
FACULTES UNIVERSITAIRES
NOTRE-DAME DE LA PAIX
LIBD - Laboratoire d'Ingénierie des
applications de bases de données

NAMUR

__

 Institut d'Informatique
 rue Grandgagnage, 21
 B-5000 Namur (Belgium)
 Fax: +32 81/72.49.96 (or 85)
 Email: db-main@info.fundp.ac.be
 URL: http://www.info.fundp.ac.be/libd

The DB-MAIN

Database Engineering CASE tool

- Version 6 -

Functions Overview

November 28, 2000

27/11/00 2

This document is a result of the Database Application Engineering Laboratory (LIBD) of the
Institute of Informatics, the University of Namur. The R&D and Technology transfer activities
of the laboratory are (and have been) supported by:

ACEC-OSI (Be)

AGD (Be)

ARIANE-II (Be)

ASCII (Be)

BBL (Be)

Banque UCL (Lux)

Cap Gemini (Lux)

Carrières du Hainaut (Be)

Centre de recherche public H. Tudor (Lux)

CGER (Be)

Cliniques Universitaires St Luc (Be)

Cockerill-Sambre (Be)

CONCIS (Fr)

Daimler-Chrysler (Be)

DIGITAL (Be)

D'Ieteren (Be)

EDF (Fr)

EPFL (CH)

Euro View Services (Be)

Groupe S (Be)

IBM (Be)

Institut National de Criminalistique (Be)

Ministère de la Région Bruxelles-Capitale (Be)

OBLOG Software (Pt)

ORIGIN (Be)

Régie des bâtiments (Be)

St-Brice (3 Suisses) (Be)

TEC de Charleroi (Be)

Ville de Namur (Be)

Winterthur (Be)

and

la Communauté Française de Belgique (DB-Process),
la Région Wallonne (InterDB, TimeStamp, DataMigration and DB-MAIN/Objectif 1),

the European Union (DB-MAIN/Objectif),
and the University of Namur (Active DB)

27/11/00 3

LIBD - the Laboratory of Database Application Engineering

• Responsible: Jean-Luc Hainaut
• Collaborator: Vincent Englebert

• DB-MAIN and DB-Process Projects
Vincent Englebert (Meta-CASE, Voyager 2) - partim
Jean Henrard (reverse engineering, program understanding)
Jean-Marc Hick (repository, GUI, DB evolution control)
Didier Roland (tool assistants, design process modeling)

• InterDB Project
Majid Chougrani
Jean-Marc Hick - partim
Philippe Thiran
former researchers: Arnaud Deflorenne, Stéphane Bodart, Olivier Demoulin

• DB-MAIN/Objectif 1 Project
Anne-France Brogneaux - partim
Vincent Englebert - partim
Alain Gofflot - partim
former researcher: Thierry Aerts, Pierre Delvaux

• TimeStamp Project
Virginie Detienne
Didier Roland - partim
Thomas Lieutenant - partim
former researcher: Denis Zampuniéris

• DataMigration Project
Christine Delcroix

• Active DB Project
Anne-France Brogneaux

• Former collaborators in CASE technology and Database Engineering
DB Interfaces: Yves Delvaux
ORGA project: Carine Charlot, Alain Delcourt, Benoît Van Houtte
TRAMIS project: Mario Cadelli, Bernard Decuyper and Olivier Marchand
PHENIX project: Muriel Chandelon, Catherine Tonneau and Michel Joris

DB-MAIN Function Overview The DB-MAIN model

27/11/00 4

1. The DB-MAIN CASE tool

The DB-MAIN programme and CASE tool

DB-MAIN is a generic CASE tool dedicated to database applications engineering, and in
particular to database design, reverse engineering, re-engineering, integration, maintenance and
evolution. This tool is one of the main products of the DB-MAIN programme that was
initiated by the Institute of Informatics in September 1993. The long term objective of this
programme is to study through a uniform framework the problems and processes related to
complex information systems, including those which arise when the requirements of database
applications evolve. This study has led to methodological proposals, both in terms of methods
and of supporting tools for a great variety of engineering activities such as reverse engineering,
program understanding, method modelling, meta-CASE, code generation and the like. As
usually is the case, the main reward is the journey, of which this sixth version of the DB-MAIN
CASE tool is a major milestone.

The programme itself includes three activities: research, development and technology transfer.
The research activity is described in reference [1]. The CASE tool translates many of the
research findings into practical tools for engineering problems solving [5]. The products of the
technology transfer activity are tutorials (self-study manuals), case studies and methodological
seminars (currently a yearly 15-day cycle).

DB-MAIN Function Overview The DB-MAIN model

27/11/00 5

DB-MAIN Version 1 (1995)

Version 1 of the DB-MAIN CASE tool was released in September 1995. It was used both in
industrial and educational contexts in Belgium and abroad (more than 30 universities and high
schools were using the tool). It offered basic functions to enter and manage database schemas;
to view them according to six presentation formats; to produce reports; to transform and
analyse schemas; to produce relational, COBOL, CODASYL schemas and generate SQL,
COBOL, IDS/II-DDL programs; to reverse engineer SQL, IDS/II, IMS and standard file
schemas; to analyse the source texts of programs; to record and replay design activities. Even
in this first version, it was quite capable to help building and reverse engineering large
databases. It provided its users with several original and powerful functions that still are
lacking in traditional CASE tools, such as a rich transformation toolset, assistants to
restructure and analyze schemas, and a powerful repository-based 4GL language (Voyager 2)
to develop user-defined report or code generators.

DB-MAIN Version 2 (1996)

The Version 2 of the DB-MAIN tool, while retaining the characteristics of Version 1, provided
users with more powerful and easy-to-use functions. It included, among others, the following
additional features and functions:

• many-to-many inter-schema relationships

• object marking (permanent selection)

• advanced graphical presentation features: grid, reduce, shape and shadowing

• easier graphical input

• inter-schema copy of objects

• extended log management

• improved schema transformations

• foreign key searching assistant

• integration assistant (project/schema/entity type levels)

• advanced global transformation assistant (with powerful scripting facilities)

• enhanced schema analysis assistant

• meta extensions (adding dynamic properties to objects)

• more powerful version of the Voyager 2 language (repository update, lexical analysis,
dynamic properties management, explain function, large-size programs, ..)

• better integration of Voyager 2 programs into the DB-MAIN tool

• new Voyager 2 applications: paraphrasor (natural language report generator), two RTF
report generators, RPG analyser, etc.

DB-MAIN Version 3 (1997)

The Version 3 of the CASE tool was released in October 1997. Compared with Version 2, it
included the following new functions and features (among others):

• user defined attribute domains

• object domains (for OO structure representation)

• non-set multivalued attributes (bags, lists, unique lists, arrays and unique arrays)

DB-MAIN Function Overview The DB-MAIN model

27/11/00 6

• transformation of object-oriented structures

• transformation of non-set attributes

• augmented Name processing and Prefix processing

• augmented and improved Assistants

• improved program variable dependency analysis (4 variants)

• a sophisticated program analysis processor through program slicing

• a new form of schema: the views, with automatic update propagation

• floating palette for transformation tools

• floating palette for reverse engineering tools

• multiple drag&drop text files from Windows to the Project window

• three distinct planes of object marking (persistent selection)

• a better representation of marked objects (boldface)

• improved version of Voyager-2: new dialog boxes, interface with Windows programs

• new Voyager-2 virtual machine: multiple machines, unlimited program size

• improved Voyager-2 programs monitor: load&run, continue, rerun

• The Application Library #1, consisting of seven powerful add-on processors written in
Voyager-2

DB-MAIN Version 4 (1998)

The version 4 of the CASE tool included, among others:

• full 32-bit architecture;

• representation of the processing components of the applications, including class methods,
so that full Object-oriented schemas can now be specified;

• new attribute domains (index, sequence) and new attribute properties (stable, non-
recyclable); customizable technical ID type and length; user-defined group constraints and
relationships;

• new graphical tools: colouring, objects alignment, Windows-compliant object moving;

• new object examination way: generic permanent property box; customized graphical
schema display;

• active link with external documents in SEM and TECH annotations (text, image, sound,
movie, web, etc)

• six optional, detachable and resizable tool palettes: standard, graphical, reverse
engineering, transformation, process control

• user-defined default directory for *.lun, *.oxo, *.pdl, etc files;

• savepoints and rollback (schema-level undo)

• improved transformations and assistants; program slicing assistant;

• improved log management and processing;

• full schema and object integration assistant;

• Method modelling and control (first prototype, passive method engine):
u method description language (MDL) with its compiler;
u graphical visualization of the current engineering methodology;

DB-MAIN Function Overview The DB-MAIN model

27/11/00 7

u three graphical + list (à la Explorer) representations of the history of the engineering
processes

• DB-MAIN meta-CASE (first prototype, no coupling with the kernel):
u model specification language with references to the kernel repository;
u graphical specification language;
u processing specification language (Voyager 2);
u prototype GUI and specification management engine;

• The Application Library #2, consisting of additional add-on processors written in
Voyager-2: natural language analyzer (English → ERA schema converter); MS-Access
generator/extractor; Voyager general purpose functions library; HTML generator;
generator for Java interface to RDB; etc.

• and more ...

DB-MAIN Version 5 (1999)

This version 5 was a major release since it offered two important functions which were only
prototyped in the Version 4, namely engineering process control (method modelling) and
process modelling (modelling of procedural system components). This version included,
among others:

• processing schemas in addition to standard data schemas;

• graphical representation of procedural components (tasks, processes, programs,
procedures, statements, methods, triggers, etc.); graphical representation of inter-
component relationships: call, decomposition, input/output, as well as between procedural
components and data objects from data schemas;

• sets of products in addition to standard products (schemas and texts);

• default value and value domain constraints (list of values/ranges);

• a new, highly parametric, SQL generator;

• UML graphical notation for class diagrams;

• new alignment functions and graphical styles;

• list of the last five projects opened; immediate selection list of five Voyager modules;

• undo the last action;

• new integrated reporting facilities;

• improved program analysis processors for reverse engineering (program slicing, new
dependency graph, mass analysis of source code; mass analysis of foreign keys, mass
pattern analysis, graphical representation of program structures, etc.);

• customization of standard transformations (through pre- and post-processing)

• propagation of meta-properties and access keys through transformations;

• global transformation assistants: new functions allowing scripts to analyze and evaluate
schemas, and to analyze and process meta-property values;

• full access to all repository objects, to basic functions of DB-MAIN and to assistant
functions from Voyager programs;

• improved Voyager GUI;

• improved log management and processing, including from Voyager programs;

DB-MAIN Function Overview The DB-MAIN model

27/11/00 8

• the method engine is now operational; new user-specific methods can be defined in the
Method Description Language (MDL), compiled and integrated to DB-MAIN; following a
method is just navigating through a graphical workflow; a graphical history is
automatically maintained; it can be queried and processed;

• ... and many other user-oriented and functional improvements.

DB-MAIN Version 6 (2000)

The current version (6) mainly is a consolidation of Version 5, together with new external
processors. Some extensions:

• a new variant, DB-MAIN/Viewer, is available1 for viewing large schemas and for
generating and printing reports;

• most specification objects, such as entity types, attributes and processing units, can be
given stereotypes (à la UML) to allow subcategories to be defined and managed;

• inclusion constraints, which generalize foreign keys;

• graphical representation of stereotypes; more standard representation of schemas in UML
views; improved representation of inter-component relationships in processing schemas;

• four textual representation of procedural components (compact, standard, extended,
sorted);

• free text notes can be pasted on a schema; a note is floating (unanchored) or attached to
an object;

• a detachable user-defined tool palette can be defined and used for specific tasks;

• UML validation scripts to support the convertion of ERA schemas into UML and
conversely;

• XML structure representation and processing: extractor, generator, transformation and
evaluation;

• a Java class generator;

• improved assistants and program analyzers;

• improved method modeling and method engine;

• extended Voyager 2 compiler; enriched Voyager application library;

• the DB-MAIN repository can be accessed through Java classes.

The architectural principles

The DB-MAIN tool is based on five original architectural principles:

• a unique generic repository that can accommodate the description of information systems
at any level of abstraction, and according to the most popular paradigms and models;

• an extensible toolbox architecture;

• transformation-based engineering processes;

• method-driven user interaction and guidance (through MDL and the method engine);

• model extensibility, through meta-schema management, and functional openness (through
the Voyager 2 language)

1 free of charge.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 9

The DB-MAIN CASE tool is developed in collaboration with several companies and public
administrations. The education version is available free of charge for non-profit organisations.

Database Engineering Engineering references from the LIBD

[1] Hainaut, J.-L., A Generic Entity-Relationship Model, in Proc. of the IFIP WG 8.1 Conf.
on Information System Concepts: an in-depth analysis, North-Holland, 1989.

[2] Hainaut, J.-L., Entity-Relationship models: formal specification and comparison, in Proc.
of the 9th Int. conf. on Entity-Relationship Approach: the Core of Conceptual Modelling,
North-Holland, pp. 433-444, 1991.

[3] Hainaut, J.-L., Entity-generating Schema Transformation for Entity-Relationship Models,
in Proc. of the 10th ERA, San Mateo (CA), North-Holland, 1991.

