons.

• This structure has been reported as an explicitly declared foreign key in an actual
ORACLE application. Hopefully through code generation!

• It is a explicit implementation of the reflexivity property of foreign keys: A[A1] ⊆
A[A1].

• We found it nice to close a rather serious section with a touch of humor10.

⇔

for co ∈ CUST-ORDER:
co.Sender = co.from.CUSTOMER.CustID

ORDER
Sender
OrdNum
Date
Amount
id: Sender

OrdNum
INVOICE

InvNum
Date
Amount
Customer
Order

id: InvNum
ref: Customer
ref: Customer

Order

CUSTOMER
CustID
Name
Address

id: CustID

CUST-ORDER

id: ORDER.Sender
ORDER.OrdNum

ref: ORDER.Sender

1-1

0-N

from

1-10-N for

ORDER

Sender
OrdNum
Date
Amount
id: Sender

OrdNum

INVOICE

InvNum
Date
Amount

id: InvNum

CUSTOMER

CustID
Name
Address

id: CustID

CUST-ORDER

0-N

1-1

from

0-N 1-1for

ORDER

OrdNum
Date
Amount
id: from.CUSTOMER

OrdNum

INVOICE

InvNum
Date
Amount

id: InvNum

CUSTOMER

CustID
Name
Address

id: CustID

7 Pathological foreign keys 45

25/4/2010  J-L Hainaut 2010

Figure 57: Art need not be useful.

Note that this pattern should not be confused with cyclic foreign keys through which it may
happen that some entities reference themselves.

10. Quite frustratingly, humorous issues in the database realm often require some laborious comments
before being enjoyed at their full potential. But most generally the reward is worth the journey.

⇔
A

A1
A2
id: A1

ref

A
A1
A2

id: A1

46 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

8 Synthetic tables

In this last section, we collect the most common foreign key variants into a series of tables,
then we analyze the relationship between a foreign key and the local identifiers.

8.1 Summary of the most common foreign key patterns

Considering that a foreign key can be

• single-valued or multivalued,

• identifying or non-identifying,

• mandatory or optional,

• total (equality) or not,

we get the 16 basic combinations described in Tables 1 to 4 here below. We observe that the
combinations of first two characteristics yield, respectively, many-to-one, one-to-one, one-to-
many and many-to-many relationship types. This analysis is based on the most common car-
dinalities of both attributes and roles, namely [0-1], [1-1], [0-N] and [1-N]. Considering other
cardinality patterns can be deduced without problems.

Foreign key pattern Interpretation Comment see

Mandatory foreign key.
This standard pattern gives
a many-to-one relationship
type with a mandatory role
and an optional role.

 2.1

The FK is optional, so that
the role of r.B is optional
too. The other role still is
optional.

 2.2

B
B1
B2
A1
id: B1
ref: A1

A
A1
A2
id: A1

1-1 0-Nr

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
B2
A1[0-1]
id: B1
ref: A1

A
A1
A2
id: A1

0-N0-1 r

B
B1
B2
id: B1

A
A1
A2
id: A1

8 Synthetic tables 47

25/4/2010  J-L Hainaut 2010

Table 1: Interpreting single-valued, non-identifying, foreign keys into many-to-one rel-types.

A total foreign key trans-
lates into a relationship
type with two mandatory
roles.

 2.4

Total, optional foreign key.
Gives a mandatory role and
an optional role.

 2.2
2.4

Foreign key pattern Interpretation Comment see

A single-valued foreign
key which is an identifier
translates into a one-to-one
relationship type.

 2.5

Same as above + Table 1. 2.5
2.2

Same as above + Table 1. 2.5
2.4

Same as above + Table 1. 2.5
2.2
2.4

B
B1
B2
A1
id: B1
equ: A1

A
A1
A2
id: A1

1-N1-1 r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
B2
A1[0-1]
id: B1
equ: A1

A
A1
A2
id: A1

1-N0-1 r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1
B2
id: B1
id': A1

ref

A
A1
A2
id: A1

0-11-1 r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1[0-1]
B2
id: B1
id': A1

ref

A
A1
A2
id: A1

0-1 0-1r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1
B2
id: B1
id': A1

equ

A
A1
A2
id: A1

1-1 1-1r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1[0-1]
B2
id: B1
id': A1

equ

A
A1
A2
id: A1

0-1 1-1r

B
B1
B2
id: B1

A
A1
A2
id: A1

48 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Table 2: Interpreting single-valued, identifying, foreign keys into one-to-one rel-types.

