THE INDIVIDUAL MODEL

by C. DEHENEFFE
J-L. HAINAUT

Institut d’Informatique de Namur

and H. TARDIEU

Centre d’étude technique de 1'équipement d’Aix-en-Provence

1. — INTRODUCTION

1.1. — Individual Model : a tool for analysis

The individual model is conceived as a tool for designing and
structuring data bases : it is intended for data analysts and data
administrators.

In this way, this model is conceived first as a structuring tool
for a set of data. It should allow the analyst the possibility to
build, simply and efliciently, data structures. We consider that a
necessary prerequisite for simplicity and efficiency of the process
is the ability the data analyst to use a model representing
structures that will be manipulated by future users of the data
base.

We know by our personal experience that a user thinks in
terms of units of information and associations between units. We
define a unit of information as a set of elementary data — pro-
perties which characterize an individual. This individual may be
either a subject (employee, customer, supplier) or an object (end
products, parts, etc.) or a concept (income, profit center, etc.).
An individual may have properties (ex. : name, age, sex, address)
which are called the individual’s attributes. The definition of
attributes and corresponding values depends on the specific
context of the class of application involved; for instance, we shall

89

distinguish for the same individual between identifiers (customer,
supplier, products), events (orders, inventories) and results. This
model is qualified as individual in opposition to models (}) which
are only concerned with elemenrtary data. Besides information
units, the user “sees” and “manipulates” associations between
individuals.

These are defined as couples of individuals (e.g. association
“employee” which ties up a person and a company). These asso-
ciations which we call “relations”, may themselves have properties.
For instance insurance card, is an attribute of the relation “owner”
between a person and a car. Units of information and association
are in fact organized as structures : vectors, blocks, hierarchies,
networks, etc. We have chosen in this model a set of structures
which covers most of the real situation.

The types of structures are dedicated to “applications” problems
and are completely independent of the implementation. Our pur-
pose is to complete those structures by an access model which will
be processed by the data administrator,

It 1s not enough to propose a tool for building structures :
the model should allow the description of these structures and it
will be used as the basis support of a data definition language
(DDL).

As an analysis tool, the proposed model has another capability :
it will be used as a basis for the definition of a data manipulation
language (designation, deletion, insertion, modification). This
model which defines a graph, allows description of structure
“navigation”.

Next, we shall associate to this model an optimization me-
chanism in order to improve access time and facility of processing.

The proposed model associates with relations, existence pro-
perties (cf. infra 2.2.1.3) which in turn can generate procedure
simplifying the updating and questioning of the data base.

Last, the proposed formalism should allow implementation of
algorithms in order to optimize the chosen structure (e.g. rede-
fining a structure which can minimize “navigation” time in a

(*) See Codd's “Relational Data Model”, Bibliography [4].

90

subset of the data). The model should also allow optimization of
programs written in DML,

1.2. — Functional model and access model

In accordance with our method of analysis which goes from the
“perceived” problem to implementation, the individual model has
been divided into two embedded models : the functional model
and the access model.

The first model consists of a structuring tool that the analyst
can use to represent “the real world” (). It will allow the building
and description of data structures, the choice between different
structures and the definition of a language manipulating data
described by structures.

The second one is a set of tools used by the analyst and the
data administrator to implement structures built up with the help
of the conceptual model.

In the first model, an analysis of applications should lead the
analyst to the list of individuals, attributes and semantic relations
between the individuals. In the second model, applications consi-
dered as access algorithms depend on the particular accesses to
data : we have to combine semantic relations and access relations.
The access model will allow description and choice of the best
structure for access and definition of a data manipulation language
explicitly taking into account access structures.

In embedding these two models, we wish to ensure that the
second model does not reduce the semantic content of the first;
it should just complete the first one, through dealing with the
access relations contained in the semantic relations.

2. — INDIVIDUAL MODEL OF A DATA BASE : A CONCEPTUAL MODEL

2.1. — Introduction

In order to find essential notions which we will define formally,
it seems useful to refer first to an example of a way of building
a data base.

(') Cf. Introductory report.

91

Suppose, for instance, a personnel data base. The user lists all
elementary information of any value to him; say for example :
name, first-name, sex, employee-number, social security number,
etc. This information is structured as entities of individuals : the
user builds in this way the following individuals :

. PERSON (SOCIAL-SECURITY-NUMBER, NAME, SEX,
AGE)

. DEPARTMENT (N° DEPT, MANAGER, ACTIVITY)

. CHILD (NAME, AGE)
oy o

Next the user points out the following relations :
. PERSONS BELONG TO ONE OR MANY DEPARTMENTS

. CHILDREN BELONG TO ONE PERSON
. ete.

Considering such a process, we believe, that a conceptual model
for a data base should allow :

— definition of individuals and their associations with attributes
— definition of relations

This model will be designated to represent as well as possible
the steps of the process.

2.2. — Objects of the model

2.2.1. — PROPERTIES.