[4] Hainaut, J.-L., Cadelli, M., Decuyper, B., Marchand, O., Database CASE tool
Architecture: Principles for Flexible Design Strategies, in Proc. of the 4th Int. Conf. on
Advanced Information System Engineering - CAiSE'92, Manchester, May 1992, Springer-
Verlag, LNCS 593.

[5] Joris, M., Van Hoe, R., Hainaut, J.-L., Chandelon M., Tonneau C., Bodart F., et al.,
PHENIX: methods and tools for database reverse engineering, in Proc. 5th Int. Conf. on
Software Engineering and Applications, Toulouse, 7-11 December, 1992, EC2 Publ.,
1992.

[6] Hainaut, J.-L., Cadelli, M., Decuyper, B., Marchand, O., TRAMIS: a transformation-base
database CASE tool, in Proc. 5th Int. Conf. on Software Engineering and Applications,
Toulouse, 7-11 December, 1992, 1992, EC2 Publ., 1992.

[7] Hainaut, J.-L., A Temporal Statistical Model for Entity-Relationship Schemas , in Proc. of
the 11th Conf. on the Entity-Relationship Approach, Karlsruhe, October 1992, Springer-
Verlag, LNCS 645, 1992.

[8] Hainaut, J.-L., Chandelon M., Tonneau C., Joris M., Contribution to a Theory of
Database Reverse Engineering, in Proc. of the IEEE Working Conf. on Reverse
Engineering, Baltimore, May 1993, IEEE Computer Society Press, 1993.

[9] Hainaut, J.-L., Chandelon M., Tonneau C., Joris M., Transformational techniques for
database reverse engineering, in Proc. of the 12th Int. Conf. on ER Approach, Arlington-
Dallas, E/R Institute and Springer-Verlag, LNCS, 1993.

[10]Hainaut, J.-L., Englebert, V., Henrard, J., Hick, J.-M., Roland, D., Database Evolution:
the DB-MAIN Approach, in Proc. of the conference on the ER Approach, Manchester,
Dec. 1994, LNCS, Springer-Verlag, 1994.

[11]Hainaut, J.-L., Englebert, V., Henrard, J., Hick, J.-M., Roland, D., Requirements for
Information System Reverse Engineering Support, in Proc. of the 2nd IEEE Working
Conference on Reverse Engineering, Toronto, July 1995, IEEE Computer Society Press,
1995.

[12] Hainaut, J.-L., Transformation-based database engineering, Tutorial notes, VLDB'95,
Zürich, Switzerland, Sept. 1995.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 10

[13]Hainaut, J.-L., Database Reverse Engineering - Problems, techniques and tools, Tutorial
notes, CAiSE•95, Jyväskylä, Finland, May 1995.

[14]DB-MAIN tutorial - Volume 1: Introduction to the Entity-Relationship model, Project
manual (100 p.), DB-MAIN Research Report, Institut d'informatique, FUNDP, October
1995.

[15]DB-MAIN tutorial - Volume 2: Introduction to database design, Project manual (150 p.),
DB-MAIN Research Report, Institut d'informatique, FUNDP, October 1995.

[16]Hainaut, J.-L., Roland, D., Englebert, V., Hick, J.-M., Henrard, J., Database Reverse
Engineering - A Case Study, in Proc. FIIA, Tunis, March 1996.

[17]Hainaut, J.-L., Roland, D., Hick, J.-M., Henrard, J., Englebert, V., Database Reverse
Engineering: from Requirements to CARE tools, Journal of Automated Software
Engineering, Vol. 3, No. 2, 1996.

[18]Hainaut, J.-L., Specification Preservation in Schema transformations - Application to
Semantics and Statistics, Data & Knowledge Engineering, Vol. 19, pp. 99-134, Elsevier,
1996.

[19]Hainaut, J.-L., Hick J.-M., Englebert, V., Henrard, J., Roland, D., Representation of IS-A
Relations, Research Report, DB-MAIN Project, Institut d'Informatique de Namur, March
1996.

[20]Hainaut, J.-L., Hick, J.-M., Englebert, V., Henrard, J., Roland, D., Understanding
implementations of IS-A Relations, in Proc. of the conference on the ER Approach,
Cottbus, Oct. 1996, LNCS, Springer-Verlag, 1996.

[21]Englebert, V., Voyager 2 (version 4 release 1) - Reference manual, DB-MAIN technical
manual, October 1998, public. Institut d'informatique, FUNDP.

[22]Englebert, V., Henrard, J., Hick, J.-M., Roland, D., Hainaut, J.-L., DB-MAIN: un atelier
d'ingénierie de bases de données, in Proc. of the "11èmes journées Base de Données
Avancées", Nancy (France), September 1995; also appeared in Ingénierie des Systèmes
d'Information, Vol. 4, No. 1, AFCET, 1996.

[23]Henrard, J., Hick, J.-M., Roland, D., Englebert, V., Hainaut, J.-L., Techniques d'analyse
de programmes pour la rétro-ingénierie de bases de données, in Actes XIV Congrès
INFORSID, Bordeau, juin 1996, AFCET 1996.

[24]Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., Englebert, V., Database Design
Recovery, in Proc. of the 8th Int. Conf. on Advanced Information System Engineering -
CAiSE'96, Heraklion, May 1996, Springer-Verlag, LNCS, 1996.

[25]Hainaut, J.-L., Henrard, J., Roland, D., Englebert, V., Hick, J.-M., Structure Elicitation in
Database Reverse Engineering, in Proc. of the 3rd IEEE Working Conference on Reverse
Engineering, Monterey (CA), November 1996, IEEE Computer Society Press, 1996.

[26]Hainaut, J-L, Henrard, J., Database Reverse Engineering and Program Understanding,
Dagstuhl Seminar on Software Engineering and Database Technology, Dagstuhl (D),
March 1997, available as DB-MAIN Research report, Institut d'Informatique, FUNDP

DB-MAIN Function Overview The DB-MAIN model

27/11/00 11

[27]Database Reverse Engineering - Problems, Methods and Tools, Lecture notes of DB-
MAIN Advanced Seminars, March 1997, DB-MAIN Research report, Institut
d'Informatique, FUNDP

[28]Hick, J.-M., Englebert, V., Hainaut, J.-L., Roland, D., Henrard, J., Coexistence des
modèles classiques et des modèles à objets - Application de l'approche générique DB-
MAIN, DB-MAIN Research report, Institut d'Informatique, FUNDP, March 1997

[29]Hainaut, J-L, Englebert, V., SQL ↔ O2 Migration - The DB-MAIN Approach, presented
at the informal Working group on SQL/O2 Migration, INRIA, February 26th, 1997, also
available as DB-MAIN Research report, Institut d'Informatique, FUNDP

[30]Hainaut, J-L., Henrard, J., Hick, J-M., Roland, D., Englebert, V., Contribution to the
Reverse Engineering of OO Applications - Methodology and Case Study, in Proc. of the
IFIP 2.6 WC on Database Semantics (DS-7), Leysin (CH), Oct. 1997, Chapman-Hall,
1997

[31]The Concept of Foreign key in Reverse Engineering - A Pragmatic Interpretative
Taxonomy, DB-MAIN Research report, Institut d'Informatique, FUNDP, March 1997

[32]Roland, D., Hainaut, J-L., Database Engineering Process Modeling, in Proc. of the Int.
Conference on The Many Facets of Process Engineering, Tunis, Sept. 1997

[33]Hainaut, J-L., Building IS-A hierarchies from unclassified entity types, DB-MAIN draft
Research report, Institut d'Informatique, FUNDP, 60 pages, October 1997

[34]Hainaut, J-L., Englebert, V., Hick, J-M., Henrard, J., Roland, D., Knowledge Transfer in
Database Reverse Engineering - A Supporting Case Study, in Proc. of the 4th IEEE
Working Conference on Reverse Engineering, Amsterdam (NL), October 1997, IEEE
Computer Society Press, 1997.

[35]Henrard, J., Roland, D., Englebert, V., Hick, J-M., Hainaut, J-L., Outils d'analyse de
programmes pour la retro-conception de bases de donnees, INFORSID'98, Montpellier

[36]Hick, J-M., Hainaut J-L., Maintenance et évolution d'applications de bases de données,
Journées sur la Re-ingénierie des Systèmes d'Information - RSI'98, Lyon (France), 1-2
avril 1998.

[37]Henrard, J., Englebert, V., Hick, J-M., Roland, D., Hainaut, J-L., Program understanding
in databases reverse engineering, in Proceedings of DEXA'98, Vienna, August 1998,
Springler-Verlag 1998.

[38]Thiran, Ph., Hainaut, J-L., Hick, J-M., Bodart, S., Deflorenne A., Interoperation of
Independent, Heterogeneous and Distributed Databases. Methodology and CASE
Support: the InterDB Approach, in Proc. of the Coopis’98 Conference, New-York,
August, 1998, IEEE Computer Society Press.

[39]Hainaut, J-L, Thiran, Ph., Hick, J-M., Bodart, S., Deflorenne, A., Methodology and CASE
tools for the Development of Federated Databases, InterDB Research paper, June 1998,
submitted for publication.

[40]DB-Main, The DB-MAIN CASE Tool version 4 - Function Overview, DB-MAIN
Technical report, Institut d'Informatique, FUNDP, 120 pages, November 1998.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 12

[41]DB-Main, Database Reverse Engineering - Problems, Methods and Tools, Lecture notes
of DB-MAIN Advanced Seminars, Third Edition, March 1998, DB-MAIN Research
report, Institut d'Informatique, FUNDP, 250 pages, 1998.

[42]Hainaut, J-L., Henrard, J., Hick, J-M., Roland, D., Englebert, V., Contribution to the
Reverse Engineering of OO Applications - Methodology and Case Study, in Proc. of the
IFIP 2.6 WC on Database Semantics (DS-7), Leysin (CH), Oct. 1997, Chapman-Hall,
1997.

[43]The DB-MAIN Database Engineering CASE Tool (version 4) - Functions Overview, DB-
MAIN Technical manual, November 1998, Institut d'informatique, FUNDP.

[44]Englebert, V., Voyager 2 (version 4.0) - Reference manual, DB-MAIN technical manual,
November 1998, Institut d'informatique, FUNDP.

[45]Hainaut, J-L., Database Reverse Engineering, DB-MAIN Research Report, November
1998.

[46]Englebert, V, Hainaut, J-L, A Next Generation Meta-CASE, Journal of Information
Systems - Special Issue on Meta-CASEs, Vol 24(2), pp 99-112, 1999.

[47]The DB-MAIN Database Engineering CASE Tool (version 5) - Functions Overview, DB-
MAIN Technical manual, December 1999, Institut d'informatique, FUNDP.

[48]Englebert, V., Voyager 2 (version 5.0) - Reference manual, DB-MAIN technical manual,
December 1999, Institut d'informatique, FUNDP

[49]D. Roland, J-L. Hainaut, J. Henrard, J-M. Hick, V. Englebert, Database Engineering
Process History, in Proc. of the 2nd Int. Conf. on MFPE, Gammarth, Tunisie, May 1999.

[50]Hick, J.-M., Hainaut, J.-L., Englebert, V., Roland, D., Henrard, J., Stratégies pour
l'évolution des applications de bases de données relationnelles : l'approche DB-MAIN,
Actes du XVIIe congrès INFORSID, La Garde, France, juin 1999.

[52]Englebert, V., Hainaut, J-L., DB-MAIN: a Next Generation Meta-CASE, Information
Systems, Vol. 24, No. 2, pp. 99-112, 1999.

[53]Thiran, Ph., Chougrani, A., Hick, J-M., Hainaut, J-L., Generation of Conceptual Wrappers
for Legacy Databases, in Proc. of the DEXA'99 Int. Conf., Florence, September 1999.

[54]J-L. Hainaut, Ph. Thiran, J-M. Hick, S. Bodart, A. Deflorenne, Methodology and CASE
tools for the development of federated databases, International Journal of Cooperative
Information Systems, Volume 8(2-3), pp. 169-194, World Scientific, June and September,
1999.

[55]Henrard, J., Hainaut, J.-L., Hick, J-M., Roland, D.,Englebert, V., Data Structure
Extraction in Database Reverse Engineering, in Advances in Conceptual Modeling, Chen,
Embley, Kouloumdjan, Liddle, Roddick (Ed.), ER'99 Workshops Proceedings, Springer-
Verlag, LNCS, 1727, November 1999

[56]The DB-MAIN Database Engineering CASE Tool (version 5) - Functions Overview, DB-
MAIN Technical manual, December 1999, Institut d'informatique, FUNDP.

[57]Computer-Aided Database Engineering - Volume 1: Database Models, 4th edition, DB-
MAIN tutorial, 1999.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 13

[58]Henrard, J., Hainaut, J-L., Data dependency elicitation in database reverse engineering, in
Proc. of the 5th European Conference on Software Maintenance and Reengineering
(CSMR-2001) Lisbon, March 2001.

[59] Introduction to Database Design, 4th edition, DB-MAIN tutorial, May 2000.

[60]Hainaut, J-L., Bases de données et modèles de calcul, Dunod, Paris, 2000

[61]Englebert, V., A Smart Meta-CASE - Towards an Integrated Solution, Doctoral Thesis,
FUNDP, May 22d, 2000.