Table 3: Interpreting multivalued, identifying, foreign keys into one-to-many rel-types.

Foreign key pattern Interpretation Comment see

A multivalued foreign key
which is an identifier trans-
lates into a one-to-many
relationship type.

 2.5

Same as above + Table 1. 2.5

Same as above + Table 1. 2.5

Same as above + Table 1. see 2.5

Foreign key pattern Interpretation Comment see

A multivalued foreign key
which is not an identifier
translates into a many-to-
many relationship type.

 2.5

B
B1
A1[0-N]
B2
id: B1
id': A1[*]

ref

A
A1
A2
id: A1

0-10-N r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1[1-N]
B2
id: B1
id': A1[*]

ref

A
A1
A2
id: A1

1-N 0-1r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1[0-N]
B2
id: B1
id': A1[*]

equ

A
A1
A2
id: A1

0-N 1-1r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
A1[1-N]
B2
id: B1
id': A1[*]

equ

A
A1
A2
id: A1

1-N 1-1r

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
B2
A1[1-N]
id: B1
ref: A1[*]

A
A1
A2
id: A1

0-N1-N r

B
B1
B2
id: B1

A
A1
A2
id: A1

8 Synthetic tables 49

25/4/2010  J-L Hainaut 2010

Table 4: Interpreting multivalued, non identifying, foreign keys into many-to-many rel-types.

8.2 Relationship between a foreign key and the identifiers

Both an identifier and a foreign key comprise a set of attributes from the same entity type. It
is quite natural to wonder whether the relation between these sets matters. Considering any
two non empty sets E1 and E2, there are five basic relations:

• E1 ∩ E2 = ∅
• E1 ⊂ E2

• E1 = E2

• E1 ⊃ E2

• E1 ∩ E2 ≠ ∅ ∧ E1 - E2 ≠ ∅ ∧ E2 - E1 ≠ ∅
Table 5 explores these five relations and links them with foreign key patterns described in the
previous sections.

Same as above + Table 1. 2.5

Same as above + Table 1. 2.5

Same as above + Table 1. 2.5

Foreign key pattern Interpretation Comment see

The foreign key and the
identifier are disjoined.
There is no relationship
between the identifier and
the derived relationship
type.

 2.1

B
B1
B2
A1[0-N]
id: B1
ref: A1[*]

A
A1
A2
id: A1

0-N 0-Nr

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
B2
A1[1-N]
id: B1
equ: A1[*]

A
A1
A2
id: A1

1-N 1-Nr

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
B2
A1[0-N]
id: B1
equ: A1[*]

A
A1
A2
id: A1

0-N 1-Nr

B
B1
B2
id: B1

A
A1
A2
id: A1

B
B1
B2
B3
B4
id: B1
ref: B4

A
A1
A2
A3
id: A1

1-1 0-Nr

B
B1
B2
B3
id: B1

A
A1
A2
A3
id: A1

50 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Table 5: The five relationships between a foreign key and the local identifiers.

Exercises

Here follow some logical schemas including foreign keys. Unless suggested otherwise, the
reader is invited to build, for each of them, an equivalent conceptual schema. Note that some
schemas do not mimic exactly the patterns studied in this chapter. In such cases, the reader
will design his/her own techniques following the frameworks suggested above.

The foreign key is a proper
subset of the identifier. In
the transformed schema, it
is replaced with the rela-
tionship type in the identi-
fier.

 2.4

The identifier and the for-
eign key comprises the
same attributes. The
derived relationship type is
one-to-one and the identi-
fier disappears.

 2.5

for b ∈ B, b.B1 = b.r.A.A1

The identifier is a proper
subset of the foreign key,
which therefore is a non-
minimal identifier. It par-
tially translates into a one-
to-one relationship type.
Since B1 cannot be
removed, it is redundant,
hence the constraint.

 5.5

for b ∈ B, b.B2 = b.r.A.A1

The identifier and the for-
eign key share a common
attribute, but have each a
proper attribute.
The foreign key partially
translates into a many-to-
one relationship type.
Since B2 cannot be
removed, it is redundant,
hence the constraint.