A property is an elementary information that the user wishes
to have in his data base. This implies the definition of a mechanism
which will assign value to any property.

EXAMPLE :

NAME is a property which can take values such as “SMITH”,
“TARDIEU” or “DEHENEFFE”

2.2.2. — INDIVIDUAL.

An individual is an object to which we associate certain pro-

perties. An individual may be given a value by giving a value
each property,

92

EXAMPLE :

To the individual PERSON we may associate the properties
NAME, CHRISTIAN NAME, SEX and AGE. If we give to
name the value “SMITH?, to christian name the value “JOHN?”,
to sex the value “MALE” and to age the value “27”, the 4-tuples
(SMITH, JOHN, MALE, 27) is considered as an occurrence of
the individual PERSON.

2.2.3. — RELATION.

If we consider two individuals, we can associate to the so-
defined couple, 0 or many relations : a relation is an association
between two individuals which allows us to associate semantically
two occurrences of those individuals.

We may give properties to a relation. Those properties are called
intersection properties.

Let us consider for instance the following individuals MANU-
FACTURING-UNIT(UNIT—NAME, DESCRIPTION), PRO-
DUCT(PRODUCT-NO, PRODUCT-NAME, DESCRIPTION),
let us create the relation MAKING between MANUFACTU-
RING-UNIT and PRODUCT. This relation is a way to relate
PRODUCTS to MANUFACTURING-UNITS that make them;
we can also give some properties to this relation, MAXIMAL-
CAPACITY, MINIMAL-CAPACITY which are properties of the
couple MANUFACTURING-UNIT and PRODUCT tied up by
the relation MAKING.

2.2.4, — TYPOLOGY OF RELATION.,

We can describe a typology of relations with two points of
view :

(1) Depending on the number of individuals tied up by a relation.

This typology can be explained using the following example :
the relation SPOUSE which relates two occurrences of the indi-
vidual PERSON could only be a one to one relation.

Let us consider two individuals T and J; then we shall define a
relation between I and J as :

93

1 — 1 if an occurrence of I is related to only one occurrence of
J and if to an occurrence of J 1s related only one occurrence

of L.

1 — n if only one occurrence of I can be related to an occurrence
of J.

n — 1 if only one occurrence of J can be related to an occurrence
of L.

n — m 1n other cases.

(2) Depending on an existence property of the two members of the
relation.

(a) strong member of an individual by a relation.
J is a strong member of I by the relation R if :

— deleting an occurrence 7 of the individual I implies deleting all
the occurrences j of J related to L.

— inserting an occurrence j of J supposes that j is related to at
least one occurrence i of I.

(b) weak member of an individual by a relation.

J is a weak member of the individual I by the relation R if it is
not a strong member by this relation.

2.3. — Data manipulation and designation language

This model introduces some new objects and mechanism that
we should be able to describe and manipulate. Consequently, the
model is the basis of two languages :

(a) data description language which allows the description of
individuals, attributes and relations,

(b) data manipulation language which has two purposes

— specify an instruction
— retrieve objects (individuals or relations) in the data base to
operate on them.

94

2.4. — Implementing the model

There are two ways of implementing the model :

(a) to write a system which allows, in fact, all the possibilities
offered in the model

(b) to use some existing DBMS such as IMS, MIISFIIT,
SOCRATE, SESAM and implement the model with the tools
proposed by the DBMS.

We think that despite some particular constraints due to specific
DBMS, the best way to use this model is for analysis at the con-
ceptual and logical level before creating and manipulating data
with an existing DBMS.

2.5. — Formal presentation of the individual model

Before presenting the individual model, we think it is useful to
recall some “basic concepts” used in the theory of predicates.
This old theory appears to be a very interesting theoretical
approach to data bases.

2.5.1. — ESSENTIAL CONCEPTS OF THE PREDICATE THEORY.

A data base may be considered as a set of logical propositions.
All these propositions, coming from the “real world” may be
analysed using models and it is precisely the purpose of a con-
ceptual model to propose a logical approach.

When we have to conceive a conceptual model, we should
especially take care of the logical process which transforms a set
of logical statements unknown by the user into a host structure
for all inquiries by the user. This process which we call “returning
process” consists of the “designation™ and this “designation” is
especially well formalized in the theory of predicates.

(1) Definition.

We call elementary logical proposition a logical statement which
can only take two values

True or false noted T, F

95

(a) 1 place — predicate or attribute predicate.
Any elementary logical proposition may be analysed in
subject -+ predicate

EXAMPLE :

SOCRATE is a man
subject predicate

we shall distinguish :

variables

X,V 2 subject variables

a, b, c attribute predicate variables
constants
W,k subject variables

o, B, v attribute — predicate constants
An elementary logical proposition could be written :

o e j
predicate subject

We read this proposition : «y is true; this means that for all
the proposition oy 1s true.

N. B. — We note that a logical proposition is only realized by
association of a subject constant and a predicate constant.
(b) 2 place — predicate or relational predicate.