[62]Henrard, J., Hainaut, J.-L., Hick, J.-M., Roland, D., Englebert, V., From micro-analytical
Method to Mass Processing - The Economic Challenge, in Proc. Workshop on Data
Reverse Engineering, Zurich, Switzerland, February 2000, IEEE Computer Society Press.

[63]Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., Englebert, V., The Nature of Data
Reverse Engineering (keynote address), in Proc. Workshop on Data Reverse Engineering,
Zurich, Switzerland, February 2000, IEEE Computer Society Press.

[64]Thiran Ph., Chougrani A., Hainaut J-L., Hick J-M., CASE Support for the Development
of Federated Information Systems, in Proceedings of EFIS 2000, Third International
Workshop on Engineering Federated Information Systems, Dublin, June 2000.

[65]Roland, D., Hainaut, J.-L., Hick, J.-M., Henrard, J., Englebert, V., Database engineering
processes with DB-Main, in Proc. of 8th European conference on Information Systems
(ECIS 2000), Vienne, July 2000.

[66]Englebert, V., Voyager 2 (version 6.0) - Reference manual, DB-MAIN technical manual,
November 2000, Institut d'informatique, FUNDP

[67]The DB-MAIN Database Engineering CASE Tool (version 6) - Function Overview, DB-
MAIN Technical manual, November 2000, Institut d'informatique, FUNDP.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 14

2. The specification model of the DB-MAIN CASE tool

The version 6 of DB-MAIN allows analysts to represent and specify information, data
structures and processing units that make up an information system.
The specifications introduced must comply with the so-called DB-MAIN specification model
which defines the valid objects and their relationships. Here follows a brief description of the
main components and features of this model.

2.1 Projects, products and processes

2.1.1 Project

Each DB-MAIN repository describes all the specifications related to a project as well as
the activities, or processes, that were carried out to produce these specifications. A
logical piece of specification appears as a product, and a process (at least most of them)
produces products from other products (or modify the contents of a product). The
processes of a project follow guidelines that are described in a method. A method
specifies what kinds of products are to be used and/or produced, and through what kind
of activities. Together, the products and the processes form the history of the project.

In summary, a project is made up of a method, a collection of products and a collection
of processes.

The products fall into three classes: data schemas, processing schemas and text files.
Products can be grouped into sets of products. A product can belong to more than one
set.

The history of a project appears in the project windows. The latter will also be used to
show the history of a specific process.

Each repository is stored in a *.lun file. A project can be entered manually by the user
or can be imported from an *.isl ASCII text file. There is no explicit relation between
two projects. However, products or parts of products can be exported from a project to
another one.

LIBRARY

Fig.2.1 - Iconic representation of a project. Appears in the Project window.

2.1.2 Data Schema

A data schema is a complete or partial description of information/data structures (such
as those implemented in files or databases). There are two kinds of schemas, namely base
schemas and view schemas. A data schema mainly consists of entity types (or object
classes), relationship types (rel-types from now on) and collections. Processing units
can be associated with entity types, rel-types and schemas.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 15

2.1.3 Base Data Schema

A base data schema can be built from scratch, can derive from another schema (e.g.,
through import, copy, integration or transformation) called its origin or can derive from
an external text file, e.g., an SQL or CODASYL source file.

LIBRARY/1

Fig.2.2 - Iconic representation of a base schema. Appears in the Project and Schema
windows.

2.1.5 Processing Schema

A processing schema describes processing, active or behavioural components of an
application or of an information system. It includes processing units, internal data
objects, external data objects and relations. For instance, a processing schema can
describe a set of procedures, internal variables, database tables (imported from a data
schema), the inter-procedure call graph and the input/output relations between
procedures and data objects.

Invoicing/Java

Fig.2.4 - Though it has different contents, a processing schema has the same representation
as a data schema.

2.1.4 View Schema

A view schema (or simply view) is a data or processing schema that derives from another
schema S, called its source, and that includes a subset of the constructs of S. The
constructs of a view can be renamed, transformed and moved in the graphical space, but
no object can be added or deleted. Any update in the source schema S can be
propagated down to the views that have been derived from it. A view can be derived
from another view.

CORP/Supplier

Fig.2.3 - Iconic representation of a view schema. Appears in the Project and Schema windows.

2.1.6 Text file

A text file is an external text that generally either derives from a schema (e.g., a
generated SQL script file), or from which a schema has been (or will be) derived (e.g., a
COBOL source text or an interview report). Text files are known, and can be processed
by the tool, but their contents are not stored in the repository.

order.cob/1

DB-MAIN Function Overview The DB-MAIN model

27/11/00 16

Fig.2.5 - Iconic representation of a text file. Appears in the Project window.

2.1.7 Set of products

A set of products is a collection of products. This concept provides a useful way to
organize large sets of products.

Library/Logical

Library/ConceptualDocumentation/Final

Order/sql

Fig.2.6 - The three products on the right-side of the figure form the set Documentation/final.

2.1.8 Engineering process

Any product results from an activity called a process. Adding an external text file,
building a conceptual schema, integrating schemas (figure 2.7, left) transforming a
conceptual schema into a relation structures, optimizing a database schema, generating a
report or a SQL script, all are processes. Each process belongs to a process type, which
is a component of the current method, and which tells how to do to solve a specific type
of problems.

Integration

CORPORATE/Conceptual

ORDER/ConceptualSUPPLIER/Conceptual

CORPORATE/Conceptual

ORDER/ConceptualSUPPLIER/Conceptual

Fig.2.7 - Left: the process named Integration merges the contents of its input data schemas
and stores them in the output data schema CORPORATE. Right: the schema CORPORATE
derives from schemas SUPPLIER and ORDER

2.1.9 Inter-product relationship

The products of a project, i.e., its schemas and its text files, generally are linked by
derivation relationships that express the way products are developed from other
products. These derivation relationships can be computed from the history of processes
(figure 2.7, right)2.

2 This display is obtained through the dependency view of the history (View/Graph. dependency) .

DB-MAIN Function Overview The DB-MAIN model

27/11/00 17

Corporat/sql Supplier/sqlOrder/sql

Requ-1.txt/1

CORPORATE/Conceptual

ORDER/Conceptual

ORDER/Refined

SUPPLIER/Conceptual

ORDER/1st-cut

order.cob/2

order.cob/merged

order.cob/1

CORP/Order CORP/Supplier

Fig.2.8 - The network of products of a project. Includes base schemas, view schemas, input
text files and output text files. Each edge comes from a process that has been hidden.

2.2 Data schemas
A data schema mainly comprises entity types (or object types), relationship types,
attributes, domains, collections, anchored processing units and various constraints
(expressed as properties of groups of components).

2.2.1 Entity type (or object class)

An entity type represents a class of concrete or abstract real-world entities, such as
customers, orders, books, cars and accidents. It can also be used to model more
computer-oriented constructs such as record types, tables, segments, and the like. This
interpretation depends on the abstraction level of the schema, and therefore of the
current process.

In an object-oriented model, we will use the term object class instead. Object classes
generally are given methods and appear in ISA hierarchies.

An entity type can be a subtype of one or several other entity types, called its super-
types. If F is a subtype of E, then each F entity is an E entity as well. The collection of
the subtypes of an entity type E is declared total (symbol T) if each E entity belongs to
at least one subtype; otherwise, it is said to be partial. This collection is declared
disjoint (symbol D) if an entity of a subtype cannot belong to another subtype of E;
otherwise, it is said to overlap. If this collection is both total and disjoint, it forms a
partition (symbol P).

An entity type can comprise attributes, can play roles in rel-types, can be collected into
collections, can be given constraints (through groups) and can have processing units.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 18

Since a supertype/subtype relation is interpreted as "each F entity is a E entity", it is
called an ISA relation. ISA relations form what is called an ISA hierarchy.

T P

PERSON

INDIVIDUAL CUSTOMER EMPLOYEE

CUSTOMER

COMPANY

Fig.2.9 - A hierarchy of entity types. PERSON and CUSTOMER are supertypes, EMPLOYEE,
INDIVIDUAL CUSTOMER and COMPANY are subtypes.

The four supertype/subtype patterns can be summarised in the table below, where B1 and
B2 are two subtypes of A:

Total (T) Partial (¬¬T)

Disjoint
(D)

B1 B2

 A

P

B1 B2

 A

D

Overlapping
(¬¬D)

B1 B2

 A

T

B1 B2

 A

Stereotype

An entity type can be of one or several stereotypes, i.e., it can belong to domain/method
specific categories. For instance, a Java class schema can make use of entity type
stereotypes «class» and «interface». Stereotypes are user-defined (see Section
2.5.6). A SQL schema can partition the tables into «base table» and «view».

2.2.2 Relationship type (rel-type)

A relationship type represents a class of associations between entities. It consists of
entity types, each playing a specific role. A rel-type with 2 roles is called binary, while a

DB-MAIN Function Overview The DB-MAIN model

27/11/00 19

rel-type with N > 2 roles is generally called N-ary3. A rel-type with at least 2 roles taken
by the same entity type is called cyclic.

Normally, a role is played by one entity type only. However, a role can be taken by more
than one entity type. In this case, it is called a multi-ET role.

Each role is characterized by its cardinality [i-j], a constraint stating that any entity of
this type must appear, in this role, in i to j associations or relationships. Generally i is 0
or 1, while j is 1 or N (= many or infinity). However, any pair of integers can be used,
provided that i ≤ j, i ≥ 0 and j > 0.

A binary rel-type between A and B with cardinality [i1-j1] for A , [i2-j2] for B is called:
one-to-one if j1 = j2 = 1
one-to-many from A to B if j1 > 1 and j2 = 1
many-to-one from A to B if j1 = 1 and j2 > 1
many-to-many if j1 > 1 and j2 > 1
optional for A if i1 = 0
mandatory for A if i1 > 0.

A role can be given a name. When no explicit name is assigned, an implicit default name
is assumed, namely the name of the participating entity type. The roles of a rel-type have
distinct names, be they explicit or implicit. For instance, in a cyclic rel-type, at least one
role must have an explicit name. A multi-ET role must have an explicit name.

A rel-type can have attributes, and can be given constraints (through groups) and
processing units.

origin
0-1

target
0-N

references

1-1

0-N

copy-of

by
0-N0-1 borrowed

0-N

1-20

0-N

assigned

SUPPLIER

SERVICE

PRODUCT

ORDER

EMPLOYEE

COPY

BOOK

Fig.2.10 - Relationship types. Rel-types references, copy-of and borrowed are binary, while
assigned is 3-ary. Rel-type references is cyclic. Role borrowed.by is multi-ET. Copy-of and
borrowed are functional. references is many-to-many.

A rel-type which has attributes, or which is n-ary, will also be called a complex rel-type.
A one-to-one or one-to-many rel-type without attributes will be called functional, since
it materialises a functional relation, in the mathematical sense.

Alternate interpretation

3 n is the degree of the rel-type. It specifies the number of roles. Note that some authors consider that N is

the number of distinct participating entity types. Hence the concept of unary rel-type, that will be called in
this model cyclic binary rel-type instead, to comply with the mathematical definition of relations.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 20

Some models give a different interpretation to role cardinalities. According to OMT and
UML for instance, the cardinality [ia..ja] of role rA of entity type A in rel-type
R(rA:A,rB:B) indicates that each instance of B sees from ia to ja instances of B
through R. For binary rel-type, this style is obtained by swapping the regular
cardinalities. For N-ary rel-types, this interpretation is no longer equivalent to the
regular one4, and generally is ignored.

0-N0-20 orders

1-1

0-N

places

ORDER PRODUCT

CUSTOMER

0..*

1

0..200..* orders
PRODUCTORDER

CUSTOMER

Fig.2.11 - Two interpretation of role cardinalities for the same schema: regular (left) and inverse
(right). The right side schema uses the UML notation5.

Stereotype

A rel-type can be of one or several stereotypes. For instance, an IBM IMS legacy
schema can make use of rel-type stereotypes «physical» and «logical» (see
Section 2.5.6).

2.2.3 Collection

A collection is a repository for entities. A collection can comprise entities from different
entity types, and the entities of a given type can be stored in several collections. Though
this concept can be given different interpretations at different level of abstraction, it will
most often be used in logical and physical schemas to represent files, data stores, table
spaces, etc.

DSK:CFILE.DAT

EMPLOYEE
COPY
BOOK

4 For instance, the cardinality [i..j] of assigned.ORDER (figure 2.10) measures the number of ORDER

entities that can be seen from any couple made of one PRODUCT entity and one SUPPLIER entity. This
interpretation is much less intuitive than for binary rel-types, which explains why several authors drop
cardinalities for N-ary rel-types [Blaha, 1998]. The regular interpretation is used by, e.g., [Batini,1992],
[Bodart,1994], [Nanci,1996] and [Coad,1995], while the reverse one can be found in [Teorey,1995],
[Elmasri,2000], [Rumbaugh,1991] and in UML.

5 The cardinality 1 stands for 1..1 while * stands for N.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 21

Fig.2.12 - DSK:CFILE.DAT is a collection in which EMPLOYEE, COPY and BOOK entities
can be stored.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 22

Stereotype

A collection can be of one or several stereotypes. For instance, an OO-DBMS database
schema can define object containers of two types: «local» and «remote» (see
Section 2.5.6).