5.2

B
B1
B2
B3
B4
id: B1

B2
ref: B1

A
A1
A2
A3
id: A1

1-1 0-Nr

B
B2
B3
B4
id: r.A

B2

A
A1
A2
A3
id: A1

B
B1
B2
B3
B4
id: B1

B2
ref

A
A1
A2
A3
id: A1

A2

1-1 0-1r

B
B3
B4
id: r.A

A
A1
A2
A3
id: A1

A2

B
B1
B2
B3
B4
id: B1
ref: B1

B2

A
A1
A2
A3
id: A1

A2

1-1 0-1r

B
B1
B3
B4
id: B1

A
A1
A2
A3
id: A1

A2

B
B1
B2
B3
B4
id: B1

B2
ref: B2

B3

A
A1
A2
A3
id: A1

A2

1-1 0-Nr

B
B1
B2
B4
id: B1

B2

A
A1
A2
A3
id: A1

A2

8 Synthetic tables 51

25/4/2010  J-L Hainaut 2010

Exercise 1. A first simple schema

This one is quite easy, since it includes standard foreign keys only (Ex-1). Nevertheless,
some attention could help.

Figure Ex-1: A collection of standard foreign keys.

Exercise 2. Distributing water

A water distribution network is made up of nodes and pipes linking nodes in a directed
tree structure. The fluid flows from the root node to the leaf nodes. In a pipe, it flows
from the source node to the sink node. The pipes attached to a common source node are
uniquely numbered. Among the outgoing pipes of each source node, one is considered
its main pipe (Ex-2).

Derive a conceptual schema from the following relational schema that attempts to
express this application domain.

Figure Ex-2: Partly reciprocal foreign keys.

Exercise 3. Children and the social security

In a social security system, children depend on parents (who are members), and are asso-
ciated with accounts, as expressed in the relational schema Ex-3. Derive a correct con-
ceptual schema from this schema.

SERVICE
DepName
ServName
Head
id: DepName

ServName
ref: DepName

IN_CHARGE
FileNum
EmpID
StartDate
ClosingDate[0-1]
id: FileNum

EmpID
id': FileNum

equ
ref: EmpID

FILE
FileNum
Title
Customer
id: FileNum

EMPLOYEE
EmpID
Name
DepName
ServName
id: EmpID
ref: DepName

ServName

DEPARTMENT
DepName
Location
id: DepName

PIPE
SourceNode
Number
SinkNode
Length
id: SourceNode

Number
id': SinkNode

ref
ref: SourceNode

NODE
NodeID
MainPipe[0-1]
Position
id: NodeID
ref: NodeID

MainPipe

52 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure Ex-3: Nothing missing?

Exercise 4. Offering products and assigning orders

Propose a conceptual schema equivalent to the following schema (Ex-4), recovered from
a set of flat files.

Figure Ex-4: Nothing in excess?

Exercise 5. Ordering in quantities

An order is correct if it corresponds to an available supply, that is, if there exists a sup-
plier that can supply the item ordered in the quantity specified in the order. The table
SUPPLY gives, for each supplier and each item it can ship, the prices for increasing
quantities (e.g., for 1 unit, for (2 to) 5 units, for (6 to) 10 units, and so forth. The data-
base that records these facts is represented in Ex-5. Derive an equivalent conceptual
schema.

MEMBER
RegNum
Name
Address
Employer
id: RegNum

CHILD
PID
Name
Parent
Account
id: PID
ref: Parent
ref: Parent

Account

ACCOUNT
MembNum
AccntNum
Date
id: MembNum

AccntNum

SUPPLIER
SuppID
Name
Address
id: SuppID

PRODUCT
ProdCode
Description
id: ProdCode

ORDER
OrdNum
Customer
Date
id: OrdNum

OFFER
Supplier
Product
Price
id: Supplier

Product
ref: Product
ref: Supplier

ASSIGNMENT
Supplier
Product
Order
Qty
id: Supplier

Product
Order

ref: Product
ref: Product

Order
ref: Supplier
ref: Order

8 Synthetic tables 53

25/4/2010  J-L Hainaut 2010

Figure Ex-5: Another computed foreign key.

Exercise 6. Delivering . . .

Give a correct interpretation of the inclusion constraint of schema Ex-6.

Exercise 7. . . . and shipping

The schema Ex-7 is an excerpts of the structure of a large relational database for spare
part management that has been reengineered in a car manufacturing company.

Figure Ex-6: An inclusion constraint.

 SUPPLY
Supplier
Item
Qty
Price
id: Supplier

Item
Qty

ORDER
OrderID
Supplier
Item
Qty
Customer
id: OrderID
ref: Supplier

Item
f(Qty)

ORDER-DETAIL
OrderNbr
ItemNbr
Qty
Amount
id: OrderNbr

ItemNbr
gr: OrderNbr

DELIVERY
DeliveryNbr
OrderNbr
Date
Amount
id: DeliveryNbr
incl: OrderNbr

54 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure Ex-7: Languages are everywhere.