Our former analysis may be insufficient because certain logical
proposition are best analysed by 2 place-predicates :

predicate — subject 1, subject 2

EXAMPLE :
Louis XIII is the son of Henri IV

is the son of — Louis XIII — Henri IV
predicate subject 1 subject 2

N. B. — A one place predicate analysis would have shown the
predicate *is the son of Henri IV”., We see that some information
would have been lost, because in this way we should have elimi-
nated the transformation which indicated that “Henri 1V is the
father of Louis XIII”, we can introduce an additional notation :

96

r, s relational predicate variable
p, o relational predicate constant

EXAMPLE : the previous example could be written.

pXZ

(11) Designation.

Designation simply consists in setting up a logical proposition
which we want to be true and whose subject is not determined.
Formally the subject constant ¥ is replaced by a subject variable x.
In order to precisely show the subject, that we want to designate,
we write at the very beginning of the designation the variable
of subject x followed by the sign | which means “such that”.
EXAMPLE : x| aex is read : x such that «x and means “all x such
that ox is true”.

We see that this operation is very simple if and only if an analysis
in terms of subject and predicate has been previously made and if
this analysis is known to the user.

We can also obtain a designation using a relational predicate
x | Fxz

EXAMPLE :

(1) if & is the attribute predicate “is a man”
x | ex designate all men

(2) if £ is the relational predicate “is the son of” and z is the
the subject constant Henri IV

x | ¥ xz designate all sons of Henri IV

The individual model using predicate theory will allow a logical
formalization involving data definition and data manipulation.
The process of designation essentially uses the notion of individual.

2.5.2. — DESCRIPTION OF INDIVIDUAL MODEL.

(i) Let us introduce the following spaces :

P : property space (or elementary data space)
(Elements are predicate variables a, b, ¢).

J : individual space. We call individual a being whose only
property Is to exist or not exist.

97

V : value space
(Elements are attribute predicate constants e, 3, 9).

R : relation space which ties up couples of individuals
(Elements are relational predicate constants).

These four spaces have been shown (cf. Introduction) to form
a rather natural representation of the *“real world”.

Any user, who has defined his objectives, most frequently uses
the following way :

(a) he quite clearly sees elementary data which he needs. These
data correspond to elements of P,

(b) he secondly determines a set of entities in building associations
between elementary data.

(11) Definition.
An application of the set A to the set B is a correspondence
which associates to one element of A, 0 or many elements of B.

We shall note :

D: A—>B
ac A (@ =by ..., biecB,i=1...m

An application which associates to an element of A one and
only one element of B is a function.

(i11) Study of the individual space J.

An individual is a being whose only property is to exist or not
exist.

We can figure out this individual space as a space of names or
numbers which designate unambiguously an individual, thus
recording the facts chosen to be interesting for our objectives.

(a) application ENTITY of an individual.

The application ENTITY is defined by :
ENTITY : J—> P
ifIeJ,ENTITY (D) =py, Poy - s Pi ... Pmc P

The properties p; are called attributes of the individual.

98

We believe that the application ENTITY is a quite natural way
of thinking for the user.

When he has chosen a set of “elementary data” the user next
executes the following operations.

1° choice of a name for the individuals : this is the building of the
space J.

20 unique choice (depending on application or semantic of the
problem) of a set of attributes which he canonically associates
to an individual.

EXAMPLE :

If we consider the individual “person”, we associate attributes
such as name, christian name, sex if these data are interesting for
defined applications.

N.B. — It is very important to notice well the difference
between entity and individual. Actually the difference made in
this model is the same difference as the one made by linguists
between significant (entities) and signified (individual), The classic
example is the word h-o-r-s-e which is the significant as opposed
to the 4 legged-animal which is the signified.

(b) Application VALUE of a property.

The application VALUE can be defined by :
VALUE P—V
ifpeP
VALUE (p) =V, Vo ... Vi withV,, V, ... VeV

This application is used to associate to a property the set of
values that this property can take.

(¢) Application REALIZATION of an individual.

We define the application REALIZATION of an individual I
as an application

J—>V
if we have I £ J and i, an element of I, we shall write :
REALIZATION (f‘ﬂ.) = Vi,n%s Va,nrs - .« Vam

With Fl'n', Fﬂ,ﬂ’! . w pﬂ'ﬂE V-

99

We shall verify that if
ENTITY (I) = py, Ps « -« Pn

then
VALUE (.Pl) — 1’1‘1, . p:[,ﬂ: L vl.m
VALUE (p3) = Vo35 +++ Vony +++ Vom
N.B. — We can define the function : projection on p; of
REALIZATION of 1.

JXP—=>V

If ip is an element of I and 1 J and py, 1s a property such that
pm € P, we shall have :

PROJECTION p,, REALIZATION (in) = vm.n
with vy n e V.

EXAMPLE :

J = {person, child, car}
P = {name, first name, sex, address, age, type, color, power}

the application ENTITY gives

person (name, first name, sex, address)
child (name, first name, sex, age)
car (type, color, power).