2.2.4 Attribute

An attribute represents a common property of all the entities (or relationships) of a given
type. Simple attributes have a value domain defined by a data type (number, character,
boolean, date, ...) and a length (1, 2, ..., 200, ..., N [standing for infinity]). These
attributes are called atomic.

An attribute can also consist of other component attributes, in which case it is called
compound. The parent of an attribute is the entity type, the relationship type or the
compound attribute to which it is directly attached. An attribute whose parent is an entity
type or a rel-type is said to be at level 1. The components of a level-i attribute are said to
be at level i+1.

If the value domain has some specific characteristics, it can be defined explicitly as a
user-defined domain, and can be associated with several attributes of the project. A
user-defined domain is atomic or compound.

The default value of an attribute or user-defined domain is the value it will be assigned
when no value are explicitly assigned at creation time.

A value constraint can be associated with any attribute or user-defined domain. It
consists in a list of constants and/or ranges. The values of the attribute must belong to
this list.

0-N0-N
borrows

DateBorrow
DateBack[0-1]

COPY
BookID
Title
Author[0-5]
KeyWord[0-N]

BORROWER
PID
Name
FirstName[0-1]
Address

Company
Street
ZipCode[0-1]
City

Phone[1-5]

Fig.2.13 - Examples of attributes. Name is mandatory [1-1] while FirstName is optional [0-1].
Address is compound while Name and ZipCode are atomic. Phone, Author and KeyWord are
multivalued. The cardinality of KeyWord is unlimited [0-N].

Each attribute is characterized by its cardinality [i-j], a constraint stating that each
parent has from i to j values of this attribute. Generally i is 0 or 1, while j is from 1 to N
(= infinity). However, any pair of integers can be used, provided i ≤ j, i ≥ 0 and j > 0.
The default cardinality is [1-1], and is not represented graphically. An attribute with
cardinality [i-j] is called:

DB-MAIN Function Overview The DB-MAIN model

27/11/00 23

single-valued if j = 1
multivalued if j > 1
optional if i = 0
mandatory if i > 0.

Stereotype

An attribute can be of one or several stereotypes, i.e., it can belong to domain/method
specific categories. For instance, a conceptual schema can define basic and derived
(redundant) attributes through the stereotypes «real» and «derived» (see Section
2.5.6).

2.2.5 Object-attribute

Any entity type can be used as a valid domain for attributes. Such attributes will be
called object-attributes. They mainly appear in object-oriented schemas. This concept
is more powerful, but more complex, than that of user-defined domain.

PRODUCT

PCode
PName
Price

ORDER

OrdID
Date
Owner: *CUSTOMER
Details[1-10]

Item: *PRODUCT
Qty

CUSTOMER

CID
CName
CAddress
Orders[0-N]: *ORDER

Fig.2.14 - Owner is a single-valued object-attribute. For each ORDER entity, the value of
Owner is a CUSTOMER entity. Orders is a multivalued object-attribute of CUSTOMER. This
construct can be used in OO database schemas to express relationship types.

2.2.6 Non-set multivalued attribute

A plain multivalued attribute represents sets of values, i.e., unstructured collections of
distincts values. In fact, there exist six categories of collections of values.

Set: unstructured collection of distinct elements (default).

Bag: unstructured collection of (not necessarily distinct) elements.

Unique list: sequenced collection of distinct elements.

List: sequenced collection of (not necessarily distinct) elements.

Unique array: indexed sequence of cells that can each contain an element. The elements
are distinct.

Array: indexed sequence of cells that can each contain an element.

These categories can be classified according to two dimensions: uniqueness and
structure.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 24

Unstructured Sequence Array

Unique (set) ulist uarray

Not unique bag list array

STUDENT

RegNbr
Name
Phone[0-2]
Expenses[0-100] bag
Christ-Name[0-4] ulist
Monthly-score[0-12] array
id: RegNbr

Fig.2.15 - Some non-set multivalued attributes. While Phone defines a pure set, Expenses
represents a bag, Christ(ian)-Name a list of distinct values and Monthly-score an array of 12
cells, of which from 0 to 12 can be filled.

2.2.7 Group

A group is made up of components, which are attributes, roles and/or other groups. A
group represents a construct attached to a parent object, i.e., to an entity type, a rel-type
or to a multivalued compound attribute. It is used to represent concepts such as
identifiers, foreign keys, indexes, sets of exclusive or coexistent attributes. A group of an
entity type can comprise inherited attributes and roles, i.e., components from its direct or
indirect supertypes.
It can be assigned one or several functions among the following:

primary identifier: the components of the group make up the main identifier of the
parent object; it appears with symbol id; if it comprises attributes only, the later are
underlined in the graphical view; a parent object can have at most one primary id;
all its components are mandatory.

secondary identifier: the components of the group make up a secondary identifier of the
parent object; it appears with symbol id'; a parent object can have any number of
secondary id.

coexistence: the components of the group must be simultaneously present or absent for
any instance of the parent object; the group appears with symbol coex; all its
components are optional.

exclusive: among the components of the group at most one must be present for any
instance of the parent object; the group appears with symbol excl; all its
components are optional.

at-least-1: among the components of the group, at least one must be present for any
instance of the parent object; the group appears with symbol at-lst-1; all its
components are optional.

exactly-1: among the components of the group, one and only one must be present for
any instance of the parent object (= exclusive + at-least-1); the group appears with
symbol exact-1; all its components are optional.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 25

access key: the components of the group form an access mechanism to the instances of
the parent object (generally an entity type, to be interpreted as a table, a record
type or a segment type); the access key is an abstraction of such constructs as
indexes, hash organization, B-trees, access paths, and the like; it appears with
symbol acc or access key.

user-defined constraint: any function that does not appear in this list can be defined by
the user by giving it a name; some examples: at-most-2 (no more than two
components can be valued), lhs-fd (left-hand-side of a functional dependency),
less-than (the value of the first component must be less than that of the second
one), etc.

1-10-N of

COPY
SerialNbr
DateAcquired
Location

Store
Shelf
Row

NbrOfVolumes
State[0-1]
StateComment[0-1]
id: of.BOOK

SerialNbr
acc

coex: State
StateComment

acc: Location

BOOK
BookID
Title
Publisher
DatePublished
KeyWord[0-10]
Abstract[0-1]
id: BookID
id': Title

Publisher

Fig.2.16 - Some constraints. BookID is a primary identifier and {Title, Publisher} a secondary
identifier of BOOK. SerialNbr identifies each COPY within a definite BOOK. In addition, this
identifier is an access key. Optional attributes State and StateComment both are valued or void
(coexistence).

A group of an entity type can have a cardinality constraint too. The cardinality [i-j]
of a group states how many entities can share the same component values for this group.
This concept is particularly important for foreign keys, in which it preserves the
cardinality of the remote role.

PRODUCT
PCode
PName
Price
Sales[0-20]

Year
Volume

id: PCode
id(Sales):

Year

ORDER
OrdID
Date
Owner: *CUSTOMER
Details[1-10]

Item: *PRODUCT
Qty

id: OrdID
id(Details):

Item

CUSTOMER
CID
CName
CAddress
Orders[0-N]: *ORDER
id: CID
id': Orders[*]

Fig.2.17 - Multivalued identifiers and Attribute identifiers. Object-attribute Orders is declared an
identifier, stating that any two CUSTOMER entities must have distinct Orders values (an order
is issued by one customer only). All the Details values of each ORDER entity have distinct Item

DB-MAIN Function Overview The DB-MAIN model

27/11/00 26

values (a product cannot be referenced more than once in an order). The Sales of each
PRODUCT entity represent the volume sold each year.

An identifier can be made of a multivalued attribute, in which case it is called a
multivalued identifier. In this case, no two parent instances can share the same value
of this attribute.

A multivalued compound attribute A, with parent P (entity type, relationship type or
compound attribute) can be given identifiers as well. Such an attribute identifier I,
made of components of A, states that, for each instance of P, no two instances of A can
share the same value of I.

An identifier of entity type E is made up of either:
• one or several single-valued attributes of E (or of supertypes of E),
• one multivalued attribute of E (or of supertypes of E),
• two or more remote roles of E (or of supertypes of E),
• one or more remote roles of E + one or more single-valued attributes of E (or of

supertypes of E).

An identifier of relationship type R is made up of either:
• one or several attributes of R,
• two or more roles of R,
• one or more roles of R + one or more attributes of R.

An identifier of attribute A is made up of:
• one or several single-valued component attributes of A.

A technical identifier (technical id) of entity type E is a meaningless, generally short,
attribute that is used to denote entities without reference to application domain
properties. It is generally used as a substitute for long, complex and information-bearing
identifiers. Object-id (oid) of OO models can be considered as technical identifiers.

2.2.8 Inter-group constraint

Independently of their function(s), two groups with compatible components can be
related through a relation that expresses an inter-group integrity constraint.

The following constraints are available:

reference: the first group is a foreign key and the second group is the referenced
(primary or secondary) identifier; the foreign key appears with symbol ref;

ref equal: the first group is a foreign key and the second group is the referenced (primary
or secondary) identifier; in addition, an inclusion constraint is defined from the
second group to the first one; the foreign key appears with symbol equ;

inclusion: each instance of the first group must be an instance of the second group; since
the second group need not be an identifier, the inclusion constraint is a
generalization of the referential constraint;

DB-MAIN Function Overview The DB-MAIN model

27/11/00 27

BOOK-ID
TITLE
ABSTRACT[0-1]

id: BOOK-ID

BOOK
BOOK-ID
SER-NUMBER
DATE-ACQU

id: SER-NUMBER
BOOK-ID

ref: BOOK-ID

COPY

Fig.2.18 - Attribute BOOK-ID form a reference group (foreign key) to BOOK.

incl equal: an inclusion constraint in each direction: each instance of each group is an
instance of the other group (to be implemented);

copy: (to be implemented);

copy equal: (to be implemented);

inverse : this constraint can be asserted between two object-attributes, expressing that
each is the inverse of the other.

ORDER
OrdID
Date
Owner: *CUSTOMER
Details[1-10]

Item: *PRODUCT
Qty

id: OrdID
inv:Owner
id(Details):

Item

CUSTOMER
CID
CName
CAddress
Orders[0-N]: *ORDER
id: CID
id':Orders[*]

inv

Fig.2.19 - Orders of CUSTOMER and Owner of ORDER are declared inverse object-attributes.
If c denotes the Owner of ORDER entity o, then c must belong to the Orders value set of
CUSTOMER c.

generic inter-group constraint : can be drawn from any group to any other group of the
schema.

1-1 0-Nplace

ORDER
OrderID
OrdDate
CustomerName
CustomerAddress
id: OrderID
copy: place.CUSTOMER

CustomerName
CustomerAddress

CUSTOMER
CustomerID
Name
Address
Account
id: CustomerID
source: Name

Address

Fig.2.20 - A redundancy constraint is expressed between two user-defined group types, namely
copy and source, through a generic inter-group constraint. This structure states that
CustomerName and CustomerAddress are copies of Name and Address of CUSTOMER
through rel-type place.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 28

2.2.9 Anchored processing units

An anchored processing unit is any dynamic or logical component of the described
system that can be associated with a schema, an entity type or a relationship type. For
instance, a process, a stored procedure, a program, a trigger, a business rule or a
method can each be represented by a processing unit. Note that independent processing
units, such as programs and procedures are best represented in specific schemas, the
processing schemas (section 2.3).

There are four types of anchored processing units:

• method: service which the object class is responsible for; used in advanced ER and
OO models; can represent functions of abstract data types too;

• predicate: logical rule stating a time-independent property;
• trigger: active rule;
• procedure: any other kind of processing units.

ORDER
OrderID
OrdDate
Sender: *CUSTOMER
id: OrderID
record_order()
make_invoice()
validate_order
cancel_order
get_properties()
get_order
get_sender

CUSTOMER
CustID
CustName
CustAddress
Orders[0-N]: *ORDER
id: CustID
register_customer()
remove_customer
get_properties()
get_customer
get_orders
select_customer()

Order Management/OO version

Order_processing
Invoice_processing
Customer_processing

Fig.2.21 - This schema includes two object classes with their methods. In addition, three
global processes have been defined at the database level (attached to the schema).

Stereotype

A processing unit can be of one or several stereotypes (see Section 2.5.6).

2.2.10 Alternate representations

To help analysts classify their schemas according to definite abstraction levels, or
according to their personal taste, alternate graphical representations are proposed for
entity types and rel-types (shape and shadow). Using stereotypes generally is a better
and more formal way to define object categories.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 29

BORROWER
PID
NAME
FIRST-NAME[0-1]
ADDRESS

COMPANY
STREET
ZIP-CODE[0-1]
CITY

PHONE[1-5]

BORROWER
PID
NAME
FIRST-NAME[0-1]
ADDRESS

COMPANY
STREET
ZIP-CODE[0-1]
CITY

PHONE[1-5]

BORROWER
PID
NAME
FIRST-NAME[0-1]
ADDRESS

COMPANY
STREET
ZIP-CODE[0-1]
CITY

PHONE[1-5]

BORROWER
PID
NAME
FIRST-NAME[0-1]
ADDRESS

COMPANY
STREET
ZIP-CODE[0-1]
CITY

PHONE[1-5]

Fig.2.22 - Alternate graphical representations of entity types.

