
Multi-Timed Bisimulation for Distributed Timed
Automata

James Ortiz, Moussa Amrani, and Pierre-Yves Schobbens

Computer Science Faculty, University of Namur
{james.ortizvega, moussa.amrani, pierre-yves.schobbens}@unamur.be

Abstract. Formal verification methods, such as model checking, have
been used to verify the correctness of large-scale and complex software
systems. However, the so-called state space explosion problem often pre-
vents model checking to be used in practice for large-scale and complex
software systems. Timed bisimulation is an important technique which
can be used for reasoning about behavioral equivalence between dif-
ferent components of a complex real-time system. The verification of
timed bisimulation is a difficult and challenging problem because the
state explosion caused by both functional and timing constraints must
be taken into account. Timed bisimulation was shown decidable for Timed
Automata (TA). Distributed Timed Automata (DTA) and TA with Inde-
pendent Clocks (icTA) were introduced to model Distributed Real-time
Systems (DTS). They are a variant of TA with local clocks that may
not run at the same rate. In this paper, we first propose to extend the
theory of Timed Labeled Transition Systems (TLTS) to Multi-Timed La-
beled Transition Systems (MLTS), and relate them by an extension of
timed bisimulation to multi-timed bisimulation. We prove the decidabil-
ity of multi-timed bisimulation and present an EXPTIME algorithm for
deciding whether two icTA are multi-timed bisimilar.

1 Introduction

Distributed Real-Time Systems (DTS) are increasing with the scientific and
technological advances of computer networks. The high demand for computer
networks has caused the development of new complex applications which benefit
from the high performance and resources offered by modern telecommunications
networks. Current researches in the area of DTS have emerged from the need
to specify and analyze the behavior of these systems, where both distributed
behavior and timing constraints are present. Formal verification methods, such
as model checking, have been used to verify the correctness of complex DTS.
Model checking over DTS becomes rapidly intractable because the state space
often grows exponentially with the number of components considered. A tech-
nique to reduce the state space is to merge states with the same behaviour. For
untimed systems, the notion of bisimulation [22] is classically used to this end,
and its natural extension for real-time systems, timed bisimulation, was already
shown decidable for Timed Automata (TA) [5, 20]. A timed automaton is a finite
automaton augmented with real-valued clocks, represented as variables that in-
crease at the same rate as time progresses. TA assume perfect clocks: all clocks



have infinite precision and are perfectly synchronized. In this paper, we study
two variants of TA called Distributed Timed Automata (DTA) and Timed Au-
tomata with Independent Clocks (icTA) proposed by [19], [2] and [24] to model
DTS, where the clocks are not necessarily synchronized. TA have been used to
model DTS such as Controller Area Network (CAN) [23] and WirelessHART
Networks [16]. But, TA, icTA and timed bisimulation are based on a sequential
semantics of a Timed Labelled Transition Systems (TLTS), i.e., a run of a TLTS
is given by a sequence of actions and timestamps.

Unfortunately, a sequential semantics does not describe completely the be-
havior of the DTS, because interactions between processes with their associated
local clocks that are running at the same rate and distribution of the actions
over the components are not considered. Also, model checking and bisimula-
tion equivalence algorithms have been implemented in tools [27][26] under the
sequential semantics adopted by the model (e.g., TA, TLTS, etc). In contrast,
behavioral equivalences for DTS have only been introduced in [6]. It is, however,
not clear whether such equivalences agree with the distributed timed properties
in DTS. Therefore, we propose an alternative semantics to the classical sequen-
tial semantics for TLTS and icTA: specifically, a run of a system in our alternative
semantics is given by the sequences of pairs (action, tuples of timestamps). Our
alternative semantics is introduced because we need to consider a semantics
which express the distribution of the actions and timestamps over the compo-
nents. With our semantics it is now possible to analyze the local behavior of the
components independently. Our alternative semantics enhances the expressive-
ness of the TLTS (and icTA). Thus, we extend the TLTS to work with the notion
of multiple local times, we call this extension Multi-Timed Labelled Transition
Systems (MLTS). Furthermore we propose efficient algorithms using partition
refinement techniques [25].

Contributions: One of our main contributions is to incorporate a alterna-
tive semantics over sequential semantics for TLTS and icTA. Also, we extend the
classical theory of timed bisimulation with the notion multi-timed bisimulation
and their corresponding decision algorithms. Since TA are special variants of
icTA, this result conservatively extends the expressiveness of TA and TLTS. We
also present two algorithms:(i) a forward reachability algorithm for the parallel
composition of two icTA, which will help us to minimize the state space explo-
ration by our second algorithm, and (ii) a decision algorithms for multi-timed
bisimulation using the zone-based technique [9]. For multi-timed bisimulation,
an extension of the usual partition refinement algorithm with signatures [26] and
[10] is considered. Multi-timed bisimulation is a relation over local clocks (and
processes), and cannot be computed with the standard partition refinement al-
gorithm [25]. Instead, we extend the approach in [26] and [10]: our algorithm
successively refines a set of zones such that ultimately each zone contains only
multi-timed bisimilar states. Furthermore, the complexity of our algorithm for
deciding whether two icTA are multi-timed bisimilar is EXPTIME-complete. Since
the timed bisimulation for TA considered in [27][26] can be regarded as a special
case of multi-timed bisimulation, our results apply also in that setting. Hence
our decision algorithms could potentially be used to analyze DTS of larger size.
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Structure of the paper. After recalling preliminary notions in Section 2,
we introduce our alternative semantics for icTA in Section 3, based on multi-
timed words consumed by MLTS. Section 4 deals with bisimulation: we first
define multi-timed bisimulation, by adapting the classical definition to MLTS,
then show its decidability by exhibiting an EXPTIME algorithm. Finally, Section
5 compares our work with existing contributions, and Section 6 concludes.

2 Preliminaries

In this section, we start by describing clocks, timed words and clock constraints.
Also, we briefly describe TLTS and TA that are among the most well-known
formalisms for modeling the behavior of the real-time systems.

Let Σ be a finite alphabet of actions. The set of all finite words over Σ will
be denoted by Σ∗. Let N be the set of natural numbers, R denote the set of
real numbers, R≥0 the set of nonnegative real numbers. A timed word [5] over
an alphabet Σ is a finite sequence θ = ((σ1, t1), (σ2, t2) . . . (σn, tn)) of actions
σi ∈ Σ that are paired with nonnegative real numbers ti ∈ R≥0 such that the
sequence t = t1t2 · · · tn of time-stamps is nondecreasing (i.e., ti ≤ ti+1 for all
1 ≤ i < n). Sometimes, we denote the timed word by the pair θ = (σ, t), where
σ ∈ Σ∗ is an untimed word over Σ and t is a sequence of time-stamps of the
same length.

A clock is a variable that increases with time. Let X be a finite set of clock
names. A clock constraint φ ∈ Φ(X) is a conjunction of comparisons of a clock
with a constant c, given by the following grammar, where x ∈ X, c ∈ N, and
∼ ∈ {<, >, ≤, ≥, =}:

φ ::= true | x ∼ c | φ1 ∧ φ2

A clock valuation over X is a mapping ν : X → R≥0, the set of valuations
is denoted RX

≥0. For a valuation ν ∈ RX
≥0 and a time value t ∈ R≥0, let ν + t

denote the valuation such that (ν + t)(x) = ν(x) + t, for each clock x ∈ X. Let Y
⊆ X, ν[Y→ 0] be the valuation defined by ν[Y← 0](x) = 0 for any x ∈ Y and
ν[Y← 0](x) = ν(x) otherwise. Given Y ⊆ X, the projection of ν on Y, written
νcY, is the valuation over Y only containing the values in ν of clocks in Y.

2.1 Timed Transition Systems (TLTS)

TLTS are used to describe the behavior of time systems.

Definition 1. A TLTS [18] is a tuple D = (Q, q0, Σ,→tlts) where:

(i) Q is a set of states.
(ii) q0 ∈ Q is the initial state.

(iii) Σ is a finite alphabet.
(iv) →tlts ⊆ Q× (Σ ] R≥0)×Q is a set of transitions.

The transitions from state to state of a TLTS are noted in the following way:
(i) A transition (q, a, q′) is denoted q

a−→ q′ and is called a discrete transition, if

3



a ∈ Σ and (q, a, q′) ∈ →tlts. (ii) A transition (q, d, q′) is denoted q
d−→ q′ and is

called a delay transition, if d ∈ R≥0 and (q, d, q′) ∈ →tlts.
A run of D can be defined as a finite sequence of moves, where discrete and con-

tinuous transitions alternate: : ρ = q0
d1−→ q′0

a1−→ q1
d2−→ q′1

a2−→ q2 . . . qn−2
dn−1−−−→

q′n−2

an−1−−−→ qn−1, where ∀0 ≤ i ≤ n − 1, qi ∈ Q, ∀j ≥ 0, dj ∈ R≥0, q′j ∈ Q and
aj ∈ Σ. A run is initial if it starts in q0. A run is maximal if it ends in a state
without outgoing transitions. We write Runs(D, q0) for the set of maximal finite
runs of D from state q0.

2.2 Strong Timed Bisimulation

In the context of real-time systems, several bisimulation relations are of interest,
like the time-abstract bisimulation or the weak and strong timed bisimulations.

Definition 2. Let D1 and D2 be two TLTS over the set of actions Σ. Let QD1

(resp., QD2
) be the set of states of D1 (resp., D2). Let R be a binary relation

over QD1
× QD2

. We say that R is a strong timed bisimulation [14] whether,
for all qD1

RqD2
:

(i) For every discrete transition qD1

a−−→D1
q′D1

with a ∈ Σ, there exists a match-

ing transition qD2

a−−→D2
q′D2

such that q′D1
Rq′D2

and symmetrically.