J P
N\
person ¢ name first name gex address
i s S e
:l2 DURANT i Jules ': m rue bleue
ia MARTIN ! Claude | £ rue rose

REALIZATION (i,) = DUPONT, Jean, m, rue verte
VALUE (christian name) = Jean, Jules, Claude.
PROJECTIONpame REALIZATION (i,) = DUPONT.

Remark :

In an application VALUE, each property can take a special
value “U” = “unknown”, which is given to an attribute whose
value is not known.

100

(iv) Study of the space of relations R.

(a) Association between two individuals by relation.

This association can be formally introduced by the application :

RELATION:J x J—P
VILI e J

RELATION (L)) =ry 15 oo In with r;e R

this application allows us to obtain all the semantic relations
existing between two individuals.

EXAMPLE :
administrator
g [S S e —
il - e = . S
-vij et __E:P.:.l ?:. ______ = b
company | person
e - manager -

RELATION (company, person) = Administrator, employee,
manager.

(b) Application ENTITY of a relation.

We call entity of a relation, the application
R—>P
ENTITY (rp) =pi,Ps -« Pm With py, pa ... pme P.

This application allows us to associate to a relation, the set of
attributes corresponding to this relation (this is especially inte-
resting for m — n relations).

EXAMPLE :
In the previous example we could have :
ENTITY (employee) = (starting date, end date).

(¢) Application REALIZATION of a relation r between I
and oJ.

We call REALIZATION of the relation r between I and J the
application :

101

REALIZATION (ra) = (iy, /1), (igs j2) - - - (ins jn)
with Fn € R

Oyl ... In)e] LJded
Ul}jr-«r*jﬂ)EJ

We see that an application REALIZATION gives the cor-

respondence bctween a given relation r, and all couples (in, jn)
which satisfy it.

N. B. — We can use the notation “couple for r,” to designate
all couples resulting from the application REALIZATION (rp).

EXAMPLE

With the previous example we shall have :

-
=

E : employee
A : administrator

- —
el ————

H.-—.-

REALIZATION (A) =

(Ey, Py), (Es, Py), (Eg, P))
REALIZATION (E) =

(E;, Py, (Eyi, Py, (Ey, Py), (Es, Py)...

(d) Association between an individual and a relation.

RELATION:J x R—R
Kel

rnER

RELATION (K, ry) = ry, Fy = == I'm.

102

EXAMPLE :

Using the previous example, we associate the individual function
to the relation employee.

administrator
Lcm'Lh‘. _______________________ = I“m =
~~ _employee =2
WSl
theoretical y real occupation
occupation 5
function

RELATION (function, EMPLOYEE) = theoretical occupation
real occupation.

In fact, this means that we can associate to the occurrence of the
relation EMPLOYEE (IBM, DUPONT) the function programmer
either for a real occupation or for a theoretical occupation. This
is a well known problem for personal managers.

N. B. — The application RELATION can be repeated iteratively
and allows us to obtain n-tuples.

2.5.3. — TYPOLOGY OF SPACES P AND R.

(i) Typology of the space of property.

We shall establish a typology of properties: we can admit that
there are several kinds of properties :

(@) Elementary property.
These properties take their values by the application
VALUE (pa) =V, V, ... Vy

We can define the list of authorized values : discrete values slices,
etc. One can prohibit value “U”,

EXAMPLE :

AGE 0 through 110

103

(b) Block type property.
A block type property is an object structured as follows:

« = (o, %y ... &u) Where « is the object obtained by concatenating
elementary properties o, o . .. %p.

Application VALUES is defined :

VALUE (address) =
(VALUE (N)), VALUE (street), VALUE (town))
20 verte NAMUR

(¢) Vector type property.
A vector type property is a couple (e, J) where o is the name of
a property and J an index. The application VALUE is so defined :
VALUE (e, J) = (VALUE (2), VALUE (J))
EXAMPLE :

VALUE (first name, I) = VALUE (first name), VALUE (1)
(JEAN, 1), (GUSTAVE, 2) ...

which means Jean is the first christian-name and Gustave the
second one.

(11) Typology of the relation space.

The application of RELATION statically describe the possible
relations between individuals. But a date base is dynamic since
it 1s possible to add or to delete occurrences of individuals.

It seems useful to study properties of relations that will describe
for a date base the some properties that are invariant.

We can introduce two typologies :

(a) typology using cardinality
(b) typology using the existence property.

A) Typology using cardinality.

Let us define a new application which we call PROJECTION
RxJ—>J
If we have a relation : rp ¢ R between I and J, we write :
PROJECTION (ra, ix) =Jjijs - - - Je

we define all j, associated with an i; by the relation r,. We define
the relation r, between i and J as :

104

1—1if Vigel 3,/ PROJECTION (rp, in) = ji

and Vjped 3, i PROJECTION (rp, jn) = ir
I—nif Viped 3, i PROJECTION (ru, jr) = ix
n—11if Vipel 3, ji PROJECTION (rn, in) = ji
n — n in other cases.
EXAMPLE : J
1—1 -

(B) Typology using property of existence
If ry, is a relation between I and J, we define

. J is a strong member of I through R if the following properties
are truc

— deleting an occurrence incl implies deleting all j,=J defined by
PROJECTION (ry, in) = jysja - -« jp

— adding an occurrence jy € J implies the existence of an occur-
rence ix such that

PROJECTION (rﬂ,, jﬂ) — fl, fg « e fﬁ, fﬂ

. J is a weak member in all other cases.