0-N

copy-of

COPY

BOOK

1-1

0-N

copy-of

COPY

BOOK

1-1

0-N

copy-of

COPY

BOOK

1-1

0-N

copy-of

COPY

BOOK

1-1

Fig.2.23 - Alternate graphical representations of rel-types.

In the standard graphical representation used in this chapter, the user can choose to show
or to hide some object components:
• show/hide attributes
• show/hide attribute types and lengths
• show/hide groups
• show/hide processing units
• show/hide stereotypes

CUSTOMER
CustID
Name
LegalAddress
Account

AccountNbr
Level

CUSTOMER

CustID: char(10)
Name: char(26)
LegalAddress: address
Account

AccountNbr: char(16)
Level: num(8)

CUSTOMER

CustID
Name
LegalAddress
Account

AccountNbr
Level

id: CustID

CUSTOMER

CustID
Name
LegalAddress
Account

AccountNbr
Level

id: CustID
newOrder()
~newCUSTOMER()
changeAddress()
getOrders()

CUSTOMER
CustID
Name
LegalAddress
Account

AccountNbr
Level

newOrder()
~newCUSTOMER()
changeAddress()
getOrders()

Fig.2.24 - Five display variants of the same object class according to the desired level of detail.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 30

2.3 Processing schemas

While anchored processing units (such as class/object methods or active rules) are
defined in data schemas, independent processing units such as program and procedures
need being defined in specific products, namely the processing schemas. A processing
schema includes processing units, internal data objects, external data objects and
relations.

2.3.1 Processing units

A processing unit describes a processing components of an application or of an
information system. According to the level of abstraction at which the description has
been developed, a processing unit can model a task, an organization function, an activity,
a procedure, a program, and even a mere statement.

Check_Product

Fig.2.25 - Representation of a processing unit. The object is in the marked state.

Stereotype

A processing unit be of one or several stereotypes (see Section 2.5.6).

2.3.2 Internal data object

An internal data object can be a data type, a variable, a constant or any object that are
known by the processing units of the schema but that are unknown outside. An internal
object can be used as input or output of processing units.

Check_Prod_Msg

Fig.2.26 - Representation of an internal data object, here a local variable.

Stereotype

An entity type can be of one or several stereotypes, i.e., it can belong to domain/method
specific categories. For instance, a Java class schema can make use of entity type
stereotypes «class» and «interface». Stereotypes are user-defined (see Section
2.5.6).

2.3.3 External data object

A data object used in a processing schema but that has been defined in a data schema is
called external. Such is the case of entity types (or tables), attributes (or columns),
collections (files) or rel-type. For instance, a procedure that reads CUSTOMER records

DB-MAIN Function Overview The DB-MAIN model

27/11/00 31

(described in a data schema) appears in a processing schema where CUSTOMER is
declared external.

CUSTOMER

PRODUCT.ProID

ORDER.Product

Fig.2.27 - Representation of some external data object: an entity type and two attributes. They
all are in the marked state.

2.3.4 Relation

Relations describe how a processing unit relates to other processing units and to internal
and external data objects. There are three kinds of relations.

Decomposition relation

A processing unit can be made up of several components which are themselves
processing units. Example: the application ORDER_PROCESSING comprises three
modules, namely O_ENTRY, O_CHECKING and O_RECORDING.

ddd

O_RECORDINGO_CHECKINGO_ENTRY

ORDER_PROCESSING

Fig.2.28 - The module ORDER_PROCESSING comprises three submodules, namely
O_ENTRY, O_CHECKING and O_RECORDING.

ccccc

«1-N» cc

Compute_Qty_OHRead_ProductGet_Pro_IDRead_CustomerGet_Cust_ID

Check_ProductCheck_Customer

O_CHECKING

Fig.2.29 - The module O_CHECKING calls procedure Check_Customer, which itself calls
procedures Get_Cust_ID and Read_Cust. A stereotype is used to specify the call multiplicity.
For instance, 0_CHECKING calls Check_Product from 1 to N times, while the other calls have a
multiplicity of 1-1 (default).

DB-MAIN Function Overview The DB-MAIN model

27/11/00 32

Call relation

The call relation states that a processing unit calls, or uses services from, others
processing units.

Input/output relation

A processing unit can use/read data objects and create/delete/update others. This is
described by indicating its input ojects and its output objects. These objects can be
internal or external.

o

i
i

iCheck_Product

PRODUCT.ProID

PRODUCT.Qty_OH

ORDER.Product

Check_Prod_Msg

o
i

i

i

O_CHECKINGPRODUCT

ORDER

CUSTOMER

Check_Msg

Fig.2.30 - The procedure Check_Product uses the values of three attributes (e.g., columns of
tables ORDER and PRODUCT) and produces a value for the internal data object
Check_Prod_Msg. The module O_CHECKING consults tables CUSTOMER, PRODUCT and
ORDER, and sets the value of the internal data object Check_Msg.

Stereotype

A processing relation can be of one or several stereotypes, as shown in Figure 2.29 (see
Section 2.5.6).

2.4 Text files

2.4.1 Structure of a text file

At the lowest level of understanding, a text file is a string of printable characters.
Most files comprise text lines, that are logical units of text. One or several (not
necessarily contiguous) lines can be selected. They can also be marked in each of the
five marking planes, in order to maintain up to five permanent sets of lines. Marked lines
appear in boldface. An annotation can be associated with each line. Some text analysis
processors can color words and lines in a text. In addition, lines can be manually colored
if needed.

2.4.2 Patterns in text files

Texts which have a meaningful structure, such as any kind of programs, often include
patterns. A text pattern is a formally defined text structure that can appear in the text,
and that is defined by a set of syntactic rules. Any section of text that satisfies these rules
is a instance of this pattern. For instance, a COBOL text file will include simple
assignment statements which all look like:

MOVE <variable name> TO <variable name>

DB-MAIN Function Overview The DB-MAIN model

27/11/00 33

Text sections such as: "MOVE VAT-RATE TO A-FIELD" or "MOVE NAME OF RECA
TO B" are two instances of this pattern.

Text patterns are defined as regular expressions expressed into a specific pattern
definition language (PDL). The exact definition of the pattern above is as follows (see
the Text Analysis Assistant):

cobol_name ::= /g"[a-zA-Z][-a-zA-Z0-9]*";
cobol_var ::= cobol_name | cobol_name "OF" cobol_name;
move ::= "MOVE" - cobol_var - "TO" - cobol_var ;

The first rule describes how COBOL variable names are formed (simplified): one letter
possibly followed by a string made of dashes, letters and digits; letters can be in upper or
lower case.

The second rule defines two forms of variable designation: independent and component.

The third rule expresses the basic form of the COBOL assignment statement.

2.4.3 Dependency graph in program text files

The components of a program text are structured according to numerous meaningful
relations. Making these relations explicit is an important activity of programmers and
analysts, specially in maintenance activities which require program understanding. For
example, program variable B is said to depend on variable A if the program includes an
assignment statement such as "MOVE A TO B" or "B = A + C" or "LET B =
SQRT(A)". The graph that describes all the variables together with the inter-
dependencies is called the dependency graph of the program. As a general rule, the
nature of the dependencies we are interested in are defined by the text patterns of the
statements that generate them.

2.4.4 Program slice in program text files

When we consider a specific point (statement) S of a program P, we can be interested in
collecting all the statements that will be executed just before the program execution
comes to this point. More precisely, we could ask to restrict these statements to only
those which contribute to the state of a definite variable V used by S. This (hopefully
small) sub-program P' is called the slice of P with respect to criterion (S;V).

Let us be more concrete, and consider statement 12,455 of the 30,000-line program P.
This statement reads:

12455 WRITE COM INVALID KEY GOTO ERROR.

We want to understand which data have been stored into record COM before it is
written on disk. All we want to know is in P', the slice of P according to (12455;COM).
P' is the minimum subset of the statements of P whose execution would give COM the
same state as will give the execution of P in the same environment.

Trying to understand the properties of record COM is easier when examining a 200-line
fragment than struggling with the complete 30,000-line program!

DB-MAIN Function Overview The DB-MAIN model

27/11/00 34

Text patterns, dependency graphs and program slices are very important concepts in
program understanding activities, and therefore in database reverse engineering, which
strongly relies on them.

2.5 Common rules

2.5.1 Common characteristics of schemas

Some characteristics are common to several objects. Data and processing schemas, text
files, entity types, rel-types, attributes, user-defined domains, collections, groups,
processing units and data objects each have a Name, and can have a Short-name, a
Semantic description (SEM), and a Technical description (TECH).

The semantic description is a free text annotation explaining the meaning of the object.
It can be accessed by clicking on the SEM button of the object Property box or in the
standard Tool palette.

The technical description is a text giving information on the technical aspects of the
object. Some functions of the CASE tool write statements in this description. It can be
accessed by clicking on the TECH button of the object Property box or in the standard
Tool palette.

The semantic and technical description can include semi-formal properties. Such a
property is declared through the statement

#<property-name> = <property-value>

where <property-name> is the name of the property and <property-value> its
value. Semi-formal properties are not managed by the tool, but can be used by specific
processors developed in Voyager-2. Defining a dynamic property is a more formal, but
less flexible, way to augment the modeling power of the tool.

Semantic and technical descriptions can include document names, such as URL, which
dynamically link (through hyperlinks) the parent object to the identified document.

2.5.2 Names

The model includes naming uniqueness constraints that make it possible to denote
objects through their name. Here are the main rules.

Rules for data schemas

• the schemas of a project are identified by the combination <name>/<version>;

• each entity type of a schema is identified by its name;

• each rel-type of a schema is identified by its name;

• a collection of a schema is identified by its name;

• each direct attribute of a definite parent (an entity type, a rel-type or a compound
attribute) is identified by its name;

• a group of a definite parent (idem) is identified by its name.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 35

• each anchored processing unit of a definite parent (an entity type, a rel-type or a
schema) is identified by its name;

Rules for processing schemas

• each processing unit of a schema is identified by its name;

• each internal data object of a schema is identified by its name;

• each external data object of a schema is identified by the name it received in its data
schema (so, two external data objects may appear with the same name in a processing
schema!).

General rules

• Two names composed of the same characters, be they in uppercase or in lowercase,
are considered identical; so, "Customer" and "CUSTOMER" are the same names; the
accents are taken into account;

• all the printable characters, including spaces, /, [, {, (, ponctuation symbols and
diacritic characters, can be used to form names; the symbol | has a special meaning
(see below);

Users can enforce stricter rules through the schema analysis assistant. However, the
standard uniqueness rules may appear too strong in some situations, particularly for rel-
types. For instance, the analyst who builds a tree-like structure of entity type (i.e., in
IMS logical schemas) may find it useless to name rel-types. NIAM or Object-Role
models insist on role names but ignore rel-type names. Many schemas include a large
number of rel-types defining generic relations such as "part of", "in", "of", "cross",
"overlap", etc. In these situations the analyst would want to give these rel-types, either
the same name, or no name at all6. The syntax of DB-MAIN names includes the special
symbol "|", which is a valid character, but which has a special effect when displayed in a
schema view: this character as well as all the characters that follow are not displayed.

1-1

of

1-N

1-1

of

1-1

0-N

of

ORDER PRODUCT

id: of.ORDER
of.PRODUCT

DETAIL

CUSTOMER

0-N

1-1

1-N

1-1

1-1

0-N

ORDER PRODUCT

id: .ORDER
.PRODUCT

DETAIL

CUSTOMER

0-N

Fig.2.31 - Use of ambiguous names. The rel-types have been assigned the names "of|1",
"of|2", "of|3" in the left-side schema and "|1", "|2", "|3" in the right-side schema (in fact, the user
simply gave them the names "of|" and "|" respectively).

6 Using rel-type stereotypes «part of», «in», etc. can be another elegant way to define generic rel-types.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 36

Note. When an object is given a name the last character of which is "|", the tool
automatically makes it unique in its context by adding, if needed, a unique suffix.

2.5.3 Dynamic properties

In addition to the built-in static properties, such as name, short-name, cardinality, type
and length, that appear in the property box of the objects, each object type can be
dynamically given additional properties, called dynamic properties. They are defined by
the analyst at the meta-object level (schema, entity type, rel-type, attribute, etc.), in such
a way that they can be given a value for each instance of the meta-object (each schema,
each entity type, each rel-type, each attribute, etc.). For instance, attributes can be
associated with such dynamic properties as owners, synonyms, definition, French
name, password, physical format, screen layout, etc. DB-MAIN itself maintains
some internal dynamic properties. They are visible but have a read-only status.

A dynamic property has a name (Name), a type (Type), and a textual description (Sem).
It can be updatable by analysts or not (Updatable). It can be single-valued or
multivalued (Multivalued). It is possible to declare the list of possible values
(Predefined values).