Exercise 8. More about non-minimal foreign keys

Prove that the schemas Ex-8 are equivalent. Hint: the left side schema is that of Figure
34. In addition, refer also to the theory of normalization (notably, 3NF against BCNF).

List of the foreign keys:

DETAIL.Order_Number → ORDER
DETAIL.Item → ITEM
ITEM.Substitute → ITEM
ORDER.Ship_term → SHIPMENT_TERMS
ORDER.Ship_method → SHIPMENT_METHOD
ORDER.Pay_term → PAYMENT_TERMS
ORDER.Language → LANGAGE
ORDER.Supplier → SUPPLIER

SHIPMENT_TERMS.Language → LANGAGE
SHIPMENT_METHOD.Language → LANGAGE
PAYMENT_TERMS.Language → LANGAGE
SUPPLIER.Ship_term → SHIPMENT_TERMS
SUPPLIER.Ship_method → SHIPMENT_METHOD
SUPPLIER.Pay_term → PAYMENT_TERMS
SUPPLIER.Language → LANGAGE

SHIPMENT_TERMS
Code
Language
Description
id: Code

Language
ref: Language

SHIPMENT_METHOD
Code
Language
Description
id: Code

Language
ref: Language

PAYMENT_TERMS
Code
Language
Number_of_days
id: Code

Language
ref: Language

ORDER
Number
Date
Supplier
Ship_method[0-1]
Language[0-1]
Ship_term[0-1]
Pay_term[0-1]

id: Number
ref: Language
ref: Ship_term

Language
ref: Supplier
ref: Ship_method

Language
ref: Pay_term

Language

LANGUAGE
Code
Description

id: Code

ITEM
Code
Description
Substitute[0-1]
Type

id: Code
ref: Substitute

 SUPPLIER
Code
Name
Address
Pay_terms
Ship_method
Language
Ship_terms
VAT_number[0-1]

id: Code
ref: Language
ref: Ship_terms

Language
ref: Ship_method

Language
ref: Pay_terms

Language

 DETAIL
Order_number
Line_number
Item[0-1]
Quantity[0-1]
id: Order_number

Line_number
ref: Order_number
ref: Item

8 Synthetic tables 55

25/4/2010  J-L Hainaut 2010

Figure Ex-8: Are these schemas equivalent?

Exercise 9. About partially reciprocal foreign keys

The schema Ex-9 is proposed as an interpretation of the schema of Figure 35. Evaluate
the correctness of this interpretation.

Figure Ex-9: Is this schema equivalent to the schema of Figure 35?

Exercise 10. Normalizing a legacy relational table

The Data Structure Extraction phase has extracted the table structure (Ex-10, left)
accompanied with a set of functional dependencies.

Since the table is not in 3NF, it has been decomposed into normalized components that
we want to conceptualize (Ex-10, right). However, the resulting schema is not quite
equivalent to the source database. Indeed, the tables BOND_LEVEL and
CUST_CONTACT include historical data about respectively the price evolution of the
bonds and on the successive addresses of the customers. Therefore, the foreign keys
ORDER.(Bond,DateSold) and ORDER.(Customer,DateSold) are temporal foreign keys.
Considering this fact, and observing that the foreign keys share an attribute, propose a
conceptual schema for this relational schema.

for r ∈ REGISTRATION:
r.Subject = r.for.LECTURE.Subject

?

⇔1-1 0-Nfor

REGISTRATION

Student
Subject
id: Student

Subject

LECTURE

Lecturer
Subject

id: Lecturer

0-N 0-N

0-N

registration

id: STUDENT
SUBJECT

incl: LECTURER
SUBJECT

0-N1-1
gives

id: SUBJECT
LECTURER

SUBJECT
Title
id: Title

STUDENT
Name
id: Name

LECTURER
Name
id: Name

1-N1-N

city
Population
gr: COUNTRY

CITY-NAME

1-1 0-N
capital

incl: COUNTRY
CITY-NAME

COUNTRY
CountryName
Area
id: CountryName

CITY-NAME
Name
id: Name

56 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure Ex-10: Interpreting a normalized relational schema.

Exercise 11. Programmers write programs

The schema Ex-11 includes some nice non-standard and complex foreign keys.

Figure Ex-11: A bunch of interesting foreign key patterns.

Exercise 12. Actual keys, at last!