2.5.4. — GRAPHICAL REPRESENTATION.

We represent an individual as

|

where ENTITY (I) = (a, b, ¢)

a
b
c

105

we represent relations between individuals as

| U IS where
1\ e | _J__! RELATION
i : : L LD =(@y)
| 5 I______; ENTITY (r) = (f,)
——— s| 1 ENTITY (s) = (4, 1)

we represent a relation between an individual and a couple as :

" R
>’ I f b

[3
\‘r! E #J'
-I " where RELATION (r, k) = (s5)
ENTITY (k) = (d, e)
KN ENTITY () = ()
d

e

—_—

3. — ACCESS MODEL OF A DATA BASE

The access model aims at describing in greater detail the indi-
vidual model of an information system by emphasizing the logical
accesses to data that are required by applications.

A general description of the whole model is to be found

in ([11], [12], [14]).

This section confines itself to that part of the model which
is actually implemented (*). This subset and the programming
system associated with it are described in greater detail in [15].

A model of this type is a trade-off between the more general
relational models and the more “rigid” conventional DBMS.

(*) The target system chosen for the first implementation is the Siemen’s
SESAM System. It should be noted, however, that the model has not been

designed for a particular target system, and that it allows the use of DBMS
such as CODASYL, IMS, SOCRATE and others.

106

Regarded as a complement of the conceptual model, it may be
considered as a compromise between certain semantic models
(such as in [16]) and logical implementation models (such as
in [17]).

3.1. — Elements of the access model

The model provides the user with a description of the units
of information and accesses between them. The accesses assume
the form of access relations defined on two objects, each of which
corresponds to one unit of information. At a given time, the data
base consists of a set of objects and a set of relations.

N.B. — The examples mentioned here refer to the graph
described at the end of the section.

The objects.

An object corresponds to an homogeneous class of information
that is significant for one or several applications. Thus, within
the framework of a firm, the following objects will be defined :
“product”, “order”, “customer”, “quantity”, “product number”,
“address”, ... Each element of that class is a realization of the
object. At any time, to an object are associated its name and the
set of its realizations; from now on we will refer to that set by
means of the name of the object. The set of the objects of the
D. B. 1s partitioned into three subsets : the elementary objects,
the complex objects and the root object. Before discussing the

objects, we will explain further what we mean by “access relation”.

The access relations.

Let R be an access relation defined on objects A and B: A is
called the origin object of R and B its target object.

At any time it is possible to associate with R a set of pairs
(a, b) such that a belongs to A and b to B. These pairs are the
occurrences of the relation. If (a, b) is an occurrence of R, then a
privileged access path exists to the realization b from the realiza-
tion a. R is said to allow b to be accessed from a.

EXAMPLE :

employee (FIRM, PERSON) means that for one realization of FIRM it is
possible to access a set of realizations of PERSON in the framework of (“by

107

means of™) the access relation employee. This structure may be vizualized
by means of the oriented graph (actually a “multigraph™)

FIRM ——-{_gmplﬂyee]——::- PERSON

The name of a relation may be omitted, providing that no
ambiguity arises.

Examples :

— (FIRM, PRODUCT) expresses the access from a firm to the products it
manufactures.

— (CUSTOMER, NAME) expresses the access from a customer to his name.

— (NUMBER, PRODUCT) expresses the access from a number to the pro-
duct corresponding to it (if the latter exists).

In terms of the graph, we will write :

CUSTOMER |—-| NAME |

Inverse access relation.

Let R(A, B) and S(B, A) be two access relations. We will denote
by R(a) the image of a< A in B by R
and by S(6) the image of b B in A by S.

If R and S are said to be the inverse of each other, then, at any
time
beR(a) <= ac=S(b) (})

Examples :

— employvee (FIRM, PERSON) and employer (PERSON, FIRM) are the
inverse of each other.

— as are (CUSTOMER, NAME) and (NAME, CUSTOMER).

N. B. — Any relation that is the inverse of itself is said to be
symetrical; e. g. spouse (PERSON, PERSON).

Relation with an ordered target.

The set of the occurrences of a relation R(A, B) is always partly
ordered. Indeed, the image of any realization of A is ordered,
the order being the order of access to the various elements of the
Image.

(*) Though an access relation may not possess an inverse relation, it can
be compared with the *“access function™ in [16]. Nevertheless, the consistency
rules associated with it are different.

108

However, while certain orders are meaningless, depending
merely on the implementation techniques, other orders are signi-
ficant; for instance, a person’s children will be accessed in order
of increasing age.