2.5.4 Marked and coloured objects

Each product and each process in a project, each object in a schema and each line in a
text file can be given a special status, called marked. Marking is a way to permanently
select objects, either to identify them (e.g., validated objects are marked, while those still
to be examined are unmarked), or to apply global operations on them through the
assistant (e.g., transform all marked rel-types into entity types or export specifications)
or as the result of the execution of some assistants or to define schema views. The
marked objects of a schema are displayed in a special way: bold in textual views and bold
and shaded/unshaded in graphical views.

0-N0-N
borrows

DateBegin
DateEnd[0-1]

COPY
BookID
Title
Author[0-5]
KeyWord[0-N]
id:BookID

BORROWER
PID
NAME
FIRST-NAME[0-1]
ADDRESS

COMPANY
STREET
ZIP-CODE[0-1]
CITY

PHONE[1-5]
id:PID

DSK:CFILE.DAT

EMPLOYEE
COPY
BOOK

SUPPLIER/Concept

Fig.2.32 - Some marked objects: schema SUPPLIER/Concept; entity type BORROWER and
rel-type borrows; attributes ADDRESS, ZIP-CODE, DateEnd and Title; group {PID}; collection
DSK:CFILE.DAT. This marking appears in the current marking plane. The other four planes
may show different marked objects.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 37

In fact, the tool offers five marking planes, numbered 1 to 5, of which one is the
current, or visible, plane. A plane is a set of simultaneous marks associated with the
objects of a schema. All the operations are applied in the current plane. The concept of
plane makes it possible to define up to 5 independent sets of marks on the same schema,
e.g., one to denote validated objects, one for import/export and one for temporary
operations. It is possible to combine the marks of several planes.

Selected objects of a product can be drawn in a definite colour. Several colours can be
used in the same product.

2.5.5 Notes

A note is a kind of post-it that can be pasted in a schema or on an object of a schema. It
appears as a small box with some free text in it (Figure 2.33). A note can be attached to
an object (entity type, rel-type, role, attribute, group, processing unit, data object, ISA
hierarchy). It can also be left independent and put anywhere in the schema space.

Valid types:
- extend
- replace

Wrong! Should
be "App Nbr" alone.

I think that an appendix is a kind of contract.
Make APPENDIX a subtype of CONTRACT.

Checked by Bernard Devos
25 Jan 2001

1-1

0-N of

CONTRACT
Ctr Nbr
Date
id: Ctr Nbr

APPENDIX
App Nbr
Date
Type
id: of.CONTRACT

App Nbr

Fig.2.33 - Four notes used to comment or to enrich a schema.

2.5.6 Stereotypes

A stereotype of a category of schema objects (entity types, rel-types, processing units,
etc.) is a named subcategory which has specific characteristics or behaviour7. Any object
of a category (e.g., any entity type) can be included in any number of the steorotypes
defined for its type.

7 This concept has been defined in UML, but is available in Entity-relationship schemas as

well.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 38

0..*

1

«interface of»

«interface»
CUST_FORM

«class» create_form
«inst» get_Cust_ID()
«inst» get_Cust_Name()
«inst» get_Cust_Address()

«class»
CUSTOMER_FORM
Form_ID
Background
Cust_ID
Cust_Name
Cust_Address
«derived» Nbr_Fields

Fig.2.34 - Using stereotypes to describe Java-like structures. There are two subcategories of
entity types: «class», and «interface» associated with classes (through a rel-type with
stereotype «interface of»). An attribute can be basic or derived. A method can be a «class»
method or an «inst»ance method.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 39

3. Engineering process control

Normally, when (s)he intends to solve an engineering problem (to design a relational schema,
to integrate schemas, to optimize a DB or to reverse engineer a legacy DB for example), the
user of a CASE tool follows a method, that is, a disciplined way of working. The description
of a method states:

1. what kind of documents (called products) have to be used and produced,

2. what activities (called engineering processes) have to be carried out at each point of the
work in order to solve the problem,

3. and how to carry out these activities, i.e., their strategies.

A method is a guideline that makes the engineering activities more reliable and less expensive.
It defines product types and process types.

A product type uses a product model, which is either a text or a schema. A schema model is
defined by the objects it is made up of together with their local names. For instance, the
relational model comprises entity types (renamed tables), attributes (renamed columns),
primary ID (renamed primary key) and reference groups (renamed foreign keys). In addition,
the valid object arrangements are defined through structural predicates (e.g., an entity type has
at least one attribute). A process type is defined externally by its input and output product
types.

Fig.3.1 - The external description of a process type. The Forward engineering process uses
input product Interview report and produces output products Physical schema and SQL
database definition script.

The internal description is called the strategy of the process type. It specifies what activities, in
what order, and based on what products, must be (or can be) carried out to perform processes
of this type. There are implicit process types such as choose, that selects one or several
products out of a set of products.

The DB-MAIN tool can be instructed to strictly enforce a method, or, on the contrary, to
merely suggest its user what to do to perform the engineering processes. The trace of the
activities of a user that follows the statements of a method is called a history. The history
describes all the products that have been elaborated, all the processes and the actions that have
been performed and all the decisions that have been taken. This history provides essential
information on how and why the products have been developped, and form the basis of such
activities as maintenance, evolution, reengineering and inter-schema mapping building8.

8 The history provides the base information for automatically generating object-oriented wrappers for legacy

databases in the InterDB project.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 40

Fig.3.2 - The internal description of
Forward engineering process
type. Its strategy consists in
performing a Conceptual
Analysis, to express the contents of
Interview report into a
Conceptual schema, then to
transform the latter into a Logical
schema, which in turn is enriched to
form the Physical schema.
Finally, the Physical schema is
coded into a SQL database
definition script.

Fig.3.3 - A top-level history of the
development of the Library database (a
process called LIBRARY). It shows
how the conceptual schema was
obtained by the analysis of the
library.TXT document, then how two
tentative physical relational schemas
were developed, among which the first
one was chosen for space performance
reason. This schema was then
translated into a SQL DDL script.

Physical Design 2

Logical Design 2

Coding

Physical Design 1

Logical Design 1

Conceptual Analysis

Minimize Space

LIBRARY/Physical Rel-2

LIBRARY/Logical Rel-2

library.ddl/1

LIBRARY/Physical Rel-1

LIBRARY/Logical Rel-1

LIBRARY/Conceptual

library.TXT/1 LIBRARY

DB-MAIN Function Overview The DB-MAIN model

27/11/00 41

Relational Translation

Name Conversion

Schema copy

Schema copy

LIBRARY/Logical Rel-1

LIBRARY/Logical Rel 0

LIBRARY/Conceptual Logical Design 1

Functional Rel-types into FK

Technical ID

Complex Attributes

Complex Rel-types

ISA Relations

LIBRARY/Logical Rel 0

Relational Translation

Fig.3.4 - Development of the first Logical design process (left) and of the Relational Translation
process (right).

DB-MAIN Function Overview The DB-MAIN model

27/11/00 42

4. Sample DB-MAIN schemas

We will illustrate the use of the DB-MAIN specification model to express schemas at different
levels of abstraction, and according to various widespread models. Except when explicitly
mentioned, all these schemas (try to) represent the same application domain.
We will propose three conceptual schemas: ER, NIAM and OMT; then four logical schemas:
relational, CODASYL-DBTG, COBOL files and object-oriented; and finally an Oracle physical
schema. We also propose a non-data model defined with the DB-MAIN constructs.
The way these schemas have been built, either by domain analysis, or by reverse engineering,
or by transformation of other schemas is beyond the scope of this document. The reader is
invited to consult the literature on database design [Batini,1992], [Bodart,1994],
[Teorey,1995], [Halpin,1995], [Elmasri,2000], [Connolly,1996], [Nanci,1996], or [Blaha,
1998].

4.1 An Entity-Relationship conceptual schema

The schema of Figure 4.1 is a computer-independent representation of the concepts underlying
a small technical library which lends books to the employees assigned to projects. The
formalism used belongs to the family of the Entity-Relationship models [Chen,1976],
[Bodart,1994], [Teorey,1995], [Batini,1992], [Nanci,1996], [Elmasri,1995].

0-N 1-Nwritten

responsible
0-N

0-1

responsible0-N

0-N

reserved

Date-reserved

0-N

0-1

assigned to

1-1

0-N

of

0-N

0-N

0-N

borrowing

Borrow-Date
End-Date[0-1]

id: COPY
Borrow-Date

D

PROJECT

Pcode
Pname
Company

id: Pcode
id': Pname

REPORT
Report-ID
Project

id': Report-ID

DOCUMENT

Doc-ID
Title
Date-Published
KeyWord[0-10]

id: Doc-ID

COPY

Ser-number
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Ser-number

BORROWER
Pid
Name
Address

Street
City

Phone[1-5]
id: Pid

BOOK
ISBN
Publisher

id': ISBN

AUTHOR
Name
First-Name[0-1]

LIBRARY/Conceptual

Figure 4.1 - An Entity-relationship conceptual schema

DB-MAIN Function Overview The DB-MAIN model

27/11/00 43

4.2 A NIAM/ORM conceptual schema

NIAM is a conceptual formalism which is often perceived as a competitor of the ER model. It
allows the analyst to ignore, at least in early steps of conceptual design, the distinction between
entity types and attributes (or more precisely attribute domains). In addition, it supports a
linguistic interpretation of the concepts. NIAM, as defined by G. Njissen, is the first published
proposal [Verheijen,1982], but the model has been further refined and formalized, among
others as the Object-Role model [Halpin,1995]. Two of the most visible differences with ER
schemas are the explicit representation of value domains (LOT), and the prominence of the
concept of role at the expense of the relationship types, which are left unnamed. Since NIAM-
like schemas tend to get larger than ER schemas, Figure 4.2 illustrates a subset only of the
concepts of Figure 4.1. We have simulated the typical NIAM graphical representation through
the following conventions.
• A NOLOT9 is represented by a marked entity type, while a LOT10 is represented by an

unmarked entity type.
• As in ORM, when a NOLOT is identified by one primitive LOT (number, code, etc), the

latter is left as an attribute of the NOLOT. This simplifies the schema considerably.
• Relationship types are made as unobtrusive as possible by giving them an invisible name.
• Each role receives a meaningful name.
• The role cardinalities express the role identifiers and the total constraints.

is written by
0-N

wrote
1-N

has been reserved by
0-N

has reserved
0-N

is the name of
0-N

has name
1-1

is the name of
0-N

has name
1-1

produced
1-N

was produced by
1-1

is the title of
0-N

has title
1-1

has name
1-1

is the name of
0-1

is the first name of
0-N

has first name
0-N

has name
0-N

is the name of
0-N

is a copy of
1-1

has
0-N

is the acquisition date of
1-N

was acquired on
1-1

of
1-N

has number
1-1

publishes
1-N

is published by
1-1

D

Ser-number
Ser-number
id: Ser-number

REPORT
Report-ID
id': Report-ID

PUBLISHER

PROJECT

NAME
Name
id: Name

DOCUMENT
Doc-ID
id: Doc-ID

DATE
Date
id: Date

COPY

id: .of
.has

BORROWER
Pid
id: PidBOOK

ISBN
id': ISBN

AUTHOR

LIBRARY/NIAM

Figure 4.2 - A (partial) NIAM conceptual schema

9 NOLOT = non-lexical object type (another name for abstract object or entity type)
10 LOT = lexical object type (a sort of significant value domain made of printable symbols)

DB-MAIN Function Overview The DB-MAIN model

27/11/00 44

4.3 An UML conceptual schema

Though the UML notation has been designed for expressing the constructs of object-oriented
applications. Some authors suggest that UML could also be used to describe database
structures. Though it suffers from severe weak points as far as conceptual structures are
concerned, it is possible to use it to draw object classes, attributes and associations that are as
close as possible to the standard ER schema. In figure 4.4, the UML convention have been
used to express classes, associations and attribute. The N-ary rel-type borrowing has been
transformed into a class, while the binary rel-type reserved has been kept to express an
UML association class. Though the concept of identifier is lacking in UML, we have indicated
primary identifiers made up of attributes by underlining their components. The other identifiers
are expressed in a specific UML compartment through the DB-MAIN notation11.

! association class

! association class

0..*

1

0..*
1

0..*

1

0..*

1
0..1

0..*

1..*

0..*written

0..1

0..*
responsible is responsible

0..*

0..*reserved
date-reserved: date (1)D

Report
report-id: char (12)
project: char (40)
id': report-id

Project
pcode: char (6)
pname: char (30)
company: char (75)
id': pname

Document
doc-id: num (6)
title: char (60)
date-published: date (10)
keyword[0..10]: char (30)

Copy
ser-number: num (6)
date-acquired: date (10)
Location: compound (6)

store: num (2)
shelf: num (2)
row: num (2)

id: .Book
ser-number

«class» record()
remove()
borrow()

Borrowing
borrow-date: date (10)
end-date[0..1]: date (10)
id: .Copy

borrow-date
return()

Borrower
pid: char (6)
name: char (30)
Address: compound (80)

street: char (40)
city: char (40)

Phone[1..5]: num (12)
Book

isbn: char (14)
publisher: char (40)
id': isbn

Author
name: char (30)
first-name[0..1]: char (16)

Figure 4.3 - An UML schema that includes classes, attributes, associations, association
classes, operations, stereotypes (classifying operations) and notes.