This fragment is an excerpt from a key management application written in MS Access for a
teaching and research department. To receive a copy of key (for an office, a library, a room,
a desk, etc.) an employee must have access to an account. He can be attributed one copy only

Bond,DateSold → Price
Customer, DateSold → Address

Bond → DateEmitted

⇔
ORDER

OrdNum
Bond
DateEmitted
DateSold
Price
Number
Customer
Address
id: OrdNum

ORDER
OrdNum
Bond
DateSold
Number
Customer
id: OrdNum
ref: Bond

DateSold
ref: Customer

DateSold

CUST_CONTACT
CustName
Date
Address
id: CustName

Date

BOND_LEVEL
Bond
Date
Price
id: Bond

Date
ref: Bond

BOND
Bond
DateEmitted
id: Bond

PROGRAMMER
EmpNum
Name
Head[0-1]
id: EmpNum
ref: Head

PROGRAM
ProgID
ProgName
AppName
LangName
Version
id: ProgID
id': AppName

ProgName
ref: LangName

Version
ref: AppName

MODULE
ProgID
ModName
Type[0-1]
Programmers[0-N]
Calls[0-N]

ProgID
ModName

id: ProgID
ModName

ref: Programmers[*]
ref: Calls[*]
ref: ProgID

LANGUAGE
LangName
Version
Compiler
id: LangName

Version

APPLICATION
AppName
RootProgName
Service
id: AppName
ref: AppName

RootProgName

8 Synthetic tables 57

25/4/2010  J-L Hainaut 2010

for each key. Propose a conceptual schema for this database fragment.

Figure Ex-12: Attributing office keys to employees

Exercise 13. Inclusion constraints in the country

In Figure Ex-13, a value of the field DESCRIPTION references a sequence of text lines, each
in a different language, providing the description of a hotel. Same for ACCESS, giving access
information. Find the underlying semantics of this schema.

Figure Ex-13: Express the semantics of inclusion constraints.

Exercise 14. Families

The schema of Figure 14 is intended to describe evolving family relationships among
persons. Derive from it a correct conceptual schema.

EMPLOYEE
PersID

id: PersID

ACCOUNT
ActNum

id: ActNum

KEY
KeyNum

id: KeyNum

ATTRIBUTION
PersID
KeyNum
ActNum
id: PersID

KeyNum
ref: KeyNum
ref: PersID

ActNum

ACCOUNT-ACCES
PersID
ActNum
id: PersID

ActNum
ref: ActNum
ref: PersID

The set of TEXT_VERSION rows
with the same TEXT_ID value is
 -either a DESCRIPTION
- or an ACCESS
for one HOTEL. TEXT_VERSION

TEXT_ID
LANGUAGE
TEXT
id: TEXT_ID

LANGUAGE
ref: LANGUAGE
gr: TEXT_ID

LANGUAGE
ID_LANGUAGE
FULL_NAME

id: ID_LANGUAGE

HOTEL
HOTEL_ID
NAME
DESCRIPTION
ACCESS
id: HOTEL_ID
id': DESCRIPTION

inc
id': ACCESS

inc

58 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

Figure Ex-14: A family structure

Exercise 15. Deriving generic rules

All the interpretation rules described in this chapter have been illustrated through actual
examples. This approach, though attractive, could make it difficult to identify other sim-
ilar problem patterns and to solve them. Hence the idea to provide abstract problem/
solution patterns instead.

Figure Ex-15: Abstraction of the Hierarchical foreign key to a multivalued attribute rule of Fig-
ure 18. [a-b] denotes any valid cardinality range.

Figure Ex-15. shows how the interpretation of the concrete example of Figure 18 can be

⇔

PERSON
PID
Start
Name
End
Surname
Sex
Address
Spouse[0-1]
Father[0-1]
Mother[0-1]
id: PID

Start
id': Spouse

Start
tref

tref: Start
Father

tref: Start
Mother

B
B1
B2
B3
ref: B2

B3

O
O
O2
id: O

O2

A
A1
A2[a-b]

A21
A22

A3
id: A1
id(A2):

A21

1-1

a-b

r

B
B1
B2
B3
ref: B2

B3

A
A1
A3
id: A1

A2
A21
A22
id: r.A

A21

8 Synthetic tables 59

25/4/2010  J-L Hainaut 2010

generalized into an abstract rule that is easier to apply. Note that the constructs that play
no role in the interpretation, such as the identifier of SHIPMENT, have been ignored.
Propose a similar abstraction for each of the most common interpretation rules of this
chapter.

60 Conceptual interpretation of foreign keys

 J-L Hainaut 2010 25/4/2010