(ii) For every delay transition qD1

d−−→D1
q′D1

with d ∈ R≥0, there exists a match-

ing transition qD2

d−−→D2
q′D2

such that q′D1
Rq′D2

and symmetrically.

Two states qD1
and qD2

are timed bisimilar, written qD1
∼ qD2

, iff there is a
timed bisimulation that relates them. D1 and D2 are timed bisimilar, written D1

∼ D2, if there exists a timed bisimulation relation R over D1 and D2 containing
the pair of initial states.

2.3 Timed Automata

A timed automaton is a classical finite automaton which can manipulate clocks,
evolving continuously and synchronously with global time; its clocks are perfectly
synchronized.

Definition 3. A Timed Automaton is a tuple A = (Σ,X,S, s0,→ta, I,F), where:

(i) Σ is a finite alphabet.
(ii) X is a finite set of positive real variables called clocks.

(iii) S is a finite set of locations.
(iv) s0 ∈ S is the initial location.
(v) →ta⊆ S×Σ × Φ(X)× 2X × S is a finite set of transitions.

(vi) I : S→ Φ(X) gives the invariant of each location
(vii) F ⊆ S is a subset of accepting locations.
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A timed transition is tuple (s, a, φ, Y, s′) ∈ →ta (it is often written s
a,φ,Y−−−−→ s′),

where the locations s and s′ ∈ S, the action a ∈ Σ, the guard φ ∈ Φ(X) and
reset clocks Y ⊆ X.

The semantics of a timed automaton A is given by a TLTS(A) = (Q, q0, Σ ∪
R≥0,→tlts) where the set Q of states is {q = (s, ν) ∈ S × RX

≥0 | ν |= I(s)}, the
starting state is q0 = (s0, ν0), where ν0 is the valuation that assigns 0 to all the
clocks, and the transition relation →tlts⊆ (Q× (Σ ∪ R≥0)×Q) is composed of:

(i) A transition ((s, ν), t, (s, ν + t)) is denoted (s, ν)
t−→tlts (s, ν + t), and is called

a delay transition, if t ∈ R≥0 and ∀ 0 ≤ t′ ≤ t, ν + t′ |= I(s),

(ii) A transition ((s, ν), a, (s′, ν)) is denoted (s, ν)
a−→tlts (s′, ν), and is called a

discrete transition, if ∃ s
a,φ,Y−−−→ s′ such that ν |= φ∧ I(s), ν′ = ν[Y→ 0], and

ν′ |= I(s′).

Example 1. In the timed automaton given in Figure 1, the clock constraints
x > 3, x < 10 and y = 9 are the guards. To take the transition from s1 to s2,
action a must occur and the clock variable x must have a value greater than 3.
If this transition is taken, the clock variable x is set to 0. The constraint x < 7
is an invariant of s1 and forces to take the transition from s1 to s2 while the
clock variable x has a value smaller than 7. Note that using this invariant does
not have the same effect as having the guard x > 3 ∧ x < 7 on the transition.
Due to the invariant true in s2, time can progress without bound while being in
s2. Note that the invariant x < 7 in location s1, leads to the effect that x cannot
progress beyond 7.

S2S1

a, x > 3,  x:= 0 

x < 7 b, y = 9, x:= 0, y:=0 

b, x < 10 

Fig. 1. Timed Automaton

TA are neither determinizable nor complementable. Their emptiness problem
can be solved using the region construction, but their universality and inclusion
problems are undecidable [5].

For modeling concurrent real-time systems, it is more convenient to be able to
compose several TA. Networks of TA (NTA) [5] is a formalism used for modeling
a network of components (or automata) running in parallel and synchronizing
with each other (i.e. A1 ‖ A2 where A1 and A2 are TA).

2.4 Timed Automata with Independent Clocks (icTA)

icTA is an extension of Timed Automata (TA): they model the behaviour of
distributed systems with a single, global TA where each clock is associated to
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the process that owns it. An icTA is therefore always parameterised by a set Proc
of processes, and is associated with an ownership map π, and each process runs
at its own rate τp computed from a global clock.

Definition 4 (TA with Independent Clocks (icTA) [2, Def. 3]). An Timed
Automaton with Independent Clocks (icTA) is a tuple A = (B, π), where B is a
TA and π is a function maps each clock to a process π : X → Proc called the
ownership map, maps each clock to its owning process.

A Rate is a tuple τ = (τq)q∈Proc of local time functions. Each local time func-
tion τq maps the reference time to the time of process q, i.e, τq : R≥0 −→ R≥0.
The functions τq must be continuous, strictly increasing, divergent, and satisfy
τq(0) = 0. The set of all these tuples τ is denoted by Rates.

Definition 5. [2] A run of an icTA A for τ ∈ Rates is a sequence (s0, ν0)
t1−→

(s′0, ν
′
0)

a1−→ (s1, ν1)
t2−→ (s′1, ν

′
1) . . . (sn−2, νn−2)

tn−1−−−→ (s′n−2, ν
′
n−2)

an−1−−−→ (sn−1, νn−1)
where ∀1 ≤ i ≤ n, si ∈ S and ∀j ≤ n − 1, tj ∈ R≥0 and aj ∈ Σ. A finite run
of an icTA A over a untimed word is called an accepting run, iff qn ∈ F . The
untimed language of A for τ is denoted L(A, τ). L(A, τ) is defined as the set of
untimed words σ ∈ Σ∗ of accepting runs of A for τ . The existential language is
defined as L∃(A) =

⋃
τ∈Rates L(A, τ) and the universal language is defined as

L∀(A) =
⋂
τ∈Rates L(A, τ).

a, 0 < x  < 1 
∧ 0< y < 1 

So

p

q
b, y ≤  1 ≤ x 

pS1

S2

S1

q

a, 0 < x  < 1 
∧ 0< y < 1 

p

q b, y = 1,  x < 1 
pq

T1

T2

b, y ≤  1 ≤ x 
pq

c, x < 1 < y 
qp

Fig. 2. Example of icTA from [2]

Example 2. Let us consider the icTA of the Figure 2. This icTA B contains the
set of processes {p, q}, the automaton contains 6 locations, Σ = {a, b, c}, s0 is
the initial location and also we assume π(x) = p and π(y) = q. If both clocks
are completely synchronized, they follow the same local clock rate (i.e, τp = τq),
then the automaton corresponds to a standard TA. The language in this case
is L(B, τ) = {a}. If the clock y runs slower than clock x (i.e, τ ′q ≤ τ ′p). The
language in this case is L(B, τ ′) = {a, ab, b}. The existential language is L∃(B)
= {a, ab, b, c} and the universal language is L∀(B) = {a, ab}.

3 An Alternative Semantics for DTA

In this section, we define an alternative semantics (which we will call multi-timed
semantics) for icTA as opposed to the mono-timed semantics of [2]. The main
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problem with the semantics of [2] is that they use the reference time. The benefits
of this new definition are threefold. First, the multi-timed semantics preserves
the untimed language of the icTA. Second, the multi-timed semantics can work
with multi-timed words. Third, the region equivalence defined in [2] could form
a finite time-abstract bisimulation on the multi-timed semantics. Hence, the
multi-timed semantics allows to build a region automaton that accepts exactly
Untime(L(A)) for all icTA A [2]. Thus, we extend TLTS and icTA to their multi-
timed version.

3.1 Multi-Timed Actions

Let Proc be a non-empty set of processes, then, we denote by RProc≥0 the set of

functions from Proc to R, that we call tuples. A tuple d ∈ RProc≥0 is smaller that
d′, noted, d < d′ iff ∀i ∈ Proc di ≤ d′i and ∃i ∈ Proc di < d′i. A Monotone
Sequence of Tuples (MST) is a sequence d = d1d2 · · ·dn of tuples of RProc≥0 where
: ∀j ∈ 1 · · ·n− 1, dj ≤ dj+1. A multi-timed word on Σ is a pair θ = (σ,d) where
σ = σ1σ2 . . . σn is a finite word σ ∈ Σ∗, and d = d1d2 . . .dn is a MST of the
same length. This is the analog of a timed word (or multi-timed action) [5]. A
multi-timed word can equivalently be seen as a sequence of pairs in Σ × RProc≥0 .

3.2 Multi-Timed Labeled Transition Systems

Our multi-timed semantics is defined in terms of runs that record the state and
clock values at each transition points traversed during the consumption of a
multi-timed word. Instead of observing actions at a global time, a multi-timed
word allows to synchronise processes on a common action that may occur at a
specific process time.

Definition 6 (Multi-Timed Labelled Transition System). A Multi-Timed
Labelled Transition System (MLTS) over a set of processes Proc is a tuple M =
(Q, q0, Σ,→mlts) such that: (i) Q is a set of states. (ii) q0 ∈ Q is the initial
state. (iii) Σ is a finite alphabet. (v) →mlts ⊆ Q× (Σ ] RProc≥0 )×Q is a set of
transitions.

The transitions from state to state of a MLTS are noted in the following way:
(i) A transition (q, a, q′) is denoted q

a−→ q′ and is called a discrete transition, if

a ∈ Σ and (q, a, q′) ∈ →mlts, (ii) A transition (q,d, q′) is denoted q
d−→ q′ and is

called a delay transition, if d ∈ RProc≥0 and (q,d, q′) ∈ →mlts.
A run of M can be defined as a finite sequence of moves, where discrete and

continuous transitions alternate: ρ= q0
d1−→ q′0

a1−→ q1
d2−→ q′1

a2−→ q2 . . . qn−1
dn−1−−−→

q′n−1

an−1−−−→ qn, where ∀ 0 ≤ i ≤ n− 1, qi ∈ Q, ∀j ≤ n−1, dj ∈ RProc≥0 , q′j ∈ Q and
aj ∈ Σ. The multi-timed word of ρ is θ = ((a1, t1), (a2, t2) . . . , (an, tn)), where

ti =
∑i
j=1 dj . A multi-timed word θ is accepted by M iff there is a maximal

initial run whose multi-timed word is θ. The language of M, denoted L(M), is
defined as the set of multi-timed words accepted by some run of M. Note that
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MLTS are a proper generalisation of TLTS: each TLTS can be seen as a MLTS
with a single process and conversely.