11 UML recommendations define three kinds of compartments in the graphical representation of classes

(name, attributes aned operations). However, they admit that other compartments can be defined according
to specific needs. The constraint compartment is one of them.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 45

4.4 A relational logical schema

The schema of Figure 4.4 is the direct translation of the conceptual schemas proposed in
Figures 4.1 to 4.3. Some semantics have been intentionally dropped for simplicity (e.g., the
exact max cardinality of attributes Keyword and Phone). In addition, some structures and
constraints are not fully relational-compliant (equ, excl), and will be translated through generic
techniques (check, triggers, stored procedures, user interface, application programs, etc).

written

Author
Document

id: Document
Author

ref: Document
equ: Author

reserved

Document
Borrower
Date-reserved

id: Document
Borrower

ref: Document
ref: Borrower

REPORT
Document
Report-ID
Project

id: Document
ref

id': Report-ID

PROJECT

Pcode
Pname
Company

id: Pcode
id': Pname

Phone
Borrower
Phone

id: Borrower
Phone

equ: Borrower

KeyWord

Document
KeyWord

id: Document
KeyWord

ref: Document

DOCUMENT

Doc-ID
Title
Date-Published
REPORT[0-1]
BOOK[0-1]

id: Doc-ID
excl: REPORT

BOOK

COPY

Book
Ser-number
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row

id: Book
Ser-number

ref: Book

borrowing

Book
Ser-number
Borrower
Project
Borrow-Date
End-Date[0-1]

id: Book
Ser-number
Borrow-Date

ref: Borrower
ref: Project
ref: Book

Ser-number

BORROWER

Pid
Name
Add_Street
Add_City
Responsible[0-1]
Project[0-1]

id: Pid
ref: Responsible
ref: Project

BOOK

Document
ISBN
Publisher

id: Document
ref

id': ISBN

AUTHOR

ID_AUT
Name
First-Name[0-1]

id: ID_AUT

LIBRARY/Logical-Rel

Figure 4.4 - A relational logical schema

DB-MAIN Function Overview The DB-MAIN model

27/11/00 46

4.5 A CODASYL-DBTG logical schema

The schema of Figure 4.5 is compliant with the CODASYL DBTG model, except for some
constraints that must be implemented through non declarative techniques (e.g., application
programs, access modules, user interface).
Two redundancy constraints have been left undeclared12. The first one concerns the value of
Doc-ID of WRITTEN, which must be equal to that of field Doc-ID of the owner of work. The
second one is similar and concerns the field Doc-ID of RESERVED.
Representing CODASYL schemas (as well as IMS, IMAGE, TOTAL schemas) is particularly
important in re-engineering, migration and maintenance projects, as well as in Datawarehouse
development.

1-1

0-N work

1-1

0-N

what

1-1

0-N

sys-p

1-1

0-N

of
1-1

0-1

is

0-N0-1 in

1-1

0-N

for

1-1

0-N

by

1-1

0-Nb-project

1-1

0-1

b-is-d

1-1

0-N b-copy

1-1

0-N

b-borrower

1-1

1-Nauthor

WRITTEN

Doc-ID

id: author.AUTHOR
Doc-ID

SYSTEM

RESPONSIBLE

RESERVED
Doc-ID
Date-reserved

id: by.BORROWER
Doc-ID

REPORT

Report-ID
Project

id': Report-ID

PROJECT

Pcode
Pname
Company

id: Pcode
id': sys-p.SYSTEM

Pname

DOCUMENT

Doc-ID
Title
Date-Published
KeyWord[0-10]

id: Doc-ID

COPY

Ser-number
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Ser-number BORROWING

Borrow-Date
End-Date[0-1]

id: b-copy.COPY
Borrow-Date

BORROWER

Pid
Name
Address

Street
City

Phone[1-5]

id: Pid
BOOK

ISBN
Publisher

id': ISBN

AUTHOR
Name

First-Name[0-1]

LIBRARY/Logical-DBTG

Figure 4.5 - A CODASYL logical schema

12 They are induced by the constraint stating that an identifier can be either absolute (made up of attributes)

or relative to a set type (and made up of a role and attributes). Therefore, any identifier comprising more
than one role cannot be explicitly declared. All the roles, but one, must be replaced with the primary
identifier of the corresponding entity type. Hence these redundancy constraints.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 47

4.6 A COBOL file logical schema

Data structures implemented as standard records according to the COBOL data management
can be represented by the schema of Figure 4.6. The files themselves have been ignored at that
stage. Such constraints as foreign keys do not belong to the standard COBOL data model, and
must be considered as objects that must be implemented through non declarative techniques
(e.g., application programs, access modules, user interface).
Representing in an acurate way standard files can be useful to develop new file-based
applications, but it will prove more important to re-engineer and migrate data-centered legacy
systems.

RESERVED

RESERVED-ID
DOC-ID
PID

DATE-RESERVED

id: RESERVED-ID
ref: RESERVED-ID.DOC-ID
ref: RESERVED-ID.PID

PROJECT

PCODE
PNAME
COMPANY

id: PCODE
id': PNAME

DOCUMENT

DOC-ID
TITLE
AUTHORS[0-5]
DATE-PUBLISHED
KEYWORD[0-10]
REPORT[0-1]

REPORT-ID
PROJECT

BOOK[0-1]
BOOK-ID
ISBN
PUBLISHER

id: DOC-ID
id': BOOK.BOOK-ID
id': REPORT.REPORT-ID
ref: AUTHORS[*]
excl: BOOK

REPORT

COPY

COPY-ID
BOOK-ID
SER-NUMBER

DATE-ACQUIRED
LOCATION

STORE
SHELF
ROW

id: COPY-ID
ref: COPY-ID.BOOK-ID

BORROWING

BORROW-ID
BOOK-ID
SER-NUMBER
BORROW-DATE

PID
PCODE
END-DATE[0-1]

id: BORROW-ID
ref: BORROW-ID.BOOK-ID

BORROW-ID.SER-NUMBER
ref: PID
ref: PCODE

BORROWER

PID
NAME
ADDRESS

STREET
CITY

PHONE[1-5]
PCODE[0-1]
RESP-PID[0-1]

id: PID
ref: RESP-PID
ref: PCODE

AUTHOR

AUT-ID
NAME
FIRST-NAME[0-1]

id: AUT-ID

LIBRARY/Logical-COBOL

Figure 4.6 - A record/file structure logical schema

DB-MAIN Function Overview The DB-MAIN model

27/11/00 48

4.7 An object-oriented logical schema

We have chosen a model which does not include the concept of relationship13, but which
provides a means to declare inverse object attributes (Figure 4.7). Operational models that
ignore this construct will force the programmer to resort to explicit programming of the
control of this contraint, for instance in object management methods.
This schema results from some arbitrary design decisions. For instance, the constructs
Reservation, Copy and Borrowing have been transformed into multivalued compound
attributes instead of object classes.

D

REPORT

Report-ID
Project

id': Report-ID

register_document()

PROJECT
Pcode
Pname
Company
Employees[0-N]: *BORROWER

id: Pcode
id': Pname
id': Employees[*]

inv

new_project()
update_project()
get_project()

DOCUMENT
Doc-ID
Title
Date-Published
KeyWord[0-10]
Reservation[0-N]

Date-reserved
by: *BORROWER

Authors[0-N]: *AUTHOR

id: Doc-ID
inv: Authors[*]
id(Reservation):

by

register_document()
remove_document()
get_document()

BORROWER

Pid
Name
Address

Street
City

Phone[1-5]
Responsible[0-1]: *BORROWER
Assigned_to[0-1]: *PROJECT

id: Pid
inv: Assigned_to

new_borrower()
update_borrower()
get_borrower()

BOOK

ISBN
Publisher
Copies[0-N]

Ser-number
Date-Acquired
Location

Store
Shelf
Row

Borrowing[0-N]
Borrow-Date
End-Date[0-1]
Borrower: *BORROWER
Project: *PROJECT

id': ISBN
id(Copies):

Ser-number
id(Copies.Borrowing):

Borrow-Date

register_document()
lend_to()
return

AUTHOR
Name
First-Name[0-1]
Documents[1-N]: *DOCUMENT

inv: Documents[*]

LIBRARY/Logical-OO

Inventory
Statistics

Figure 4.7 - An object-oriented logical schema

13 As opposed to the ODMG and CORBA models for instance, that provide these constructs.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 49

4.8 A relational (ORACLE) physical schema

The logical schema of Figure 4.4 has been extended and modified in the following way:

• the names have been made compliant with the ORACLE syntax,

• triggers have been attached to some tables,

• two stored procedures have been defined (attached to the schema),

• indexes have been defined,

• prefix indexes14 have been discarded,

• each table has been assigned to a tablespace.

WRITTEN

AUTHOR
DOCUMENT

id: DOCUMENT
AUTHOR
acc

ref: DOCUMENT
equ: AUTHOR

acc

RESERVED

DOCUMENT
BORROWER
DATE_RESERVED

id: DOCUMENT
BORROWER
acc

ref: DOCUMENT
ref: BORROWER

acc

REPORT

DOCUMENT
REPORT_ID
PROJECT

id: DOCUMENT
ref acc

id': REPORT_ID
acc

trig_insert_rep
trig_delete_rep
trig_update_rep

PROJECT

PCODE
PNAME
COMPANY

id: PCODE
acc

id': PNAME
acc

trig_insert_pro
trig_delete_pro
trig_update_pro

PHONE

BORROWER
PHONE

id: BORROWER
PHONE
acc

equ: BORROWER

KEYWORD

DOCUMENT
KEYWORD

id: DOCUMENT
KEYWORD
acc

ref: DOCUMENT

DOCUMENT

DOC_ID
TITLE
DATE_PUBLISHED
REPORT[0-1]
BOOK[0-1]

id: DOC_ID
acc

excl: REPORT
BOOK

trig_insert_doc
trig_delete_doc
trig_update_doc

COPY

BOOK
SER_NUMBER
DATE_ACQUIRED
LOC_STORE
LOC_SHELF
LOC_ROW

id: BOOK
SER_NUMBER
acc

ref: BOOK

trig_insert_cop
trig_delete_cop
trig_update_cop
trig_borrow_cop

BORROWING

BOOK
SER_NUMBER
BORROW_DATE
BORROWER
PROJECT
END_DATE[0-1]

id: BOOK
SER_NUMBER
BORROW_DATE
acc

ref: BORROWER
acc

ref: PROJECT
acc

ref: BOOK
SER_NUMBER

trig_bring_back

BORROWER

PID
NAME
ADD_STREET
ADD_CITY
RESPONSIBLE[0-1]
PROJECT[0-1]

id: PID
acc

ref: RESPONSIBLE
acc

ref: PROJECT
acc

trig_insert_bor
trig_delete_bor
trig_update_bor

BOOK

DOCUMENT
ISBN
PUBLISHER

id: DOCUMENT
ref acc

id': ISBN
acc

trig_insert_boo
trig_delete_boo
trig_update_boo

AUTHOR

ID_AUT
NAME
FIRST_NAME[0-1]

id: ID_AUT
acc

S_BOOKS

WRITTEN
KEYWORD
DOCUMENT
COPY
BOOK
AUTHOR

S_BORROW

RESERVED
PROJECT
PHONE
BORROWING
BORROWER

LIBRARY/Oracle

proc_Inventory
proc_Statistics

Figure 4.8 - An ORACLE physical schema with triggers and stored procedures

14 An index defined on columns {A,B} is a prefix of any index defined on columns {A,B,...}. Heuristics: if

these indexes are implemented through B-tree techniques (i.e., not with hashing techniques), then the
prefix index can be discarded, since the larger index can be used to simulate the former.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 50

4.9 A processing schema

The call graph of figure 4.9 has been extracted from the DB reverse engineering case study
Order.cob.

ccc

cccccc

c cc c c c

ccc

c

c

PRINCIPAL

INIT TRAITEMENT CLOTURE

NOUV-CLI NOUV-STK NOUV-COM LISTE-CLI LISTE-STK LISTE-COM

LECTURE-COM

AFFICHE-DETAIL

LECTURE-STKLECTURE-CLI

AFFICHE-CLI

LECTURE-CODE-CLI LECTURE-DETAIL

LECTURE-CODE-PROD

MAJ-COM-DETAIL

MAJ-CLI-HISTO

INIT-HISTO

Figure 4.9 - The call graph of a small COBOL program.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 51

4.10 An organizational structure model

Though it uses the usual DB-MAIN graphical conventions for schema representation, Figure
4.10 is not a database schema. Instead, it describes organization units (services,
departments, functions, etc.) and their inter-relations. Each rectangle represents a unit; the
arcs, read from left to right, represent the units hierarchy, and the names in a rectangle give the
list of the persons assigned to this unit. The symbol [0-1] indicated that the person is partially
assigned to that unit. The names of unit heads/responsibles are in boldface.
This example is an illustration of how the DB-MAIN model can be used to describe non data-
related concepts without augmenting its functionalities. Of course, specific operators must be
developed in Voyager-215.