The relation R will be said to be a relation with an ordered
target if the order of access is explicitly specified in the description
of the relation R.

If an order is specified, it will be possible to refer to it by means
of the ordinal in the D. M. L.

Characteristics of a relation.

Any access relation R(A, B) is characterized by 4 integers
i-j, k-/ indicating that at any time :
— n realizations of B may be accessed from any ac A by means
of R, withi<n<j
— any b e B may be accessed from m realizations of A by means
of R, withk <m< L

So, spouse is characterized by 0-1, 0-1
employee 0-c0, 0-10
(ORDER, CUSTOMER) 1-1, 0-o0
(CUSTOMER, NUMBER) 1-1, 0-1

If R is characterized by m-n, o0-p and if S is the inverse of R,
then S is characterized by o-p, m-n.

N.B. (1) — a relation with a compulsory member is charac-
terized by 0-/, 1-/
— a relation with a weak member is characterized
by 0-7, 0-/.

(2) We must always be very cautious when representing
a real system by means of an information system
described by its access model; for instance, since we
know that a person has from 0 to 30 children and
that a person is always the child of two other persons,
persons, we could feel tempted to define :

child (PERSON, PERSON) : 0-30, 2-2

but such a relation would make it impossible to create
realizations of PERSON corresponding to the ances-
tors of the population described. Hence the definition :

child (PERSON, PERSON) : 0-30, 0-2

109

Dynamics of a relation.

In process of time, the set of the occurrence of a relation will
be altered by the addition of new elements, or the removal of
existing elements. These alterations must be performed in accord-
ance with the characteristics i-j, k-/.

The elementary objects (EO).

An elementary object is defined by its name, the set of its realiza-
tions and the set of those relations in which it takes part. A
realization of an elementary object is a value that may be manipu-
lated (read, written, used in a calculation...).

Example :

— “SMITH?” is a realization of NAME.

— 26 i1s a realization of AGE.

— “10 Downing Street, London” is a realization of RESIDENCE.

The realizations of certain elementary objects cannot be broken
down (AGE, PRICE, NAME...) whereas those of other elemen-
tary objects result from the concatenation of several significant
values. The last example mentioned above shows that the
decomposition :

10, Downing Street London
remains significant,

The elementary object RESIDENCE is said to be made up of
the elementary objects : NUMBER, STREET, TOWN. Thus a
distinction should be made among elementary objects between
simple and compound objects. These relations of composition
assume the form of the access relations characterized by j-j, /-/;
hence the following graph :

| RESIDENCE |

4 J N
|[NUMBER | |STREET | | TOWN |

As to the set of the realizations of an elementary object, it will
not be altered during the life of the D. B.

Thus,

— AGE. described as an integer between 0 and 150, possesses a set of 151
realizations :

{0, 1, 2, ..., 149, 150}

110

— NAME, described as a string of at most 10 alphabetical characters, possesses
a set of 26 -+ 26* 4 26® 4 ... 4+ 26'° realizations :

{A,B,C, .., AA, AB, AC, ..., ZZZZ777777}.
— SEX possesses two realizations {M, F}.

“Unknown” is also a value of an EO.

The set of realizations of a compound EO is the cartesian pro-
duct of the sets of realizations of the EO composing it.

The complex objects (CO).

A complex object is defined by its name, by the set of those
relations in which it takes part and by the operations that may
be performed on its realizations.

For instance, there exists an object LINE, taking part in the
relations (ORDER, LINE), (LINE, NUMBER), (LINE, Q),
(LINE, PRODUCT) and for which it is possible to create or
remove realizations. The set of realizations associated with a
complex object will usually be altered in process of time, by
means of the operations of creating or removing realizations.

Whereas a realization of an EO may be “perceived” merely
by knowing the value corresponding to it, a realization of a CO
may be perceived only by knowing realizations of EO directly
— Or not — related to that CO. E.g. each realization of the
CO LINE will be known by the number of the order possessing
that line, the number of the line, the quantity and number of the
product referred to by that line, etc. However, a subset of this
information is usually sufficient to identity a realization of a CO.
Two cases may be distinguished :

— the CO takes part in a relation (or composition of relations)
characterized by i-j, n-I; in this case the identification of a
realization of the other domain of the relation may identify
a realization of that CO.

Examples :

— R = (PRODUCT, NUMBER) is characterized by 1-1, 0-1; a value n of
NUMBER is sufficient for identifying the realization p of PRODUCT
such that (p, n) = R.

— the relation spouse (PERSON, PERSON) is also an identifying relation. _

5

— if such is not the case, it will be possible to specify a list of
relations in which the CO takes part and such that the identi-

111

fication of a realization of the other domain of each one of
them makes it possible to identify a realization of that CO.,

E.g., if we state that R = (ORDER, LINE) and S = (LINE, ORDER) is
the identifving list of the CO LINE, then, to one realization of ORDER and
one realization of NUMBER corresponds at most one realization of LINE.

i.e. in formal terms :
vee ORDER, ywne NUMBER, |R(e)NSi(n) | < 1.