For example, consider the two transition systems in Figure 3.2: a TLTS on
the left (M1) and a MLTS on the right (M2) with the finite input alphabet
Σ = {a, b, c}.

So S1

S2

S3

a, (2.0,3.2) b, (4
.1,5.3)

c, (3.7,6.5)

So S1

S3

S2

a, 2.0
b, 4.1

c, 3.7

So S1

S3

S2

  3.2a,
b, 5.3

c, 6.5

M1 M2

Fig. 3. Multi-Timed and Timed Labelled Transition Systems

3.3 A Multi-timed Semantics for icTA

We now present the icTA that are a formalism for describe both distributed and
timed systems. The operational semantics of an icTA has been associated to a
sequential notion. Here, we want to associate operational semantics of a icTA to
a MLTS.

Given π : X → Proc, a clock valuation ν : X → R≥0 and d ∈ RProc≥0 : the
valuation ν +π d is defined by (ν +π d)(x) = ν(x) + dπ(x) for all x ∈ X.

Definition 7. Let A be an icTA and τ ∈ Rates. Our multi-timed semantics of the
icTA A is given by a MLTS over Proc, denoted by MLTS(A, τ) = (Q,q0,Σ,→mlts).
The set of states Q consists of triples composed of a location, a clock valuation
and lastly the reference time: Q = {(s, ν, t) ∈ S × RX

≥0 × R≥0 | ν |= I(s)}. The
starting state is q0 = (s0, ν0, 0), where ν0 is the valuation that assigns 0 to all
the clocks. Σ is the alphabet of A. The transition relation →mlts is defined by:

(i) A transition (qi,d, q
′
i) is denoted qi

d−→ q′i, and is called a delay transition,
where qi = (si, νi, ti), q

′
i = (si, νi +π d, ti+1), d = τ(ti+1) − τ(ti) and ∀t ∈

[ti, ti+1] : νi +π (τ(t)− τ(ti)) |= I(si).

(ii) A transition (qi, a, qi+1) is denoted qi
a−→ qi+1, and is called a discrete

transition, where qi = (si, νi, ti), qi+1 = (si+1, νi+1, ti+1), a ∈ Σ, there exists
a transition (si, a, φ, Y, si+1) ∈ →ic, such that νi |= φ, νi+1 = νi[Y → 0],
νi+1 |= I(si+1), ti = ti+1.

In Definition 5, we have introduced a multi-timed semantics for icTA, following
ideas of [2]. Meanwhile, Akshay et al [2] by contrast defines a run of an icTA A for

τ ∈ Rates with a sequential semantics as a sequence (s1, ν1)
t1,a1−−−→ (s2, ν2)

t2,a2−−−→
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(s2, ν3) . . . (sn−1, νn−1)
tn−1,an−1−−−−−−−→ (sn, νn) where ∀1 ≤ i ≤ n, si ∈ S and ∀j ≤

n− 1, tj ∈ R≥0 and aj ∈ Σ. A run of an icTA A for τ ∈ Rates with our multi-
timed semantics is an initial path in MLTS(A, τ) where discrete and continuous
transition alternate. A multi-timed word is accepted by A for τ ∈ Rates if it is
accepted by MLTS(A, τ). The multi-timed language accepted by A for τ with
our multi-timed semantics is denoted as LM(A, τ). The multi-timed language
generated by MLTS(A, τ) is denoted as L(MLTS(A, τ)) (and L (MLTS(A, τ)) =
L (A, τ)). Anyway, we can find an obvious correspondence between the multi-

timed semantics and sequential semantics: (si, νi, ti)
d−→ (si, νi +π d, ti + 1)

a−→
(si+1, νi+1, ti+1) iff (si, νi)

ti+1,a−−−−→ (si+1, νi+1) and d = τ(ti+1)− τ(ti).

Example 3. The Figure 4 shows an icTA M with the finite input alphabet Σ =
{a, b, c, d}, the set of processes Proc = {p, q}, the set of clocks X = {xp, yq}
and τ = (2t, t) i.e. τp(t) = 2t and τq(t) = t. A run of M on multi-timed word
θ = ((a, (2.0, 1.0))(b, (3.0, 1.5))(c, (4.2, 2.1))(d, (6.0, 3.0))) is given by ρ (s0, [x

p =

0.0, yp = 0.0], 0.0)
(2.0,1.0)−−−−−→ (s0, [x

p = 2.0, yp = 1.0], 1.0)
a−−→ (s0, [x

p = 2.0, yp =

0.0], 1.0)
(1.0,0.5)−−−−−→ (s1, [x

p = 3.0, yp = 0.5], 0.5)
b−−→ (s1, [x

p = 3.0, yp = 0.5], 0.5)
(0.6,0.5)−−−−−→ (s1, [x

p = 4.2, yp = 1.1], 0.6)
c−−→ (s1, [x

p = 4.2, yp = 0.0], 0.6)
(0.6,0.9)−−−−−→

(s1, [x
p = 6.0, yp = 0.9], 0.9)

c−−→ (s1, [x
p = 0.0, yp = 0.9], 0.9).

S1 S2

 x  ≥ 1, y  ≤ 2, a, y  ≔	0 

M

So

p q q

x  ≥ 4, y  ≤ 1, d, x  ≔	0 p q
y  ≥ 1, c, y  ≔	0 q q

x  ≤ 4, bp

p

(a)

Fig. 4. An icTA M

Theorem 1. Let A be an icTA. Then, for every τ ∈ Rates, τ(L(A, τ)) =
L(MLTS(A, τ)).

Proof. The proof consists of two steps, first showing, ∀ τ ∈Rates, LM(MLTS(A, τ))
⊆ τ(LM(A, τ)) and then showing ∀ τ ∈Rates, τ(LM(A, τ))⊆ LM(MLTS(A, τ)).

(i) ∀ τ ∈ Rates, τ(LM(A, τ)) ⊆ LM(MLTS(A, τ)) :

∀ τ ∈ Rates, τ(LM(A, τ)) = τ({(θ, d) | (θ, d) ∈ LM(A, τ)})
= {τ(θ, d) | (θ, d) ∈ LM(A, τ)}
= {(θ, τ(d)) | (θ, d) ∈ LM(A, τ)}
⊆ LM(MLTS(A, τ))
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(ii) ∀ τ ∈ Rates, LM(MLTS(A, τ) ⊆ τ(LM(A, τ)) :

∀ τ, LM(MLTS(A, τ)) = {(θ,d) | (θ,d) ∈ LM(MLTS(A, τ))}
= {(θ,d) | (θ,d) ∈ LM(MLTS(A, τ))}
= {(θ,d) | (θ,d) ∈ LM(MLTS(A, τ))}
⊆ τ(LM(A, τ))

ut

4 Multi-Timed Bisimulation

From a distributed approach, a DTS consist of several processes with their as-
sociated local clocks that are not running at the same rate. Thus, in order to
formalize preservation of distributed timed behavior, we extend the classical
definition of timed bisimulation [14] towards a multi-timed semantics. Our mo-
tivation for extending the classical definition of timed bisimulation is twofold:
first, efficient algorithms checking for timed and time-abstract bisimulation have
been discovered [20][26]. Nonetheless, these algorithms depend on sequential se-
mantics (i.e, TLTS and TA). Second, verifying the preservation of distributed
timed behavior in DTS could be used to avoid the combinatorial explosion of
the size of the model due to the composition of the processes.

4.1 Strong Multi-Timed Bisimulation

Let M1 and M2 be two MLTS over the same set of actions Σ. Let QM1
(resp.,

QM2
) be the set of states of M1 (resp., M2). Let R be a binary relation over

QM1
× QM2

. We say that R is a strong multi-timed bisimulation whenever
the following transfer property holds (note that technically this is simply strong
bisimulation over Σ ] RProc≥0 ):

Definition 8. A strong multi-timed bisimulation over MLTS M1, M2 is a bi-
nary relation R ⊆ QM1×QM2 such that, for all qM1

RqM2
, the following holds:

(i) For every a ∈ Σ and for every discrete transition qM1

a−−→M1 q′M1
, there

exists a matching discrete transition qM2

a−−→M2 q′M2
such that q′M1

Rq′M2

and symmetrically.

(ii) For every d = (d1, . . . , dn) ∈ RProc≥0 , for every delay transition qM1

d−−→M1

q′M1
, there exists a matching delay transition qM2

d−−→M2
q′M2

such that
q′M1
Rq′M2

and symmetrically.

Two states qM1
and qM2

are multi-timed bisimilar, written qM1
≈ qM2

, iff
there is a multi-timed bisimulation that relates them. M1 and M2 are multi-
timed bisimilar, written M1 ≈ M2, if there exists a multi-timed bisimulation
relation R over M1 and M2 containing the pair of initial states.
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As a consequence of Definition 4, the notion of multi-timed bisimulation ex-
tends to icTA and we have the following definition:

Definition 9. Let A and B be two icTA. We say the automata A and B are
multi-timed bisimilar, denoted A ≈ B, iff ∀ τ ∈ RatesMLTS(A, τ) ≈MLTS(B, τ).