Secretary
Pascale Cartrain
Jose Pavarotti
Lúcia Carvalho

Production

Paolo Accorti

Planning
Diego Roel[0-1]
John Steel

Personnel

Hari Kumar
Paula Wilson
Daniel Tonini

Ordering

Philip Cramer
Fran Wilson[0-1]
Rita Müller

Operations
Maria Anders
Peter Franken

Marketing

Yoshi Latimer

Management

Mary Saveley
Michael Holz

Maintenance

Jaime Yorres[0-1]

Invoicing

Liz Nixon

Finance

Bernardo Batista
Diego Roel[0-1]

Customer
Diego Roel[0-1]
Carine Schmitt

Administration
Mario Pontes
Jaime Yorres[0-1]
Fran Wilson[0-1]
Jean Fresnière

Accounting

Georg Pipps

Figure 4.10 - An organizational units model.

15 A complete subsystem has been developed to model organizational units and their links with data schemas.

It is available in the DB-MAIN Application Library #1 (module ORGA) described in this document.

DB-MAIN Function Overview The DB-MAIN model

27/11/00 52

4.10 References

[Batini,1992] Batini, C., Ceri, S., Navathe, S., B., Conceptual Database Design, Benjamin/
Cummings, 1992

[Blaha,1998] Blaha, M., Premerlani, W., Object-Oriented Analysis and Design for Database
Applications, Prentice Hall, 1998

[Bodart,1994] Bodart, F., Pigneur, Y., Conception assistée des systèmes d'information,
Masson, 1994

[Chen,1976] Chen, P., The entity-relationship model - toward a unified view of data, ACM
TODS, Vol. 1, N° 1, 1976

[Coad, 1995] Coad, P., North, D., Mayfield, M., Object Models: Strategies, Patterns and
Applications, Prentice Hall, 1995

[Connolly,1996] Connolly, T., Begg, C., Strachan, A., Database Systems - A Practical
Approach to Design, Implementation and Management, Addison-Wesley, 1996,
ISBN 0-201-42277-8

[Elmasri,2000] Elmasri, R., Navathe, S., Fundamentals of Database Systems, Benjamin-
Cummings, 2000

[Halpin,1995] Halpin, T., Conceptual SChema & Relational Database Design, Prentice Hall,
1995

[Nanci,1996] Nanci, D., Espinasse, B., Ingénierie des systèmes d'information Merise -
Deuxième génération (3ème édition), SYBEX, 1996, ISBN 2-7361-2209-7

[Rumbaugh,1991] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object
Oriented Modeling and Design, Prentice Hall, 1991

[Teorey,1995] Teorey, T. J., Database Modeling and Design : the Fundamental Principles,
Morgan Kaufmann, 1994

[Verheijen,1982] Verheijen, G., Van Bekkum, J., NIAM : an Information Analysis Method, in
Proc. of the IFIP WG 8.1 WC, Information Systems Design Methodologies: a
Comparative Review, Olle, T., Tully, C. (Eds), North-Holland, 1982

DB-MAIN Function Overview The DB-MAIN components

27/11/00 53

5. The components of the DB-MAIN environment
(Version 6)

There are two distinct toolsets, namely the DB-MAIN CASE tool and the Voyager
development environment.

5.1 The DB-MAIN CASE tool

DB-MAIN does not use the registry and does not install system components but in its own
directory. It stores its permanent configuration parameters in the db_main.ini file in the
Windows directory. It can be uninstalled by merely throwing away its components and
deleting the db_main.ini file. The components of DB-MAIN V.6 are the following (see the
README file for possible modification):

db_main.exe the DB-MAIN main program (mandatory)

cw3230.dll run time library (mandatory)

bds52f.dll object windows library (mandatory)

owl52f.dll object windows library (mandatory)

reposit.dll repository manager (mandatory)

dbm_dlg.dll dialog box manager (mandatory)

slicing.dll program slicing

extr_*.dll source code analyzers for reverse engineering
extr_SQL.dll: SQL source code analyzer
extr_IDS.dll: IDS-II source code analyzer
extr_COB.dll: COBOL source code analyzer
extr_IMS.dll: DL/1 (IMS) source code analyzer

db_main.hlp the help file

db_main.ini the environment parameters file located in the WINDOWS directory; if
not present, will be created by DB-MAIN when needed.

sql.oxo SQL generator; developed in Voyager 2

codasyl.oxo DBTG SCHEMA DDL generator; developed in Voyager 2

ids2.oxo Bull IDS2 SCHEMA DDL generator; developed in Voyager 2

cobol.oxo COBOL Data Structure; generator developed in Voyager 2

report.oxo simple report generator; developed in Voyager 2

stat.oxo small statistics reporter; developed in Voyager 2

extract_XML.oxo XML DTD source code analyzer; developed in Voyager 2

generate_XML.oxo XML DTD generator; developed in Voyager 2

XML.oxo XML related functions for the Schema Analysis and Advanced Global
Transformation assistants; developed in Voyager 2

DB-MAIN Function Overview The DB-MAIN components

27/11/00 54

genSQL.oxo, genSQL.exe, msgforwin.dll, clear.bmp, fldropen.bmp

components of the SQL parametric generator;

Rtf.exe, Rtf.oxo, Rtf.pdf, msgforwin.dll : components of the RTF report generator.

vaxCobol.nam COBOL reserved names

vaxRdb.nam RDB SQL reserved names (Oracle)

default.anl default library for the Schema Analysis assistant

default.tfl default library for the Schema Transformation assistant

sql-s.pdl, sql-j-m.pdl, sql-v-m.pdl, cob-s.pdl, cob-m.pdl

some patterns libraries for SQL and COBOL programs analysis;
m=main, s=secondary.

The industrial version of the tool is protected by an electronic key that must be connected to
the parallel port of the computer.

drivers\Win_95\... Under Windows 95, the key should normally be 'plug & play': just plug
it in and DB-MAIN should run flawlessly. But, if the parallel port is
shared with other peripherals, some interference may occur. This can
be addressed by installing drivers: run SentW95.exe.

drivers\Win_NT\... Under Windows NT, the presence of a driver is mandatory, even with
the educational version that does not need a key. It can be installed by
launching Install.bat.

drivers\readme.txt Read me file for the Sentinel electronic key drivers.

Input/output files
The files produced and used by the DB-MAIN environment can be classified into
homogeneous classes. Consult the README file for the last modifications.

repository files

*.lun project repository: comprises all the specifications of a project.

*.isl import/export text file: contents of a repository in a readable text format (the ISL
language); used by commands File / Open, Save as and Export (choose extension
*.isl); as well as by the Integration assistant.

*.dic generated report: simple formatted report file resulting from command File / Print
dictionary.

executable program files

*.ddl generated DDL text: data structure definition program (e.g., in COBOL, SQL,
CODASYL DDL, etc.); produced by, File / Generate, Quick DB and Assist /
Global transformation - Generate. Some Voyager 2 programs can also generate
such files.

*.sql SQL source file (default extension): an SQL script file processable by the SQL
extractor.

DB-MAIN Function Overview The DB-MAIN components

27/11/00 55

*.cob COBOL source file (default extension): a COBOL program processable by the
COBOL extractor.

*.ids IDS source file (default extension): a IDS DDL program processable by the IDS
extractor.

*.ims DL/1 (IMS) source file (default extension): a IMS DL/1 program processable by
the IMS extractor.

*.xml XML source file (default extension): an XML DTD text.

others other source file formats (to be added).

user developed functions

*.v2 Voyager-2 source program: source version of a Voyager-2 program.

*.oxo executable Voyager-2 program: compiled version of a Voyager-2 program; can be
executed, among others, by command File / Execute Voyager, by the Voyager-2
program monitor, and from various Assistants.

*.ixi dictionary of the exportable functions of a Voyager-2 program.

script files

*.pat name pattern substitution list: list of substitution rules (replace X by Y) which can
be applied on selected names of selected objects of a schema; saved and loaded
from within the name processor (command Transform / Name processing); also
used in the assistants Global transformation and Advanced global
transformations.

*.trf transformation assistant script file: saved list of actions developed in the Global
transformation assistant.

*.tfs transformation assistant script file: saved list of actions developed in the
Advanced global transformation assistant.

*.tfl transformation assistant library file: library of the Advanced global
transformations.

*.ana analysis assistant script file: saved list of constraints developed in the Analysis
assistant.

*.anl analysis assistant library file: library of the Analysis assistant.

*.pdl text pattern file: list of patterns to be used in text analysis functions; used in File /
Load patterns and in Edit / Search, Dependency and Execute commands.

*.nam reserved names used in the Advanced Global Transformation assistant.

log files

*.log log file: records the activities carried out by the analyst; these operations can be
replayed automatically; used in the Log menu. Normally, the activity history is a
hidden part of the repository; a log file is created either to examine its contents or
to replay it.

DB-MAIN Function Overview The DB-MAIN components

27/11/00 56

method definition files

*.mdl method file: MDL specification of the method enacted by the methodological
engine of DB-MAIN.

*.lum binary version of an MDL description; has been compiled by the MDL compiler;
can be used when opening a new project.

5.2 The Voyager development environment

The voyager development tool consists of a compiler named comp_v2.exe. This compiler
accepts as arguments the name of one Voyager 2 program (file *.v2) and produces a
precompiled file with the extension oxo. Consult the reference manual for more information.

5.3 The DB-MAIN Application Library #1

The first application library comprises seven general purpose tools for information system
development. These programs have been developed in Voyager 2 and DELPHI. They are
intended to enrich the DB-MAIN environment, but also to provide Voyager-2 developers
with representative application models that can be analyzed, modified, extended or
specialized.

RTF1 : Compact report generator
Generates a simple and compact report that describes the main components of a schema.
This report is in Microsoft RTF format in such a way that it can be processed by any
modern document processor. Customizable. Note: this processor has been integrated into
the DB-MAIN tool since Version 5.

RTF2 : Extended report generator
Generates a complete extended report on the contents of a schema. This RTF report
includes page numbers, table of contents and index. Customizable. Note: this processor
has been integrated into the DB-MAIN tool .

NATURAL : Paraphraser
Generates a natural language text that describes the contents of a schema. Especially
intended to make users validate conceptual schemas. Two formats: free text and tagged
list of facts. Text in French.

METRICS : Schema metrics computation
Offers some 200 measures on schemas: number of ET, RT, attribute/ET, attributes/type,
multicomponent identifiers, etc. The metrics are selected through forms which can be
saved, reused and modified. Generates a report (text or spreadsheet).

DB-MAIN Function Overview The DB-MAIN components

27/11/00 57

PERFORM : Performance evaluator
Starting from statistics on the data (number of records, average field length, etc) and
from physical implementation parameters (technology, filling rate, max buffer size, etc),
computes various performance indicators such as table/file size, index size, actual buffer
size. Computes main access times: sequential, indexed. Applicable to relational DB and
standard files.

GENSQL : SQL generators (obsolete)
Collection of various SQL generators based on different coding style for integrity
constraints: declarative, CHECK, comments, VIEWS (positive and negative), VIEWS
with check option, etc.

ORGA : Organization modeling
Offers a graphical means to describe the hierarchical structure of an organization:
departments, services, functions, agents, applications, etc. Automatically inserts in user's
schemas meta-properties that link data types to organizational units according to various
roles: creator, user, responsible, updator, etc. Organizational units and roles are user-
defined. Generates various reports.

5.4 The DB-MAIN Application Library #2

<ask for information>

5.5 Versions of the DB-MAIN environment

The DB-MAIN CASE tool is available in three versions, namely the regular version, the
Demo/Education version and DB-MAIN/Viewer.

The regular version is a major product of the DB-MAIN development track, and is
available only to the registered partners of the programme.

The Demo/Education version is as complete as the regular one (except for the Voyager
environment), but it can accommodate small-size projects only. Once 500 user-defined
objects have been created in the current project, the input/output functions are inhibited, so
that it is no longer possible to save, export or generate the content of the repository or to
execute Voyager programs. The status bar indicates the number of objects in the current
project.

The Viewer version is a light version of DB-MAIN that allows users to examine large
projects, to print reports, to generate reports and to export graphical schemas to text
processors. Other functions are inhibited.

DB-MAIN Function Overview The DB-MAIN functions

27/11/00 58

6. List of the DB-MAIN functions

The following sections give a list of the functions available in DB-MAIN version 6 (as by
December 2000) from the menus, toolbars and palettes, together with a short description of
each of them.

A more detailed description will be found in technical documents of the product. A tutorial
entitled Computer-Aided Database Engineering - Volume I: Database Models can be
consulted to fully understand the DB-MAIN models.

Another tutorial, entitled Introduction to Database Engineering, is an intuitive introduction to
database design, and, as a side effect, to DB-MAIN mastering.

The functions of the tool are organised according to 11 classes:

File controls the exchanges between the tool and its environment; includes
importer, exporter, extractors and generators

Edit deletes, copies and pastes objects; copies schema fragments on the
clipboard; select and mark objects; changes color and fonts

Product adds, copies, examines and links products, i.e., schemas, text files and
views, meta-level management and user-defined domains.

New adds new objects to the current schema

Transform the transformation toolkit

Assist a series of Expert Assistants

Engineering engineering process control

Log manages and processes history log files

View controls the way in which the specifications appear on the screen

Window as usual

Help the help desk

Some of these functions also are available on the tool bar and on the detachable palettes.