It should be noted, on the other hand, that a realization of a
CO may be identified by its rank in the image by any relation
(with an ordered target) of a realization of origin object of that
relation.

Dynamics of the complex objects.

The creation and removal of realizations of CO must be per-
formed in accordance with the characteristics of the relations.
E. g., removing a realization of ORDER will automatically result
in the removal of the realizations of LINE associated with it. On
the other hand, creating a realization of LINE will necessitate
first identifying :

— a realization of ORDER
— a realization of Q

— a realization of PRODUCT
— a realization of NUMBER

The root object.

A simple realization, namely the D. B. itself, is associated with
the root object. From that object certain CO are accessed by
relations corresponding to a sequential access.

The graph.

The structure of data, considered in terms of objects and rela-
tions, may be represented by an oriented multigraph whose vertices
are the objects and whose arcs are the access relations.

Building a graph of structure obeys a set of rules designed to
obtain the description of a feasible and coherent D. B. (see [135]).

3.2. — The data manipulation language (see [11], [13], [14])

The language makes it possible to describe collections of realiza-
tions of objects and to command the performance of operations

112

on these collections. The collections are described by specifying
an access path in the graph of structure. It is worth noticing that
this language has been designed in such a way as to be used both
as a sub-language and as a self-containing language. Its definition
will not be detailed further here for we think the following examples
highlight its main features.

The conditions.

The D. M. L. makes it possible to choose those realizations of
an object that satisfy a condition which is a simple criterion or a
boolean expression of simple criteria.

There exist two types of criteria :

(1) “belonging criteria” : the realizations selected belong (do
not belong) to a described set.
— Q(=10-1000)

This expression denotes those realizations of Q whose values are
betwezn 10 and 1000,

— PRODUCT (s FINISHED-PRODUCT).
If FINISHED-PRODUCT has first been defined as denoting the finished

products, the expression denotes all the products which go into another

product.

(2) “relation criteria” : the realizations selected are linked to a
certain number of (or to certain) realizations of an object possibly
satisfying a condition.

— PRODUCT (R : NUMBER (=2724))

denotes the product whose number is 2724,

R is the name of the relation from PRODUCT to NUMBER; in fact,
that relation has not been given a particuler name and R corresponds to
an empty string; it will then be written : PRODUCT (: NUMBER(=2724)).

— FIRM (employee : 20-50 PERSON (spouse : 0 PERSON))
denotes the firms employing from 20 to 50 unmarried persons.

— PERSON (child : 1st-3rd PERSON (: AGE(=21-150)))
denotes the persons whose first three children have attained their majority.

— LINE (* : ORDER (: DATE(=000000-010168))) (1)
denotes the lines of orders passed before January 2nd 1968,

N. B. — The sign * following the name of a relation (here an empty string)
denotes the inverse of that relation even though it may not exist in the graph.

The accesses.

The D. M. L. makes it possible to command the access from
each element of a described set (described, for instance, by means

113

of a condition) to other realizations linked to it by an access
relation and possibly satisfying a condition. The access allows
the description of new collections.

— CUSTOMER(:NAME(=JONES))[:ALL ORDER(:DATE(=150973))...]

That expression means : for every customer whose name is JONES,
access all his orders passed on 15/9/73 (by the relation without name).

— ORDER (:DATE (=00000-010168)) [:ALL LINE...]
for every order passed before 2/1/68, access all the corresponding lines.

It will be noticed that this expression is equivalent, from a “semantic”
point of view, to that of example (1). It is indeed allowed to ask the same
question in several equivalent ways. The optimization of algorithms must
take place at this level, since the gquestions are not equivalent from the
point of view of their execution time.

The actions.

The D. M. L. makes it possible to specify the operations to be
performed on each element of a described collection : suppress (S),
print (P), ...; it also makes it possible to add realizations, to create
and remove occurrences of relations.

Given certain rules to be obeyed, sequences in the host-language
may be considered as actions.

— ORDER (:NO (=x)) [:ALL LINE [:ALL PRODUCT [:NAME P]]]
means : print the name of all products related to order number x.

— ORDER (:NO (=x)) [:ALL LINE [:NUMBER P]; S]

means : for order number x, access its lines, print their number, then remove
those lines.

— PERSON (:NO (=x)) [C spouse : PERSON (:NO (=»)]
A relation “spouse™ is created between person no. x and person no. y.

Other concepts.

The D. M. L. also allows the constitution and manipulation
of temporary collections, the passing of values of EOs from and
to zones reserved in the host-language as well as simultaneous
work on several D, B. (e. g. creation of a D. B. from two others).

At the present time, a compiler for a subset of this language
(to which certain algorithmic mechanisms have been added) has
been completed (see [14]).