When there is only one process, i.e. Proc = {q}, the multi-timed bisimulation is
the usual timed bisimulation. Consider the two icTA Ap (left) and Aq (right) in
Figure 5 with the finite input alphabet Σ = {a}, the set of processes Proc =
{p, q}, the set of clocks X = {xp, yq} and τ = (t2, 3t) i.e. τp(t) = t2 and τq(t)
= 3t. Ap and Aq in Figure 5 depicts an icTA. Ap performs nondeterministically
the transition with the guard xp ≤ 2, the action a, resets clock xp to 0 and
enters location s1. Similarly, Aq performs nondeterministically the transitions
with the guard yq ≤ 2, the action a, resets clock yq to 0 and enters location t1.
We will show that these icTA are not multi-timed bisimilar (Definition 6): We
have (s0, [x

p = 0], 0) in MLTS(Ap, τp) and (t0, [y
q = 0], 0) since Ap can run the

delay transition (s0, [x
p = 0], 0)

(1,3)−−−→ (s0, [x
p = 1.0], 1) and Aq in MLTS(Aq, τq).

We have (s0, [x
p = 0], 0) 6≈ (t0, [y

q = 0], 0) can only match this transition with

(t0, [y
q = 0], 0)

(1,3)−−−→ (t0, [y
q = 3], 1). From these states MLTS(Ap, τp) can fire a

while MLTS(Aq, τq) cannot.

So S1
x ≤ 2, a, x  ≔"0 p p

To T1
y ≤ 2, a, y  ≔"0 q q

Ap Aq

Fig. 5. An example of Multi-timed Bisimulation

Proposition 1. Let M1 and M2 be two MLTS over the set of actions Σ. For
any M1, M2, M1 ‖ M2 ≈ M2 ‖ M1.

Proof. The proof of this proposition consists in showing that each transition
of M1 ‖ M2 can be found in M2 ‖ M1 and vice versa, where R is obvi-
ously the swapping i.e., (qM1

, qM2
) R (qM2

, qM1
). Based on the MLTS compo-

sition, there exists two types of transitions on the resulting system. Let R =
{(qM1

, qM2
)|(qM2

, qM1
) ∈ QM2‖M1

}. It directly follows from the definition of
parallel composition in MLTS (Definition 35) that:

(i) For any discrete transition (qM1
, qM2

)
a−→M1‖M2

(q′M1
, q′M2

) with a ∈ Σ,

there exists a corresponding transition (qM2
, qM1

)
a−→M2‖M1

(q′M2
, q′M1

)
with ((qM1

, qM2
), (qM2

, qM1
)) ∈ R.

(ii) For any delay transition (qM1
, qM2

)
d−→M1‖M2

(q′M1
, q′M2

) with d ∈ Rn≥0,

there exists a corresponding transition (qM2
, qM1

)
d−→M2‖M1

(q′M2
, q′M1

)
with ((qM1 , qM2), (qM2 , qM1)) ∈ R.

Since every initial state (q0
M1

, q0
M2

) ofM1 ‖ M2 has a match (q0
M2

, q0
M1

) in the

initial states of M2 ‖ M1, and ((q0
M1

, q0
M2

), (q0
M2

, q0
M1

) ∈ R. Therefore, R is a
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bisimulation for M1 ‖ M2 ≈ M2 ‖ M1. Finally, by following a similar steps,
we could show that M2 ‖ M1 ≈ M1 ‖ M2.

ut

In the context of multi-timed bisimulation and MLTS, compositionality [12] is
captured by the following definition:

Definition 10 (Compositionality). A binary relation ≈ between two MLTS
M1, M2 is compositional if M1 ≈ M2 and M3 ≈ M4 implies M1 ‖ M3 ≈
M2 ‖ M4.

Proposition 2. Let M1, M2 and M3 be three MLTS over the set of actions
Σ. For any M1, M2 and M3, ≈ is compositional if and only if M1 ≈ M2 ⇒
M1 ‖ M3 ≈ M2 ‖ M3 (invariant under composition).

ut

Proof. The proof of this proposition consists in showing for the sufficient direc-
tion thatM1 ≈M2 ⇒M1 ‖ M3 ≈M2 ‖ M3. Assume that ≈ is compositional.
Since ≈ is reflexive M3 ≈ M3 holds. Using the definition of compositionality,
M1 ≈ M2 andM3 ≈ M3 implyM1 ‖ M3 ≈ M2 ‖ M3. For the necessary di-
rection, assume that ≈ is invariant under composition. ThenM1 ≈ M2 implies
M1 ‖ M3 ≈ M2 ‖ M3. Also, M3 ≈ M4 and commutativity of composition
implies M2 ‖ M3 ≈ M2 ‖ M4, and by transitivity M1 ‖ M3 ≈ M2 ‖ M4.

ut

4.2 Decidability

There are two popular symbolic representations of a set of clock valuations:
the region-based [5] and the zone-based [9] representations. Roughly speaking,
regions and zones are abstract representations of (infinite) sets of valuations, but
zones are larger for extrapolated zones. Inspired by [20], we show that for given
icTA A, B, checking whether A ≈ B is decidable via a suitable zone graph [20].
In order to define the notion of clock zone over a set of clocks X, we need to
consider the set Φ+(X) of extended clock constraints.

Definition 11. A clock constraint φ is a conjunction of comparisons of a clock
with a constant c, given by the following grammar, where φ ranges over Φ+(X),
xi, xj ∈ X, c ∈ N, and ∼ ∈ {<, >, ≤, ≥, =}: φ ::= true | xi ∼ c | xi − xj ∼
c | φ1 ∧ φ2. A clock constraint of the form xi−xj ∼ c is called diagonal constraint
and xi, xj must belong to the same process. The notion of satisfaction of a clock
constraint φ ∈ Φ+(X) by a valuation is given by the clause ν |= xi − xj ∼ c iff
ν(xi)− ν(xj) ∼ c.

Formally, a clock zone Z is a conjunction of extended clock constraints (φ ∈
Φ+(X)) with inequalities of clock differences. Its semantics is the set of clock
valuations that satisfy it [[Z]] = {ν | ν |= φ}. We omit the semantics brackets
when obvious.

For any clock zones Z, Z ′ and finite set of clocks X, the semantics of the
intersection, clock reset, inverse clock reset, time successor and time predecessor
events on clock zone can be defined as:

12



1. Z ∩ Z ′ = {ν | ν ∈ Z ∧ ν ∈ Z ′}
2. Z ↓x= {ν[x→ 0] | ν ∈ Z and x ∈ X }
3. Z ↑x= {ν | ν[x→ 0] ∈ Z and x ∈ X }
4. Z ↑= {ν + d | ν ∈ Z and d ∈ RProc>0 }
5. Z ↓= {ν − d | ν ∈ Z and d ∈ RProc>0 }

Notice that the operations can be defined syntactically a clock zones as follows
[4]: A zone graph is similar to a region graph [5] with the difference that each
node consists of pair (called a zone) of a timed automaton location s and a clock
zone Z (i.e. q = (s,Z)). For q = (s,Z), we write (s′, ν) ∈ q if s = s′ and ν ∈
Z, indicating that a state is included in a zone. Due to their convexity, clock
zones are easy to manipulate in practice. A common data structure used for
the representation of clock zones is a Difference bound matrices (DBMs)[9][3]. A
DBMs for a set C = {x1, x2, · · · , xn} of n clocks is an (n+ 1) square matrix Dij
where an extra variable x0 is introduced such that the value of x0 is always 0.
An element D is of the form (dij ,≺) where ≺ ∈ {<,≤} such that xixj ≺ dij .
Thus an entry di0 denotes the constraint xix0 ≺ di0 which is equivalent to xi ≺
di0.

Analogously, we can write (s,Z) ⊆ (s′,Z ′) to indicate that s = s′ and Z ⊆
Z ′. We will use the notation Action(e) to denote the action a of the edge e.
Furthermore, we extend the satisfaction relation to regions in the following way:

Definition 12. Let (s,Z) be a zone and e = (s, a, φ, Y, s′) ∈ →icta be a transi-

tion of an icTA A, then post(Z, e) = {ν′ | ∃ν ∈ Z,∃t ∈ R≥0, (s, ν, t)
e−→mlts(A)

(s′, ν′, t)} is the set of valuations than can reach (s,Z) by taking the transition
e.

Definition 13. Let (s,Z ′) be a zone and e = (s, a, φ, Y, s′) ∈ →icta be a transi-

tion of an icTA A, then pred(Z ′, e) = {ν | ∃ν′ ∈ Z ′,∃t ∈ R≥0, (s, ν, t)
e−→mlts(A)

(s′, ν′, t)} is the set of valuations than can reach (s,Z ′) by executing the transi-
tion e.

Intuitively, we can say that the set (s′, post(Z, e)) describes the discrete suc-
cessor of the zone (s,Z) under the transition e, and the set (s, pred(Z ′, e)) de-
scribes the discrete predecessor of the zone (s′,Z ′) under the transition e. The
set post(Z, e) can be obtained using the operations ↓Y (clock reset) and the
standard intersection on clock zones as follows:

post(Z, e) = ((Z ∩ (φ ∩ I(s)) ↓Y ∩ I(s′))

The set pred(Z ′, e) can be obtained using the operations ↓ (predecessor) and
the standard intersection on clock zones as follows:

pred(Z ′, e) = ((Z ′ ↑Y ∩ φ) ∩ I(s))

The sets post(Z, e) and pred(Z ′, e) are also clock zones.

Definition 14 (Symbolic Multi-timed Zone Graph). Given an icTA A =
(Σ,X,S, s0,→icta, I,F, π), its symbolic multi-timed zone graph (ZG(A)) is a tran-
sition system ZG(A) = (Q, q0, (Σ ∪ {↑}),→ZG), where :
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1. Q consists of pairs q = (s,Z) where s ∈ S, and Z ∈ Φ+(X) is a clock zone
with Z ⊆ I(s) .

2. q0 ∈ Q is the initial zone q0 = (s0,Z0) with Z0 = J
∧
x∈X x = 0K.

3. Σ is the set of labels of A.

4. →ZG ⊆ Q× (→icta ∪{↑})×Q is a set of transitions, where each transition in
ZG(A) is a labelled by a transition e = (s, a, φ, Y, s′) ∈ →icta, where s and s′

are the source and target locations, φ is a clock constraint defining the guard
of the transition, a is the action of the edge and Y is the set of clocks to be
reset by the transition in the icTA A. For each e ∈ Σ, transitions are defined
by the rules:

(i) For every e = (s, a, φ, Y, s′) and clock zone Z, there exists a discrete tran-

sition (q, e, q′), where q = (s,Z)
e−→ZG q′ = (s′, post(Z, e)) if post(Z, e)

6= ∅.
(ii) For a clock zone Z, there exists a delay transition (q, ↑, q′), where q =

(s,Z)
↑−→ZG q

′ = (s,Z ′) and Z ′ = Z ↑ ∩ I(s).

Note that ↑ is used here as a symbol to represent symbolic positive delay transi-
tions. Only the reachable part is constructed.

s0 s1s2
b, yq> 5 

a, xp := 0 

a, xp < 2 

Fig. 6. An icTA A
Example 4. Consider the icTA A in Figure 6 with the finite input alphabet Σ =
{a, b}, the set of processes Proc = {p, q}, the set of clocks X = {xp, yq}. Clock xp

ensures that the automaton returns to s0 before 2 time units of p before coming
back to s0 or stays in s1 forever. Clock yq ensures that the automaton can go to
the final state s2 only after 5 time units of q. Figure 7 shows ZG(A).

Lemma 1. Let (s,Z) be a zone and e = (s, a, φ, Y, s′) ∈ →icta be a transition
of an icTA A, then Z ↑, Z ↑x, Z ↓, post(Z, e) and pred(Z ′, e) are also zones.

Proof. The proof follows from the fact that zones operations preserve convexity.
ut
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(s0,0 < xp, yq> 0)   (s1, xp=0, yq> 0)   (s2, 0 < xp, yq>5)   
a, xp := 0b, yq> 5 

(s0,xp=0   yq=0)   

xp := 0, yq := 0

(s1, xp>0, yq> 0)   

<

(s1, xp=0   yq = 0)   
a, xp := 0 <

(s0,0< xp<2, yq> 0)   
a, xp < 2 

a, x
p  := 0b, y q> 5 

Fig. 7. The zone graph for the automaton in Figure 6

Algorithm 1: Reachable Multi-timed Zone Graph

Input : An icTA C = (Σ,X,S, s0,→icta, I,F, π).
Output: A reachable zone graph ZG(C) = (Q, q0, Σ,→ZG).

1 // s ∈ S is a location of C, Z1≤i≤4 are clock zones, M is a set of clock zones.
2 // TZG is a set of transitions (i.e. →ZG= TZG), EZG is a set of labels.
3 // D and Q are a set of pairs S× Z, D is the set of open states.
4 Function BuildSymbZoneGraph(C)
5 q0 = (s0,Z0) such that for all x ∈ X and ν ∈ Z0, ν(x) = 0 ;
6 Q, D ← {q0}, TZG ← ∅, M ← ∅ ;
7 while D 6= ∅ do
8 Choose and Remove (s,Z1) from D ;
9 M ← {Z1} ;

10 for each transition e = (s, a, φ, Y, s′) ∈→icta such that Z1 ∧ φ 6= ∅ do
11 if exists Z3 ∈ M then
12 // Z2 is the successor such that Z2 ∧ I(s′) 6= ∅
13 Z2 ← Extra+LU(s)

(post(Z1, e)) ;

14 EZG ← EZG ∪ {e} ;

15 if exists (s′,Z4) ∈ Q such that Z2 ⊆ Z4 then

16 TZG ← TZG ∪ {(s,Z1)
e−→ZG (s′,Z4)} ;

17 else

18 TZG ← TZG ∪ {(s,Z1)
e−→ZG (s′,Z2)} ;

19 Q ← Q ∪ {(s′,Z2)}, D ← D ∪ {(s′,Z2)} ;

20 end

21 else
22 continue ;
23 end

24 end
25 Z2 ← Z1 ↑ ∧ I(s) ;
26 if exists (s,Z3) ∈ Q such that Z2 ⊆ Z3 then

27 TZG ← TZG ∪ {(s,Z1)
↑−→ZG (s,Z3)} ;

28 else

29 TZG ← TZG ∪ {(s,Z1)
↑−→ZG (s′,Z2)} ;

30 Q ← Q ∪ {(s,Z2)}, D ← D ∪ {(s,Z2)} ;

31 end

32 end
33 return (Q, q0, Σ,→ZG) ;

34 end 15



Multi-timed Zone Graph Algorithm: In algorithm 1, we use the zone’s con-
cepts obtained above to build a reachable multi-timed zone graph (ZG(C)) from
the parallel composition of two icTA (C = A ‖ B). Algorithm 1 build a multi-timed
zone graph, starting with the pair (s0,Z0) (s0 initial location of the automaton
A with Z0 = J

∧
x∈X x = 0K represents the initial zone). However, the multi-timed

zone graph can be infinite, because constants used in zones may grow for ever.
Therefore, we incorporate to our implementation a termination condition which
bounds the number of states to be generated [7][8]. We use a technique called
extrapolation abstraction (known also as k - extrapolation [7]), where k is a con-
stant supposed to be greater than the maximal constant occurring in A (i.e., Cx
∈ N). The main idea of extrapolation abstraction is that if an atomic constraint
(i.e., true, xi ∼ c, xi− xj ∼ c) of A which compares two clocks (xi and xj) is not
satisfied by any clock valuation of a zone, then it should not be satisfied by any
clock valuation of the extrapolated one. Similarly, if all the clock valuations of a
zone satisfy a difference constraint, then so should also all the clock valuations
of the extrapolated one [7][8]. Among the various Max-bound and LU -bound
based extrapolation abstraction [8], we choose to use LU -extrapolation abstrac-
tion [8]: ExtraLU , Extra+

LU (LU -bound), where L is the maximal lower bound
and U is the maximal upper bounds. For every zone q = (s,Z) of a ZG(A), there
are bound functions LU and the symbolic zone graph using Extra+

LU(s)
. Then,

we build zones of the form qZG = (s, Extra+
LU(s)

(post(Z, e)).
The operator ExtraLU has been the most used in different implementations

of zones, but some improvement has been made to this operator to get better
LU -bound to Extra+

LU . A naive way to choose L bounds is to take for each clock
the maximum constant appearing in a guard anywhere in the automaton that
lower-bounds the clock. Similarly we choose U from among the upper bounded
guards that occur anywhere in the automaton. In [8], instead of considering
global bound L,U for all locations in an automaton, they use different bound
for each location of the automaton (LU to denote the two bound functions L
and U). For every zone q = (s,Z) of a ZG(A), there are bound functions LU
and the symbolic zone graph using Extra+

LU(s)
. Initially, we create a multi-timed

zone graph, where we use Extra+
LU(s)

method in the build of the graph. We will

build states of the form qZG = (s, Extra+
LU(s)

(post(Z, e)).

Lemma 2 (Completeness). Let θ = (s0, ν0, t0)
d0,a0−−−→ (s1, ν1, t1)

d1,a1−−−→ . . .
dn−1,an−1−−−−−−−→ (sn, νn, tn) be a run of MLTS(A, τ), where τ ∈ Rates. Then, for all
state (si, νi, ti) where 0 ≤ i ≤ n, there exists a symbolic zone (si,Zi) added in Q
such that νi ∈ Zi.

Proof. We proceed by induction on the length of the run leading to (si, νi, ti).
Base case: We know that ν0 ∈ Z0. The zone (s0,Z0) is added to D and Q in line
9. For the base case, (s0,Z0) is the required zone.

Induction case: Assume that for all 0 ≤ i ≤ m, there exists (si,Zi) in Q
such that νi ∈ Zi. We will now show that there exists (sm+1,Zm+1) in Q such
that νm+1 ∈ Zm+1. By the induction hypothesis, we have (sm,Zm) in Q such

16



that νm ∈ Zm. Consider the transition (sm, νm, tm)
dm,am−−−−→ (sm+1, νm+1, tm+1)

of the run θ. As (sm,Zm) is in Q, the discrete transition
em−−→ZG with em =

(sm, am, φm, Ym, sm+1) ∈ →icta has been considered in the for loop of line 13. As

(sm,Zm) is inQ, the delay transition
↑−→ZG with ↑= dm ∈ Rn≥ has been considered

in the for loop of line 29. Let (sm,Zm)
em−−→ZG (sm+1,Zm+1) be the discrete

transition in the zone graph in lines 19, 21. Let (sm,Zm)
dm−−→ZG (sm+1,Zm+1)

be the delay transition in the zone graph in lines 31, 33. By definition of the
symbolic transition, νm+1 ∈ Zm+1. If (sm+1,Zm+1) is in Q, we are done. The

only other case when (sm+1,Zm+1) is not in Q is when there exists (sm+1,Z
′

m+1)

in Q such that Zm+1 ⊆ Zm+1. Therefore, νm+1 ∈ Zm+1 and since (sm+1,Z
′

m+1)

is in Q, our required zone would be (sm+1,Z
′

m+1).
ut

The above lemma tell that the algorithm 1 can overapproximate reachability of
a set of zones correctly. Now, we can establish the termination of the algorithm 1,
because there are finitely many Extra+

LU zones, so that finitely many LU -bound
of zones can be explored for each state of the automaton [11][8].