114

115

[EIva] [Eagnan ANTI'T A0T¥d | MAGON

——

m t muzmﬁmﬂ__

S T
" | 39V ERR
& SSIYAAV HAMIO | LoNaoy¥d

S, X3S | JATHAN
S
N /

| WEROLSAD) Ence 224 07dws) o
- Iﬁl\rmﬂhnﬁmﬂ)
* s Guosi>

4, — TRANSITION FROM THE CONCEPTUAL MODEL TO THE ACCESS
MODEL AND IMPLEMENTATION OF THE ACCESS MODEL

The transition from the individual model of the collection of
data to its access structure takes place in three stages :

(a) Any semantic many-to-many relation between A and B
owning attributes i1s transformed into an individual AB endowed
with those attributes and related to the individuals A and B.
We note, in fact, that all implementation systems create a special
“record” with such intersection data.

(b) To an individual corresponds a complex object allowing
access to elementary objects associated with that individual’s
attributes.

By examining the algorithms corresponding to each current or
future application it will then become possible:

— to transform each semantic relation into one or two access
relations:

— to determine the necessary access relations from the EOs to
the COs;

— to determine the relations with an ordered target;
— to determine the actions related to each CO.

(¢) Examining the data properties will determine the charac-
teristics i-j, k-/ of each relation, in agreement with typology of
relation according to existence and cardinality.

As to the implementation of the D. B. described in the form of
an access structure, its main aim will be to establish a correspon-
dence between the elements of that structure and the tools made
available by the implementation system. From that point of view
each implementation system is a particular case. Nevertheless, a
problem of choice will usually arise; its solution will be made
easier by a finer analysis of applications and data.

Analysing applications will result in information such as

— the frequency of use of an access relation;

— the realization of removal and addition of complex objects realizations and
of occurrences of relations;

— the method ol exploitation of the application using a given relation.

116

Analyzing data will determine information such as

— the probability that a realization of A will be linked by R to n realizations
of B (e.g. though child is a relation characterized by 0-30, 0-2, the average
value of | child (a) | is only 2);

— the probability that a realization of a CO will be linked to the realization
V of an EO;

— the average length of the values of an EO;
— elc.

This information will also be used for optimizing the access
paths corresponding to one algorithm.

Obviously, if a fairly performing D. B. is to be built, it will
be impossible to proceed through the two steps outlined above
independently, and studying the implementation will bring about
the reorganization of the access structure.

BIBLIOGRAPHY

1. ABRIAL, J. R. — Projet SOCRATE : données, mémoires et utilisateurs d’une
banque de données. Congrés AFCET/IRIA Banques de données (1971).

2. BacHmAN, C. — The programmer as a navigator (ACM annual conference,
Atlanta (1973).

3 CarnNAP. — Introduction to symbolic logic and its application. Dover
publication Inc. (1958).

4. Copp, E. F. — A relational model of data for large shared data banks. Com-
munication of ACM, Vol. 13, No. 6 (June 1970).

5. Cobp, E. F. — Further normalization of the data base relational model.
IBM Research Laboratory, San José, California (August 1971).

6. Copp, E. F. — A data base sublanguage founded on the relational calculus.
IBM Research Laboratory, San José, California (July 1971).

7. KLEENE, S. C. — Logique mathématique. Collection U, Armand Colin.

8. PicarDp, C. — Eléments de la théorie des graphes. Publication CNRS
No. AMT/25.11.8.1BI (1969).

9. Tarski, A. — Introduction a la logique. Gauthier-Villars (1969).

10. DeHENEFFE, Cl., HENNEBERT, H. and Paurus, W, — Relational model for
a data base. Proc. IFIP Congress, 1974, North-Holland Publish. Co.,
1022-1025 (1974).

11. HAamNAurT, J.-L. — A Semantic formal model of an implemented data base
and its data manipulation language. Publication de I'Institut d’Informa-
tique (July 1973).

12. Présentation et spécifications du modeéle d’acces. Documents internes de
P'Institut d’Informatique (15 mai 1973, 22 juin 1973, 22 janvier 1974).

13. Présentation et spécifications du langage rigide. Documents internes de
PInstitut d’Informatique (15 mai 1973, 10 septembre 1973, février 1974).

14. HAaNAuT, J.-L. and LECHARLIER, B. — An extensible semantic model of
Data Base and its Data Language. Proc. IFIP Congress 1974, North-
Holland Publish, Co., 1026-1030 (1974).

15. Systéme de conception et d'exploitation d’une base de données. Partie [:
Le modeéle d’acces. Introduction au systeme de programmation; Partie 11 :

117

Manuel de référence; Partie IIT ; Description d’une base de données d’essai.
Publication de I'Institut d’Informatique (novembre 1974).

16. AsriAaL, J. R. — Data Semantics, in Data Base Management. Proc. IFIP
WC 1974, North-Holland Publish. Co., 1-60 (1974).

17. Senko, M. E., ALtmAN, E. B., AstraHAN, M. M. and Feuper, P. L. —
Data structures and accessing in data base systems. IBM Systems Journal,
Vol. 12, No. 1 (1973).

118