Complexity Algorithm 1: Starting from the initial state (q0,Z0) it com-
putes the successor state during the search. When a new clock zone Z ′ =
Extra+

LU(s)
(post(Z, e)) and state are obtained, it is checked if there exists an al-

ready visited state (s′, Extra+
LU(s)

(Z ′′)) such that Extra+
LU(s)

(Z ′) ⊆ Extra+
LU(s′)

(Z ′′).
If there does exist one such state, the new transition is considered for the zone
graph. As Extra+

LU is convex, this inclusion is just an inclusion check between
two zones and can be done efficiently in time O(|X|2). The time complexity of
this algorithm is given in terms of the number of clocks, the number of clocks
and the number of transitions of the icTA: O(|S| × | →icTA | × |X|2)) where |S|
represent the number of states in the icTA A, |X| the number of clocks in A and
| →icTA | the number of transitions in A

Partition-Refinement Algorithm: Now, we describe a partition refinement
algorithm with signature to compute the multi-timed bisimulation from a zone
graph ZG(C) = ZG(A) ‖ ZG(B). Essentially, our algorithm is based on the par-
tition refinement technique [25]. The refinement algorithm [25] partitions the
state space Q into equivalent blocks (i.e., pairwise disjoint sets of states). The
algorithm starts from an initial partition Π0 that respects state labeling and the
partition Π is then successively refined until Π contains only bisimilar states.
The refinement is based on the fact that a bisimulation induces a stable partition.
The main steps are shown in Algorithm 2.
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Algorithm 2: The general partition refinement algorithm

Input : An labelled transition system A = (Q, q0, Σ,→lts) and the initial partition Π0.
Output: A coarsest partition Π.

1 // q ∈ Q is a zone of ZG(C), Π is a set of zones, Z, Z′ are clock zones.
2 // Q is a set of pairs S× Z.
3 Function GeneralPartition(A), Π0)
4 // Phase I - Initial partition Π0

5 Π ← Π0 ;
6 i ← 0 ;
7 Repeat
8 // Phase II - Refine Π
9 Πi+1 ← Refine(Πi) ;

10 i ← i+ 1 ;

11 Until Πi = Πi−1 does not change;
12 Return Πi ;

13 end

Due to the fact that the runs of our zone graph (ZG(C)) involve an sequence
of moves, where discrete and time-elapse ↑ transitions alternate, the partition
refinement algorithm has thus to deal with the following difficulties: (i) when
taking a ↑ transition, where the clocks x and y are not perfectly synchronous
π(x) 6= π(y), it should take into consideration that the time elapse traverses
continuously diagonal, vertical and horizontal time successor zones. Conversely,
due to the nature of TA, where the clocks are perfectly synchronous π(x) =
π(y), the time elapsing traverses only continuously diagonal time successor zones.
Thus, the time splitter operator presented in [26] is not applicable within our
algorithm. Figure 8 presents an example : (a) a time elapsing traversing the clock
zones 1 to 3, (b) a time elapsing traversing continuously diagonal, horizontal and
vertical time successor zones.

Moreover, since a discrete transition results in a sequence of time elapse tran-
sitions, the discrete splitter operator presented in [26] is not applicable within
our algorithm. Therefore, we need to extend the discrete and time splitter opera-
tors presented in [26]. Also, our algorithm adopts the idea of the signature-based
technique [10], which assigns states to equivalence blocks according to a char-
acterizing signature. In each refinement iteration, the set of zones are refined
according to a signature. The algorithm in [10], cannot be applied in our setting
in a straightforward way, as in that case untimed systems are addressed, while
in our case, the time and discrete transition should be considered. Based on [10],
we introduce a signature splitter operator which refine the set of zones until a
fixed point is reached, which is the complete multi-timed bisimulation. Thus, we
introduce the timed and discrete predecessor operators.

As we have two types of transitions (delay and discrete), there are two oper-
ations i.e. TimePred and ActionPred, which return the set of all discrete prede-
cessors and time predecessors of states respectively.

Definition 15. Let z = (s,Z) and z′ = (s,Z ′) be two zones, then : TimePred↑(Z,
Z ′) = {ν ∈ Z | ∃ d ∈ RProc>0 , ∃ τ ∈ Rates, ∃ t, t′′ ≥ 0, t ≤ t′′ and ∀t′, t ≤ t′ ≤
t′′, and d = τ(t′′)− τ(t), (ν+π d) ∈ Z ′, and d′ = τ(t′)− τ(t) then (ν+π d

′) ∈
(Z ∪ Z ′)} is the set of valuations in the zone Z from which a valuation of Z ′
can be reached through the elapsing of time, without entering any other zones
besides Z and Z ′ (i.e., Z ∪ Z ′).
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Fig. 8. (a) A time elapsing traversing 0 to 3, (b) Diag., horiz. and vert. time successors.

The definition above consider two clock zones where Z, Z ′ are from the
current partition, such that Z is not pre-stable with regard to Z ′, then the
TimePred↑(Z,Z ′) operator splitting Z with regard to Z ′ such that each newly
created clock zones obtained by splitting Z is pre-stable with regard to Z ′.
Definition 16. Let z = (s,Z) and z′ = (s′,Z ′) be two zones from the current
partition and let e = (s, a, φ, Y, s′) be an action then : ActionPrede(Z,Z ′) =
{ν ∈ Z | ν |= φ and ν[Y → 0] ∈ Z ′} is the set of valuations in the clock zone
Z, which lead to a valuation in Z ′ when the clock reset Y ⊆ X is applied to it.

The definition above considers two zones such that e = (s, a, φ, Y, s′) ∈ Σ and
Z is not pre-stable with regard to Z ′, then the ActionPrede(Z,Z ′) operator is
used in backward analysis of the timed automaton, where e is a transition in
ZG(A) and s and s′ are the source and target locations.

Lemma 3 ([26]). Let z = (s,Z), z′ = (s,Z ′) ∈ Q be two zones, then TimePred↑
(Z,Z ′) is a clock zone.

Our proof follows the same lines as the proof of [26]: we also show that
TimePred↑ is convex.

Proof. Let z = (s,Z), z′ = (s,Z ′) and Z ′′ = TimePred↑(Z,Z ′). According to ZG
semantics this equivalent to show that if ν1, ν2 ∈ Z ′′ then ν = kν1 + (1− k)ν2

∈ Z ′′, for 0 ≤ k ≤ 1. ν1, ν2 ∈ Z ′′ implies that ν1, ν2 ∈ Z and ∃ d1,d2 ∈ RProc>0

such that ν1+π d1, ν2+π d2 ∈ Z ′ and ∃ t1, t2 ≥ 0, t1 ≤ t2, ∀ t′, t1 ≤ t′ ≤ t2, ∃
τ1, τ2 ∈ Rates and τ1 6= τ2, d1 = τ1(t2) − τ1(t1) and d2 = τ2(t1) − τ2(t′) then
ν1 +π d1, ν2 +π d2 ∈ (Z ∪Z ′). Let d = kd1+ (1− k)d2, then ν+π d = k(ν1+π

d1) +(1− k)(ν2+π d2), implying that ν+π d ∈ Z ′, since Z ′ is convex. Now, we
have to show that ∀ t′, t1 ≤ t′ ≤ t2, ∃ τ1, τ2 ∈ Rates, d = τ1(t2) − τ1(t1) and
d′ = τ2(t1) − τ2(t′), ν+π d′ ∈ (Z ∪ Z ′). Given d′, d, we can write d′ as kd3+
(1− k)d4, for some d3, d1 and d4, d2. We have ν1+π d3, ν2+π d4 ∈ (Z ∪Z ′). If
both ν1+π d3, ν2+π d4 ∈ Z or ν1+π d3, ν2+π d4 ∈ Z ′, we are done, since Z and
Z ′ are both convex. Considerer the case ν1+π d3 ∈ Z and ν2+π d4 ∈ Z ′. Let g
be the smallest positive real such that ν2+π d4− g ∈ Z or ν1+π d3− g(1− 1

k ) ∈
Z ′. Assume the first case, we have ν1+π d5, ν2+π d6 ∈ Z, for d6 = d4 − g and
d5 = d3 − g(1− 1

k ). Moreover, d′ = kd5 + (1− k)d6, which means that ν+π d′

= k(ν1+π d5) + (1− k)(ν2+π d6). By convexity of Z, ν+π d′ ∈ Z.
ut
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Figure 9 presents the time elapsing traverses continuously time successors.

Theorem 2. Let A be an icTA. Let ZG(A)= (Q, q0, Σ,→ZG) be the symbolic
zone graph of A. Let e = (s, a, φ, Y, s′) be a transition of A. Let (s,Z) and (s′,Z ′)
be two zones, for which (s,Z)

e−→ (s′,Z ′) ∈ →ZG such that Z ⊆ ActionPrede(φ, I(s′)),
then:

1. For discrete transition (s,Z)
e−→ (s′,Z ′), Z = ActionPrede(Z,Z ′) iff (s,Z)

e−→
(s′,Z ′) is pre-stable.

2. For delay transition (s,Z)
↑−→ (s,Z ′), Z = TimePred↑(Z,Z ↓) iff (s,Z)

↑−→
(s,Z ′) is pre-stable.

Proof. 1. To prove the first part of this theorem we may assume that Z =
ActionPrede (Z,Z ′), which means that ∀ν ∈ Z, ∃ν′ Z ′, ∃Y ⊆ X, ν[Y → 0] =

ν′. Then, from ∀ (s,Z)
e−→ (s′,Z ′) ∈→ZG such that Z ⊆ ActionPrede(φ, I(s′)),

it follows that Z ⊆ φ and this is equivalent to ∀ν ∈ Z, ∃ν′ Z ′, ∃Y ⊆ X, (ν ∈
φ ∧ ν[Y → 0] = ν′), which is according to A equivalent to ∀(s, ν, t) ∈ (s,Z),

∃(s′, ν′, t) ∈ (s′,Z ′), (s, ν, t)
e−→icta (s′, ν′, t), which means that the discrete

transition is pre-stable.

2. To prove the second part of this theorem we consider a delay transition

(s,Z)
↑−→ (s,Z ′) of the zone graphs. From the definition of zone graph

∃(s, ν, t) ∈ (s,Z) which has a outcoming delay transition. Also, from the
definition of zone graphs it follows that (Z ∪ Z ′) ⊆ I(s). We may assume
that Z = TimePred↑(Z,Z ′), which means that ∀ν ∈ Z, ∃d ∈ RProc>0 , ∃ τ ∈
Rates, ∃ t, t′′ ≥ 0 and t ≤ t′′, ∀t′, t ≤ t′ ≤ t′′, (ν+π d) ∈ Z ′, d = τ(t′′)− τ(t)
and ∀ d′, 0 ≤ d′ ≤ d then (ν+π d′) ∈ (Z ∪ Z ′), d′ = τ(t′)− τ(t). Give that
(Z ∪ Z ′) ⊆ I(s), this is equivalent to ∀(s, ν, t) ∈ (s,Z), ∃d ∈ RProc>0 , ∃ τ ∈
Rates, ∃ t, t′′ ≥ 0 and t ≤ t′′, ∀t′, t ≤ t′ ≤ t′′, (s, ν+π d, t) ∈ (s,Z ′), d =
τ(t′′) − τ(t) and ∀ d′, 0 ≤ d′ ≤ d then (s, ν+π d′, t) ∈ ((s,Z) ∪ (s,Z ′)),
d′ = τ(t′)− τ(t) and (s, ν+π d′, t) ∈ I(s). According to icTA this equivalent
to ∀(s, ν, t) ∈ (s,Z), ∃d ∈ RProc>0 , ∃ τ ∈ Rates, ∃ t, t′′ ≥ 0 and t ≤ t′′, ∀t′, t
≤ t′ ≤ t′′, (s, ν, t)

d−→icTA (s, ν′, t′), d = τ(t′′) − τ(t) and ∀ d′, 0 ≤ d′ ≤ d

then ∀ (s, ν′′, t′′) ∈ QicTA, (s, ν, t)
d′−→icTA (s, ν′′, t′′), then (s, ν′′, t′) ∈ ((s,Z)
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∪ (s,Z ′)), d′ = τ(t′) − τ(t), which expresses that the delay transition is
pre-stable.

ut

Definition 17. Let Π be a partition. Let q = (s,Z) be a zone, then the signa-
ture ActionSigPred(q,Π) with regard to the partition Π is defined as:

ActionSigPred(q,Π) = {(Action(e),Z) | ∀e, ∃ ν′ ∈ Z ′,∃t ∈ R≥0 (s, ν, t)
Action(e)−−−−−−→Π (s′, ν′, t′) and Z,Z ′ ∈ Π}

ActionSigPred(q,Π) operator is used in backward analysis of the set of zones.
Our algorithm 2 consists of three steps: computing the timed predecessors (TimeSplit
operator, see Definition 11 below), and computing the discrete signature prede-
cessors (DiscreteSigSplit operator, see Definition 12 below) and computing the
set of zones until a stable zones are reached, which is the multi-timed bisimula-
tion. Stable zone are a multi-timed bisimulation relation if every two states of
every zone in the set have the same signature with respect to every computed
refinement. A detailed explication about building a stable zones follows:

- Initial set of zones: LetQ be a set of zones in ZG(C), whereQ={((sA, sB),Z) ∈
Q | Z is a convex zone}. The initial partition is Π0 = Q.

- Refinement: A existing set of zones are iteratively refined until all zones be-
comes stable simultaneously with respect to all their timed predecessors, discrete
predecessors. For simplicity, we will write (s,Z) to denote the pairs ((sA, sB),Z).

Definition 18. Let Π be a set of zones in Q and q = (s,Z), q′ = (s′,Z ′) two
zones in Π. Then for the delay transitions, the splitter functions is defined as
follows:

TimeSplit(Z, Π) = {TimePred↑(Z,Z ′) | Z ′ ∈ Π, q
↑−→Π q′}

Definition 19. Let Π be a set of zones in Q and q = (s,Z) ∈ Π. Then the
refinement of a zone q is defined as follows:

DiscreteSigSplit(Z, Π) = {ν′ ∈ Z | ∀ν′ ∈ Z ′ ∈ Π,ActionSigPred(q,Π) =
ActionSigPred(q′, Π) and ν ∈ Z}

21



Algorithm 3: The partition refinement algorithm for a reachable ZG

Input : A ZG(C) = (Q = QA ×QB, q0 = (q0A, q
0
B), Σ = ΣA ∪ΣB,→ZG), Π.

Output: A coarsest partition Π.
1 // q ∈ Q is a zone of ZG(C), Π is a set of zones, Z, Z′ are clock zones.
2 // Q is a set of pairs S× Z.
3 Function PartitionZoneGraph(ZG(C), Π)
4 // Phase I - Get the input partition Π

5 Π′ ← Π ;
6 Repeat
7 // Phase II - Refine Π′ by delay transitions:

8 for each zone (or block) Z ∈ Π′ do
9 Π′ ← TimeSplit(Z, Π′) ;

10 end

11 // Phase III - Refine Π′ by discrete transitions:

12 for each zone (or block) Z ∈ Π′ do
13 Π′ ← DiscreteSigSplit(Z, Π′) ;
14 end

15 Until Π′ does not change;

16 Return Π′ ;

17 end

Lemma 4. Let (s,Z) be a class of Π and let e be an edge of the ZG(C), then
each of TimeSplit(Z, Π) and DiscreteSigSplit(Z, Π) forms a partition of Z in
zones.

Our proof follows the same lines as the proof of [26].

Proof. Consider Π1 = TimeSplit(Z, Π) first. By Lemma 8, all members of Π are
zones. It remains to show that they are disjoint and that their union yields Z.
Let Zi ∈ Π1, Zi = TimePred↑(Z,Z ′i), where Zi ∈ Π. Since Π is a partition, Z,
Z ′1 and Z ′2. Assumes ν ∈ Z1 ∩ Z2. For i = 1, 2, ∃ di ∈ RProc>0 such that ν+π di
∈ Zi and ∀ν ∈ Z, ∃di ∈ RProc>0 , ∃ τ ∈ Rates, ∃ t, t′′ ≥ 0 and t ≤ t′′, ∀t′, t ≤ t′

≤ t′′, (ν+π di) ∈ Z ′i, di = τ(t′′) − τ(t) and ∀ d′i, 0 ≤ d′i ≤ di then (ν + d′i) ∈
(Z ∪ Z ′i), d′i = τ(t′)− τ(t). Observe that d1 6= d2, since Z ′1 and Z ′2 are disjoint.
Without loss of generality, assume d1 < d2. We have that ν+π d1 ∈ Z ′1 and
ν+π d1 ∈ Z ∪Z ′2, that is, either ν+π d1 ∈ Z ′1 ∩Z or ν+π d1 ∈ Z ′1 ∩Z ′2, which
contradicts the fact that Z, Z ′1 and Z ′2 are all disjoint. This proves that Z1 and
Z2 are disjoint. Now,let ν ∈ Z. We can find RProc>0 and Z ′ ∈ Π such that ν+π

d ∈ Z ′ and ∀ν ∈ Z, ∃d ∈ RProc>0 , ∃ τ ∈ Rates, ∃ t, t′′ ≥ 0 and t ≤ t′′, ∀t′, t ≤
t′ ≤ t′′, (ν+π d) ∈ Z ′, d = τ(t′′) − τ(t) and ∀ d′, 0 ≤ d′ ≤ d then (ν+π d′) ∈
(Z ∪ Z ′), d′ = τ(t′)− τ(t). By definition, ν ∈ TimePred↑(Z,Z ′). Now, consider
Π2 = DiscreteSplit(Z, e,Π). By Lemma 5 , all members of Π2 are zones. By the
distributivity of pred over union (pred(Z1 ∪ Z2, e) = pred(Z1, e) ∪ pred(Z2, e))
members of Π2 cover Z. It remains to show that they are disjoint. Let Zi ∈ Π2,
Zi = Z ∩ Actionpred(Z ′i, e), where Z ′i ∈ Π, for i = 1, 2. Since Π is a partition,
Z ′1 and Z ′2 are disjoint. Assume ν ∈ Z1 ∩ Z2. Recall that the successor of ν, say
ν′, is unique. Since ν ∈ pred(Z ′1, e) ∩ pred(Z ′2, e), it must be that ν′ ∈ Z ′1 ∩ Z ′2,
which contradicts Z ′1 ∩ Z ′2 = ∅.

Correctness and Termination Algorithm 3: We can analyze the correct-
ness and termination of the algorithm 2 by evaluating the behavior of the splitter
functions, we may obtain new blocks (or zones), where for any two zones in differ-
ent blocks, they are not bisimilar and these blocks are disjoint. The correctness
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of the algorithm 2 follows from the standard partition refinement algorithm [26].
The definition TimeSplit(Z, Π) above to generate a finer partition, which deals
with delay transitions. The definition of DiscreteSplit(Z, e,Π), generate also a
finer partition and distinguishes the states with discrete transitions. Termination
is ensured by Lemma 9. However, in the worst case, the algorithm will generate
the partition induced by the region equivalence. Time-abstract bisimulation and
timed bisimulation have been shown decidable for TA in EXPTIME [21].

Multi-timed Bisimulation Algorithm: Inspired by [20][26], algorithm 3 starts
with zone graph and an initial partition and then refines it through the function
PartitionZoneGraph. Algorithm 3 checks whether two initial states zone graph A
and B are related according to some multi-timed bisimulation relation R.

Algorithm 3 describes the main steps of the decision procedure DecideMulti-
TimedBisim. It is based on three functions: (1) function BuildSymbZoneGraph
returns a zone graph. (2) function StartingInitialPartition returns an initial par-
tition Π0. It build an initial given a zone graph. We omit the pseudo code from
this paper. (3) function PartitionZoneGraph returns stable partition Π. Given a
partition Π, distinguishes the states in Π that are incompatible, and divides Π
into subclasses, thus refining the current partition. This means that the algo-
rithm 3 computes the states ((sA, sB),Z) from Π that are bisimilar up until the
desired initial state ((s0

A, s
0
B),Z0). Note that ν0

A and ν0
B ∈ Z0. The projection

of a zone Z0
A on a clock subset YA ⊆ X is Z0

A = {νcYA | ν ∈ Z0} and YB
⊆ X is Z0

B = {νcYB | ν ∈ Z0}. A common data structure used for the repre-
sentation of clock zones is a Difference bound matrices (DBMs)[9]. A canonical
form of the DBMs simplify some operations over zones like the test for inclusion
(inclusion(Z0

A,Z0
B) between zones. For any two DBMs Z0

A, Z0
B in canonical form,

the inclusion operation denoted as Z0
A ⊆ Z0

B returns true or false.

Example 5. An example of the zone graph, partition and multi-timed bisimula-
tion computed by our algorithms can be found in Figure 10. The Figure 10 (a)
shows two icTA A and B with the finite input alphabet Σ = {a, b}, the set of
processes Proc = {p, q}, the set of clocks X = {xp, yq} and τp > τq. The Figure
10 (b) shows the zone graph computed by algorithm 1. The Figure 10 (c) shows
the multi-timed bisimualtion for A and B.

Complexity Algorithm 3: Now, we analyze the problem of deciding whether
two icTA are multi-tumed bisimilar is EXPTIME-complete. Our algorithm 3 use
the idea of composition (or product) of two reachable zone graph ZG(C) = ZG(A)
‖ ZG(B) to decide multi-timed bisimulation from [1]. Our approach is based
on a simple reduction from linearly bounded alternating Turing machines. Our
reduction is standard [1][21], and it can be applied to both on TA and icTA (under
our multi-timed semantics). Timed bisimulation have been shown decidable for
TA in EXPTIME [1] [17] [21].

An Alternating Turing Machine (ATM) : An ATM [15] is a tuple M =
〈Q, q0, Γ,→,QF〉, where Q = Q∨ ∪ Q∧ is a set of states partitioned into disjunc-
tive states Q∨ and conjunctive states Q∧, q0 ∈ Q is the initial state, Γ = {a, b}
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Fig. 10. (a) Composition of icTAs; (b) Zone graph; (c) bisimulation

is the tape alphabet and containing a special blank symbol, denoted by $ ∈ Γ ,
QF ⊆ Q is the set of accepting states and →⊆ Q× Γ × Q× Γ × {−1, 1} is the
transition relation. In each non terminal step (i.e., the current state q ∈ Q), M
overwrites the tape cell being scanned, and the tape head moves one position to
the left 1 or right 1. The idea of the reduction is based on the fact that instead of
considering a computation that just stops in an accepting state we will encode
existence of a computation that after reaching an accepting state the machine
restarts in the initial configuration.

A configuration is a triple α = (q, i, w), where q ∈ Q is the current state, w
∈ Γ ∗ is word describing the tape content and 0 ≤ i |w| is the position of the
head on the tape. The symbol written in the ith cell of the tape is denoted by
w(i). A configuration (q, i, w) is final iff q = qF ∈ Q. An ATM moves like a usual
nondeterministic Turing machine: for example, if α = (q, i, w), w(i) = a and
(q, a, q′, b,∆) ∈ →, then M may move from α to α′ = (q′, i′, w′), written α →
α′ where w′ is w updated by writing a b in position i, and i′ is i + 1 if ∆ = 1
or i− 1 if ∆ = −1. We say that α′ is a successor of α. We also assume that M
has only a finite number of successor (q′, i′, w′) for which q = qF, and that i = 1
and w = an.
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A run ofM from some configuration α0 is a tree, the root of which corresponds
to α0, and where every node corresponding to α has a child node for each suc-
cessor α′ of α. For k ∈ N, a run rooted at some disjunctive configuration α is
accepting in k steps if and only if its state is qF or k ≥ 1 and at least one of its
children is accepting in k1 steps. A run rooted at some conjunctive configuration
α is accepting in k steps if and only if k ≥ 1 and all of its children is accepting in
k1 steps (and there is at least one child). A word v is accepted byM if and only
if there exists some k such that the run from (q0, 1, v) is accepting in k steps.
We say that M is linearly bounded (LB-ATM) on v if all configurations (q, i, w)
in the run of A have |w| ≤ |v|. The problem of acceptance of a LB-ATM, which
we denote by LB-ATM accept, is written as: Input An ATM M and a word v
∈ Γ ∗ such that M is linearly bounded on v. Output Yes, iff M accepts v. No
otherwise.

A classical result says that the problem LB-ATM accept is EXPTIME-complete
[15]. In the following, we assume, that along a single branch of a run of an LB-
ATM, no configuration is repeated; thus every branch is finite. This assumption
does not change the complexity issues: one can easily reduce an instance (M, v)
of LB-ATM accept to some instance (M′, v′) where M′ avoids repetitions by
inserting on the tape a counter (encoded in binary) whose value is bounded by
2|v| × |Q| × |v| (the maximum number of distinct configurations along the run).
Then M′ simulates the moves of M and increases the counter by 1 for every
simulated move of M.

We reduce the acceptance problem for LB-ATM to the problem of deciding if
two icTA are multi-timed bisimilarities.

Theorem 3. Deciding multi-timed bisimulation between two icTA is EXPTIME-
complete.

Proof. Let M = 〈Q, q0, Γ,→,QF〉, where Q = Q∨ ∪ Q∧ be an LB-ATM and v
be a word of length n. We define an icTA C = (Σ,X,S, s0,→icta, I,F, π) as the
parallel composition of two icTA A and B. The behavior of M over v can be
encoded by a icTA CM,v, which models the run of M over v. Then we let S =
(Q × {1, . . . , n}) ∪ {init, end}, Σ = {a, b}, and X = {x1, . . . , xn, y1, . . . , yn, t}.
The contents of the tape of M are encoded by the relative values of the clocks
x1, . . . , xn, y1, . . . , yn: cell i contains a if xi = yi, and b if xi < yi. Clock t is used
to ensure the elapse of time of length 1 between transitions. The initial state is
qMc

0 = (q0, 1). The transition relation →icta of CM,v is defined as follows: (i)
For each q ∈ Q∨, each 1 ≤ i ≤ n, and each e = (q, o, q′, o′, δ) ∈ →M, a transition

(q, i)
e,i−→ (q′, i + δ) is included in →CM,v

if e = (q, o, q′, o′, δ) and i + δ denote

i+ 1 (or i− 1) if δ = 1 and i < n or δ = −1 and i > 1. The transition (q, i)
e,i−→

(q′, i+ δ) is replaced by a transition (q, i)
t=1∧φ,e,Y−−−−−−−→ (q′, i+ δ), where the guards

φ of the discrete transition from a given location (q, i) can test whether the
current tape symbol is a or b by checking whether xi = yi or xi ¡ yi, respectively.
Furthermore, the writing of a symbol in a tape cell can be replicated by clock
resets: for example, to represent the writing of a in cell i, we reset clocks xi
and yi to 0 (so that xi = yi), whereas to write b we reset only xi (so that xi ¡
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yi). The target locations of the discrete transitions are derived from the target
states of the transition ofM involved in the definition of the discrete transition
and by the associated movement of the tape head. The initialization of the tape

with the input word v can be encoded by init
t=1,s0,Y0−−−−−−→ (q0, 1) where Y0 = {t}

∪ {xi | v(i) = b}.
The size of CM,v is O(n × |Q| × | → |2) and the reduction can be done in

logarithmic space. Now we show that M accepts v if and only if icYA returns
Yes for CM,v with the initial state (q0, 1), and the set containing the single final
state (qF, 1).

ut

5 Related Work

We have reviewed several models considered in the TA literature to study timed
bisimulation. Decidability for timed bisimulation between TA was given in [14]
using a region construction. An implementation based on region construction was
proposed [14]. In [27] a zone-based algorithm for checking (weak) timed bisim-
ulation was proposed though never implemented in any tool. Time-abstracting
bisimulation between TA was given in [26]. A tool based on time-abstracting
bisimulation was proposed [26]. In [13] is studied timed simulation through a
formalism for defining simulation-checking games. A tool based on simulation-
checking games was proposed [8]. The notion of clock drifts were considered in
[19] and [24] in the context of DTA, but the notion of timed bisimulation is not
considered. In [2], the notion of timed bisimulation was proposed using region
construction though never implemented in any tool.

6 Conclusions

In this paper we have presented four main contributions: (1) An extension of
TLTS and icTA based on independent clocks. (2) A new approach to timed
bisimulation, called multi-timed bisimulation which applies the idea of indepen-
dent clocks. (3) An EXPTIME algorithm for deciding multi-timed bisimulation
have been presented, from the theory of [26] and [8]. Finally, as future work,
we envisage to implement the algorithms 1, 2, and 3 for calculating their run-
times and to compare the algorithms proposed in the current paper with other
algorithms proposed in [26][8].
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